
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 67, 025203 ~2003!
Self-organized superlattice patterns with two slightly differing wave numbers

E. Große Westhoff, R. Herrero,* T. Ackemann, and W. Lange
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~Received 31 May 2002; revised manuscript received 16 December 2002; published 19 February 2003!

We report on the observation of superlattices that occur spontaneously in a nonlinear optical system with
O~2! symmetry. A secondary bifurcation from hexagons yields patterns formed by twelve wave vectors.
Besides irregular patterns these may either be quasiperiodic patterns or superlattices built from two classes of
wave vectors differing slightly in their length. Both classes of wave vectors stem from only one pattern-
forming instability. The wave vectors fit on a hexagonal or a square grid. In the former case the set of wave
vectors can be decomposed into two hexagonal triads, whereas in the case of the square grid squeezed triads
occur.
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Spatially extended nonlinear dissipative systems are
pable of generating a wide variety of patterns. Commo
the uniform state of the pattern forming system is unsta
against periodic perturbations with a well defined critic
wave numberkc @1#. The superposition ofn wave vectors
that are equally distributed on a circle of radiuskc yields
simple periodic~stripes, squares, hexagons forn52,4,6) and
quasiperiodic structures (n.6) @2,3#. The latter are not pe
riodic since theirn-fold rotational symmetry is not compa
ible with the translational symmetry.

A quasiperiodic pattern can be converted into a perio
one by varying the angles between the wave vectors an
the wave numbers in order to break the high rotational sy
metry. The new structure is periodic if and only if the wa
vectors lie on a periodic grid. For the hexagonal and
square grid, Dionne and Golubitsky analyzed the poss
planforms and predicted stability for somecomplex periodic
structures@4#. These patterns contain two different leng
scales and representsuperlattices@5#. Complex periodic pat-
terns have been observed in systems with broken rotati
symmetry@6,7# and in recent experiments in whichtwo in-
stabilities are present simultaneously@8,9#.

We report the observation of superlattices which belong
a new class of complex structures. They are built from wa
vectors whose lengths differ just slightly. All of them ste
from thesameinstability @10# and rely on the simple fact tha
far above threshold a band of wave numbers is unstable

The experiment~cf., Fig. 1! is based on thesingle feed-
back mirror arrangement, which is an archetypal system fo
optical pattern formation@11#. We irradiate sodium vapo
with a circularly polarized Gaussian beam~beam waistw0
51.5 mm) which is tuned near to the sodiumD1 line @12#.
The transmitted light is fed back into the medium by a pla
mirror ~reflectivity R50.92) placed at a distanced545••
•90 mm behind the medium. Due to the insertion of a qua
wave plate between the cell and the mirror, the polarizat
components counterpropagating in the medium have op
site helicity @13#. A weak longitudinal magnetic field is ap
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Barcelona, Spain.
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plied in order to define the axis of quantization. The intens
distributions of the near field and the far field, which corr
sponds to the Fourier transform of the former, are monito
with two CCD cameras and are recorded simultaneously

The most important control parameters in the experim
are the input power and the detuning from the atomic re
nance. The parameter space can be roughly divided
seven regions as depicted in Fig. 2. Typically, for increas
input power the homogeneous state~region I! bifurcates to
hexagonal patterns~region II!, which give way to quasipat-
terns in region III as discussed in@3#.

For higher input power~region IV! we observe a numbe
of different seemingly complex patterns~cf., e.g., Fig. 3!. In
order to work out the difference between the new patte
and quasipatterns, we analyze them in Fourier space@cf.,
Figs. 3~b!,3~d!,3~f!,3~h!#. All patterns are built by twelve
wave vectors. In the case of the twelvefold quasipattern@cf.,
Figs. 3~a!,3~b!# the Fourier components lie regularly spac
on a ring within the accuracy of the experiment. In oth
patterns wave numbers differ by up to 10%. Whereas ther
no apparent regularity in the pattern displayed in Fi
3~c!,3~d!, the Fourier components are arranged in groups
three along approximately straight lines in Figs. 3~f!,3~h!.
This rearrangement results in a sixfold@cf., Fig. 3~f!# and
fourfold @cf., Fig. 3~h!# rotational symmetry of the Fourie
spectrum that is compatible with spatial periodicity.

We remark that in region IV all patterns described alt
nate in an irregular way on a time scale of milliseconds
nominally constant parameters. This hints at the existenc
multistability with noise induced transitions between diffe
ent stationary patterns. In the following we will characteri
the properties of the new patterns in more detail in param
regions in which a single type of pattern occurs. In the

,
FIG. 1. Schematic experimental setup. LP, linear polarizer;l/4,

quarter-wave plate; SC, sodium cell; M, feedback mirror; CC
charge coupled camera device.
©2003 The American Physical Society03-1
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regions the patterns are stationary except for slow rota
and drift with varying velocity and direction as expected in
weakly confined system with O~2! symmetry. The structure
with a sixfold far-field pattern@cf., Fig. 3~f!# is monostable
within region V in Fig. 2. In this case the far field can b
interpreted as a superposition of a hexagonal triad built fr
wave vectors of the lengthk1, and a second triad with a
slightly larger wave numberk2, which is rotated by an angle
of 30 degrees with respect to the former one@cf., Fig. 4~a!#.

At the threshold of pattern formation a hexagonal patt
~first triad k1) is observed. For increasing input power t
wave numberk1 of the first triad decreases. At about 80
above threshold a second triad with a significantly sma
amplitude appears. Its wave numberk2 is approximately the
wave number of the hexagonal pattern at threshold. The r
k2 /k1 increases for increasing input power and is 1.120
the highest accessible input power with a standard devia
of 0.010. This is reasonably close to the ratio 2/A3'1.155
for a sixfold superlattice constructed by the superposition
two hexagonal patterns~simple hexagons, SiH according t
Fig. 4~a!. In generalization of the notation in Ref.@4# we call
this superlattice SiH1SiH. Due to the limited size of the
observed patterns the width of the Fourier components~half
width at half maximum! is about 5% of their wave numbe
Therefore, at least within the limited area of pattern form
tion in the Gaussian beam, an exact correspondence is
necessary to obtain the complex periodicity that can be s
in Fig. 5~a!. Some of the minima in the transmitted intens
are slightly elongated and form the centers of squeezed
agonal cells, which define the new periodicity length and
new symmetry (D2).

For low mirror distances and sufficiently high inp
power, predominantly patterns of the type depicted in F
3~g!,3~h! and 5~c!,3~d! are observed. Their far field is forme
from eight wave vectors of the same lengthk2, which build
a square superlattice@cf., the Fourier components on th

FIG. 2. Schematic bifurcation diagram of dependence on
detuning from the sodiumD1 line and the input power. Parameter
nitrogen buffer gas pressurepN2

5200 hPa, sodium cell temperatur
T5318 °C, distance between the sodium cell and the feedb
mirror d588 mm, reflectivity of the feedback mirrorR592%. The
lines have been added to guide the eyes and to roughly separa
regions of different patterns, which are: I, homogeneous state
hexagons; III, quasipatterns; IV, multistability; V, SiH1SiH; VI,
chessboards; VII, walls. For mirror distances lower than used h
the structure AS2,11SiS dominates the pattern formation in regio
IV. A detailed description is given in the text.
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circle in Fig. 4~b!; see also Ref.@4##, and four additional
wave vectors of slightly smaller lengthk1, which build a
simple square pattern. The ratio between the different w
numbers@cf., Fig. 5~d!# is k2 /k151.093 with a standard de
viation of 0.005. This ratio is close to the one expected
the ideal superstructure (A5/2'1.118), in that all Fourier
components fit on the same square grid. Since the co
sponding near-field intensity distribution@cf., Fig. 5~c!# dis-
plays a fourfold rotational symmetry but no reflection sym
metry, this structure belongs to the symmetry classD4

2 @4#.
This superlattice can be interpreted as a combination (A2,1
1SiS) of an antisquare AS2,1 and a simple square (SiS) i
the notation of@4#.
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FIG. 3. Experimentally observed near-field~a!,~c!,~e!,~g! and
far-field ~b!,~d!,~f!,~h! intensity distributions of the transmitte
beam for nominal constant parameters, which are given in Fig
The input power isPin5113 mW and the detuning from the so
dium D1 line is D53.6 GHz.

FIG. 4. Schematic Fourier spectrum of two superlattices with~a!
sixfold rotational symmetry (SiH1SiH) and~b! fourfold rotational
symmetry (AS2,11SiS or SuS2,11SiS). The arrows indicate the
composition of the patterns by two triads.
3-2
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The presence of the symmetryD4
2 excludes the combination

(SuS2,11SiS) of a supersquare SuS2,1 and a simple square
which has the same Fourier power spectrum.

In the parameter regions VI and VII in Fig. 2 we obser
squares and stripes with very steep edges, respectively. I
corresponding far-field images the higher harmonics are v
strongly excited. In order to distinguish them from ordina
stripes and squares, which do not possess these steep
ents, we call themwalls andchessboards. A detailed discus-
sion of the properties of these patterns cannot be given in
letter, but we mention that chessboardlike patterns have b
predicted in optics to occur due to mode coupling betwe
different active instability regions~interballoon coupling
@14,15#!. In addition, patterns phenomenologically similar
chessboard patterns seem to occur in a single-mirror s
with a photorefractive medium@16#.

In fact the linear stability analysis of the microscop
model given in@13# shows a sequence of multiple instabili
regions that is typical for the single feedback mirror arran
ment @11#. For increasing input power the homogeneo
steady state initially becomes unstable against periodic
turbations which belong to the instability region with th
smallest wave numbers, since that one has the lowest thr
old. For higher input power two more instability regions c
be activated within the experimentally accessible param
range. There are indications that these are of importanc
the formation of the walls and chessboards.

Numerical simulations, based on the microscopic mo
given in @13#, reproduce the occurrence of the stationa
complex periodic patterns in a pump beam with a Gauss
profile. As in the experiment the ratio between the wa
numbers is slightly smaller than the values, which are
pected for a perfect superlattice on an infinite domain. Th
are 1.0860.01 and 1.0960.01 instead of 2/A3 and A5/2,
respectively. In order to check for possible consequence
the inhomogeneous input profile on pattern selection, sim
lations with a plane wave input beam and periodic bound

FIG. 5. Near~a!,~c! and far~b!,~d! -field intensity distribution of
superlattice patterns. Parameters:~a!,~b! as in Fig. 2 but Pin

5182 mW andD52.1 GHz; ~c!,~d! pN2
5200 hPa,T5318 °C,

D54.8 GHz,d548 mm, Pin5162 mW for ~c!,~d!. Lines are
added to the near-field patterns in order to guide the eye along
grid of the superlattices.
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conditions were also performed. Figure 6~a! displays the re-
sults of a numerical simulation for small detuning (D
52.2 GHz), in which a hexagonal pattern is used as
initial condition. The intensity of the transmitted field dis
plays the periodic repetition of the same basic structure
the experimental picture in Fig. 5~a!, which is an elongated
minimum surrounded by six deeper minima building
squeezed hexagon. The far field is composed of two hexa
nal triads with different wave numbers. The ratioq2 /q1 be-
tween the wave numbers agrees with 2/A3 within our nu-
merical resolution. The structure is interpreted as a S
1SiH superlattice. For larger detuning (D54.2 GHz) noise
has been chosen as the initial condition. The intensity of
transmitted field in Fig. 6~c! resembles the experimental ob
servation in Fig. 5~c!. The ratio of the two different wave
numbers displayed in the far field agrees withA5/2 within
our numerical resolution. The structure is interpreted as
AS2,11SiS pattern as in the experiment.

We conclude that the selection of superlattices is not
to the boundary conditions, even though the wave-num
ratio is slightly squeezed in a Gaussian beam. However,
deviation is so small that in the limited area of the Gauss
beam the patterns appear as a superlattice.

By suppressing the spatial harmonics of the state varia
in the calculations it can be shown that these harmonics
not essential in the formation of the superstructures. T
implies that the existence of the higher instability regio
mentioned above is not a prerequisite of the process. In c
trast, in Refs.@7,9# the superlattice patterns contain wa
vectors stemming from different instabilities of the homog
neous state@10#.

In the microscopic description of the system the invers
symmetry is broken@13#. Therefore, quadratic terms ar
present in the amplitude equations describing the dynam
of the complex amplitudes of the bifurcating Fourier mod
This quadratic coupling results in a resonant wave-vec
interaction~hexagonal triad! that is responsible for the for

he

FIG. 6. Intensities of the transmitted near field~a!,~c! and
far field ~b!,~d! calculated in numerical simulation with
periodic boundary conditions and a plane wave input bea
Parameters:d588 mm, R50.915,N57.331018 m23, D5356.3
31026 m2/s, G256.833109 s21, L515 mm. Furthermore, in
~a!,~b! D52.2 GHz, P05106 s21; and in ~c!,~d! D54.2 GHz, P0

543105 s21.
3-3
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mation of hexagons~ @1# and references therein! in parameter
region II in Fig. 2. We propose that the same resonant wa
vector interaction also stabilizes the observed complex st
tures. All structures, which are built from twelve Fouri
components~parameter regions III, IV, and V in Fig. 2!, can
be interpreted as a superposition of two triads of fundame
modes. Indeed, the sum of the wave vectors of the co
sponding triads is zero within the error produced by discr
zation. This indicates the stabilization of each triad due to
resonant interaction between active modes. In the case o
superlattice on the square grid the triad is squeezed@Fig.
4~b!#; it might be called asquare triad.

Coupling terms between modes belonging to different
ads will appear in third order of the amplitude equatio
Cubic couplings between modes of thesamewave number
are of the formAi uAj u2, since the resonance condition fo
four-wave mixing,( i 51

4 qW i50, cannot be fulfilled otherwise
However, the superstructureswith two slightly different wave
numbersallow for new resonances which introduce co
plings of the typeAiAjAk* . These couplings are phase se
sitive. In a preliminary analysis they select the antisqua
instead of supersquares. While the role of the phase sens
ev
v

og

y
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ity of the quadratic coupling is well known to be crucial
the formation of hexagons@1# and superlattices@7#, the re-
sults indicate that phase-sensitive contributions can also
important in cubic order.

Finally, we would like to emphasize that the superlattic
discussed here are by no means a phenomenon that see
be restricted to very special conditions. On the contrary
the phase diagram of Fig. 2 there is a wide parameter ra
where the increase of the input power gives superlattices
a secondary bifurcation, either directly from hexagons or m
diated by quasipatterns. It is not at all apparent that t
behavior might be specific to the system under study. Inde
a recent work indicates that a structure with the same wa
vector configuration as the SiH1SiH superlattice is one o
the possible structures which might emerge from a gen
secondary bifurcation of hexagons@17#.
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