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Self-organized superlattice patterns with two slightly differing wave numbers

PHYSICAL REVIEW E 67, 025203 (2003

E. GroRe Westhoff, R. Herrefo,T. Ackemann, and W. Lange
Institut fir Angewandte Physik, Wesdlfzhe WilhelmsUniversita Munster, Corrensstrasse 2/4, D-48149 iater, Germany
(Received 31 May 2002; revised manuscript received 16 December 2002; published 19 February 2003

We report on the observation of superlattices that occur spontaneously in a nonlinear optical system with
0O(2) symmetry. A secondary bifurcation from hexagons yields patterns formed by twelve wave vectors.
Besides irregular patterns these may either be quasiperiodic patterns or superlattices built from two classes of
wave vectors differing slightly in their length. Both classes of wave vectors stem from only one pattern-
forming instability. The wave vectors fit on a hexagonal or a square grid. In the former case the set of wave
vectors can be decomposed into two hexagonal triads, whereas in the case of the square grid squeezed triads
occur.
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Spatially extended nonlinear dissipative systems are calied in order to define the axis of quantization. The intensity
pable of generating a wide variety of patterns. Commonlydistributions of the near field and the far field, which corre-
the uniform state of the pattern forming system is unstableponds to the Fourier transform of the former, are monitored
against periodic perturbations with a well defined criticalwith two CCD cameras and are recorded simultaneously.
wave numberk. [1]. The superposition oh wave vectors The most important control parameters in the experiment
that are equally distributed on a circle of radiks yields  are the input power and the detuning from the atomic reso-
simple periodigstripes, squares, hexagons for2,4,6) and nance. The parameter space can be roughly divided into
quasiperiodic structures1t>6) [2,3]. The latter are not pe- seven regions as depicted in Fig. 2. Typically, for increasing
riodic since theim-fold rotational symmetry is not compat- input power the homogeneous stategion |) bifurcates to
ible with the translational symmetry. hexagonal patterngegion Il), which give way to quasipat-

A quasiperiodic pattern can be converted into a periodiderns in region Il as discussed [8].
one by varying the angles between the wave vectors and/or For higher input powe(region IV) we observe a number
the wave numbers in order to break the high rotational symof different seemingly complex pattergsf., e.g., Fig. 3. In
metry. The new structure is periodic if and only if the wave order to work out the difference between the new patterns
vectors lie on a periodic grid. For the hexagonal and theand quasipatterns, we analyze them in Fourier spate
square grid, Dionne and Golubitsky analyzed the possibl&igs. 3b),3(d),3(f),3(h)]. All patterns are built by twelve
planforms and predicted stability for sormemplex periodic ~wave vectors. In the case of the twelvefold quasipatfefn
structures[4]. These patterns contain two different length Figs. 3a),3(b)] the Fourier components lie regularly spaced
scales and represesuperlatticeg5]. Complex periodic pat- on a ring within the accuracy of the experiment. In other
terns have been observed in systems with broken rotationgatterns wave numbers differ by up to 10%. Whereas there is
symmetry[6,7] and in recent experiments in whidttvo in- no apparent regularity in the pattern displayed in Figs.
stabilities are present simultaneoufB9]. 3(c),3(d), the Fourier components are arranged in groups of

We report the observation of superlattices which belong tdhree along approximately straight lines in Figgf) 3(h).

a new class of complex structures. They are built from wavel'his rearrangement results in a sixfdldf., Fig. 3f)] and
vectors whose lengths differ just slightly. All of them stem fourfold [cf., Fig. 3h)] rotational symmetry of the Fourier
from thesameinstability [ 10] and rely on the simple fact that spectrum that is compatible with spatial periodicity.

far above threshold a band of wave numbers is unstable. We remark that in region IV all patterns described alter-

The experimentcf., Fig. 1) is based on thsingle feed- nate in an irregular way on a time scale of milliseconds for
back mirror arrangementwhich is an archetypal system for nominally constant parameters. This hints at the existence of
optical pattern formatiorj11]. We irradiate sodium vapor multistability with noise induced transitions between differ-
with a circularly polarized Gaussian bedlmeam waistw,  €nt stationary patterns. In the following we will characterize
=1.5 mm) which is tuned near to the sodiub line [12].  the properties of the new patterns in more detail in parameter
The transmitted light is fed back into the medium by a planeg’egions in which a single type of pattern occurs. In these
mirror (reflectivity R=0.92) placed at a distanag=45- -

-90 mm behind the medium. Due to the insertion of a quarter

. L spatial filter laser
wave plate between the cell and the mirror, the polarization P -
components counterpropagating in the medium have oppo- N_N_D N I i{ccop

site helicity[13]. A weak longitudinal magnetic field is ap-

LP A4 SC M4 M

— CCD
— d —
*Permanent address: Departament dgciii Enginyeria Nuclear, FIG. 1. Schematic experimental setup. LP, linear polarizét;
Universitat Politenica de Catalunya, c/Comte Urgell 187, E-08036, quarter-wave plate; SC, sodium cell; M, feedback mirror; CCD,

Barcelona, Spain. charge coupled camera device.
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FIG. 2. Schematic bifurcation diagram of dependence on the
detuning from the sodiur®, line and the input power. Parameters:
nitrogen buffer gas pressum2=200 hPa, sodium cell temperature
T=318 °C, distance between the sodium cell and the feedback
mirror d=88 mm, reflectivity of the feedback mirrét=92%. The
lines have been added to guide the eyes and to roughly separate the
regions of different patterns, which are: I, homogeneous state; Il,
hexagons; Ill, quasipatterns; IV, multistability; V, SiBiH; VI,
chessboards; VII, walls. For mirror distances lower than used here
the structure A$;+ SiS dominates the pattern formation in region
IV. A detailed description is given in the text. g)

h)

regions the patterns are stationary except for slow rotation
and drift with varying velocity and direction as expected in a
weakly confined system with @) symmetry. The structure
with a sixfold far-field patterricf., Fig. 3f)] is monostable
within region V in Fig. 2. In this case the far field can be
interpreted as a superposition of a hexagonal triad built from FIG. 3. Experimentally observed near-field),(c),(e),(g) and
wave vectors of the lengtk;, and a second triad with a far-field (b),(d),(f),(h) intensity distributions of the transmitted
slightly larger wave numbek,, which is rotated by an angle beam for nominal constant parameters, which are given in Fig. 2.
of 30 degrees with respect to the former dog, Fig. 4a)].  The input power isP,,=113 mW and the detuning from the so-
At the threshold of pattern formation a hexagonal patterrfium D, line is A=3.6 GHz.
(first triad k;) is observed. For increasing input power the o N
wave numberk, of the first triad decreases. At about 80% Circle in Fig. 4b); see also Ref[4]], and four additional
above threshold a second triad with a significantly smalleivave vectors of slightly smaller lengtky, which build a
amplitude appears. Its wave numberis approximately the simple square.pattern.. The ratio betwegn the different wave
wave number of the hexagonal pattern at threshold. The ratiBumberdcf., Fig. Sd)] is k;/k;=1.093 with a standard de-
k,/k, increases for increasing input power and is 1.120 foviation of 0.005. This ratio is close to the one expected for
the highest accessible input power with a standard deviatiothe ideal superstructure/6/2~1.118), in that all Fourier
of 0.010. This is reasonably close to the ratig/2~1.155 Ccomponents fit on the same square grid. Since the corre-
for a sixfold superlattice constructed by the superposition ofPonding near-field intensity distributiguf., Fig. 5c)] dis-
two hexagonal patternsimple hexagons, SiH according to plays a fpurfold rotational symmetry but no reflection sym-
Fig. 4@). In generalization of the notation in R¢#i] we call ~ Metry, this structure belongs to the symmetry clBss [4].
this superlattice SiHt SiH. Due to the limited size of the This superlattice can be interpreted as a combination, (AS
observed patterns the width of the Fourier componémaf  +SiS) of an antisquare A3 and a simple square (SiS) in
width at half maximumis about 5% of their wave number. the notation of4].
Therefore, at least within the limited area of pattern forma-
tion in the Gaussian beam, an exact correspondence is not a)
necessary to obtain the complex periodicity that can be seen
in Fig. 5@. Some of the minima in the transmitted intensity
are slightly elongated and form the centers of squeezed hex-
agonal cells, which define the new periodicity length and the
new symmetry D).
For low mirror distances and sufficiently high input
power, predominantly patterns of the type depicted in Figs. FIG. 4. Schematic Fourier spectrum of two superlattices geith
3(9),3(h) and 5c),3(d) are observed. Their far field is formed sixfold rotational symmetry (Sit SiH) and(b) fourfold rotational
from eight wave vectors of the same lengith which build  symmetry (AS,+SiS or Su$,+SiS). The arrows indicate the
a square superlatticecf., the Fourier components on the composition of the patterns by two triads.
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FIG. 5. Near(a),(c) and far(b),(d) -field intensity distribution of FIG. 6. Intensities of the transmitted near field),(c) and
superlattice patterns. Parametefs),(b) as in Fig. 2 butP, far field (b),(d) calculated in numerical simulation with
=182 mW andA=2.1 GHz; (c),(d) pn,= 200 hPa,T=318 °C, periodic boundary conditions and a plane wave input beam.
A=4.8 GHz,d=48 mm, P,,=162 mW for (c),(d). Lines are Parameters:d=88 mm,R=0.915N=7.3x10"¥ m 3, D=356.3
added to the near-field patterns in order to guide the eye along th& 10°°® m?/s, I',=6.83x10° s !, L=15 mm. Furthermore, in
grid of the superlattices. (a),(b) (A)5=2-12 GHz,Py=10° s™%; and in(c),(d) A=4.2 GHz, P,

=4X10° s .

The presence of the symmetdy, excludes the combination conditions were also performed. Figure@gdisplays the re-
(Sus 1+ SiS) of a supersquare SysSand a simple square, sults of a numerical simulation for small detuning (
which has the same Fourier power spectrum. =2.2 GHz), in which a hexagonal pattern is used as the

In the parameter regions VI and VII in Fig. 2 we observeinitial condition. The intensity of the transmitted field dis-
squares and stripes with very steep edges, respectively. In tidays the periodic repetition of the same basic structure as
corresponding far-field images the higher harmonics are verthe experimental picture in Fig.(&, which is an elongated
strongly excited. In order to distinguish them from ordinary minimum surrounded by six deeper minima building a
stripes and squares, which do not possess these steep gragijueezed hexagon. The far field is composed of two hexago-
ents, we call themvalls and chessboardsA detailed discus- nal triads with different wave numbers. The ratjg/q, be-
sion of the properties of these patterns cannot be given in thisveen the wave numbers agrees with/2/within our nu-
letter, but we mention that chessboardlike patterns have beanerical resolution. The structure is interpreted as a SiH
predicted in optics to occur due to mode coupling betweent SiH superlattice. For larger detuning € 4.2 GHz) noise
different active instability regionginterballoon coupling has been chosen as the initial condition. The intensity of the
[14,15). In addition, patterns phenomenologically similar to transmitted field in Fig. @) resembles the experimental ob-
chessboard patterns seem to occur in a single-mirror setugervation in Fig. &). The ratio of the two different wave
with a photorefractive mediurfi6]. numbers displayed in the far field agrees wif6/2 within

In fact the linear stability analysis of the microscopic our numerical resolution. The structure is interpreted as an
model given in[13] shows a sequence of multiple instability AS, ,+ SiS pattern as in the experiment.
regions that is typical for the single feedback mirror arrange- We conclude that the selection of superlattices is not due
ment [11]. For increasing input power the homogeneousto the boundary conditions, even though the wave-number
steady state initially becomes unstable against periodic peratio is slightly squeezed in a Gaussian beam. However, the
turbations which belong to the instability region with the deviation is so small that in the limited area of the Gaussian
smallest wave numbers, since that one has the lowest thresheam the patterns appear as a superlattice.
old. For higher input power two more instability regions can By suppressing the spatial harmonics of the state variable
be activated within the experimentally accessible parameten the calculations it can be shown that these harmonics are
range. There are indications that these are of importance ifot essential in the formation of the superstructures. This
the formation of the walls and chessboards. implies that the existence of the higher instability regions

Numerical simulations, based on the microscopic modementioned above is not a prerequisite of the process. In con-
given in [13], reproduce the occurrence of the stationarytrast, in Refs[7,9] the superlattice patterns contain wave
complex periodic patterns in a pump beam with a Gaussiagectors stemming from different instabilities of the homoge-
profile. As in the experiment the ratio between the waveneous stat¢10].
numbers is slightly smaller than the values, which are ex- In the microscopic description of the system the inversion
pected for a perfect superlattice on an infinite domain. The)Symmetry is broken13]. Therefore, quadratic terms are
are 1.08-0.01 and 1.020.01 instead of 2/3 and \5/2,  present in the amplitude equations describing the dynamics
respectively. In order to check for possible consequences aff the complex amplitudes of the bifurcating Fourier modes.
the inhomogeneous input profile on pattern selection, simuThis quadratic coupling results in a resonant wave-vector
lations with a plane wave input beam and periodic boundarynteraction(hexagonal triadl that is responsible for the for-
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mation of hexagoné[1] and references thergim parameter ity of the quadratic coupling is well known to be crucial in
region Il in Fig. 2. We propose that the same resonant wavethe formation of hexagonfl] and superlatticeg7], the re-
vector interaction also stabilizes the observed complex strucsults indicate that phase-sensitive contributions can also be
tures. All structures, which are built from twelve Fourier important in cubic order.
componentgparameter regions lll, 1V, and V in Fig.)2can Finally, we would like to emphasize that the superlattices
be interpreted as a superposition of two triads of fundamentaliscussed here are by no means a phenomenon that seems to
modes. Indeed, the sum of the wave vectors of the corréde restricted to very special conditions. On the contrary, in
sponding triads is zero within the error produced by discretithe phase diagram of Fig. 2 there is a wide parameter range,
zation. This indicates the stabilization of each triad due to thevhere the increase of the input power gives superlattices by
resonant interaction between active modes. In the case of tfeesecondary bifurcation, either directly from hexagons or me-
superlattice on the square grid the triad is squedfeg. diated by quasipatterns. It is not at all apparent that this
4(b)]; it might be called asquare triad behavior might be specific to the system under study. Indeed,
Coupling terms between modes belonging to different tri-a recent work indicates that a structure with the same wave-
ads will appear in third order of the amplitude equations.vector configuration as the Si#HSiH superlattice is one of
Cubic couplings between modes of tkeamewave number the possible structures which might emerge from a generic
are of the formA;|A;|?, since the resonance condition for secondary bifurcation of hexagofs7].

four-wave mixing,Ei‘Llﬁi:O, cannot be fulfilled otherwise.
However, the superstructuresth two slightly different wave
numbersallow for new resonances which introduce cou- We gratefully acknowledge financial support by the Deut-
plings of the typeA;A;A; . These couplings are phase sen-sche Forschungsgemeinschaft and the help of D. Rudolph in
sitive. In a preliminary analysis they select the antisquaresome of the measurements. We thank L. Gil for sharing the
instead of supersquares. While the role of the phase sensitiwork [17] prior to publication.
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