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The counter-intuitive feature of Parrondo’s games is illustrated on various dynamical systems combined
from different deterministic and stochastic subsystems. The concept of truncation and reset process is intro-
duced, which provides a transparent perspective to understand the underlying mechanism of this class of
dynamics, including the transport of flashing ratchets, and clarifies the puzzlement why random switching
between two games can generate reversal dynamics as periodical switching does.
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Parrondo’s games are considered counter intuftive3]. Games Coins  Condition to use this coin
As stated by Parrondet al. in Ref. [1] “the apparent para-
dox points out that if one combines two dynamics in which a A coinl

given variable decreases, the same variable can increase in
the resulting dynamics.” This statement has caught immense ) )
public interest and brought about broad ranges of discussion coin3 if X(n—1) mod 3=1,2.

in different disciplines, including mating pattern in evolution o o ) )

[3], investment strategy4], biased Brownian motion by Ihatis, in gameA only coin 1 is used. In gam either coin
flashing ratchet mechanisf], pattern formatiorj5], quan- 2 or coin 3 IS used dep_endlng on, respectively, whether the
tum games6], and games in Ising and Potts mod&l The previous capltaK(n— 1)_ is a multiple of 3 or not. Analytical
most dominant feature in Parrondo’s games is the reverszﬁst'mat.'on and simulation resulf8] show that both games
dynamics after two subsystems are combined. However, th%rgivl%sljgﬁj gargve\i\;grr ?h:m?gi? ,W%Ze\?vr:fe]ﬁys;:fchpilnayet})i-
feature itself is not unexpected, because a combined syste Neen twoyéames ' play 9
usually exhibits different behavior if the subsystems are y

I At first sight, this phenomenon is counter intuitive be-
coupled, as the examples in Fig. 2 show. Instead of that, aP,use the coin-tossing processes in garend B are both

essential question on these games is at which point these W8, hastic and should be independent. Intuitively, the chance
subsystems are coupled and how this unapparent and Wegk winning in the combined dynamics should equal to the

couple can change the dynamics dramatically. This questiogyerage of the two individuals. However, a closer look at the
is the main concern of this work and is investigated on variyyles shows that these two individual game dynamics in the
ous dynamical systems combined from deterministically chagombined game are not completely independent. In contrast
otic and stochastic subsystems. Therein, the concept of truio gameA, which is independent on ganiafter the com-
cation and reset process is introduced, which provides aination, gameB is not independent on gan#e because of
transparent perspective to understand the underlying mechése condition of multiple 3. This condition provides a weak
nism of the combined dynamics and clarifies the frequentouple between these two games and affects the whole dy-
puzzlement why random switching between two subsystemsamics. To illustrate this coupled effect, the deterministic
can induce new biased dynamics, as well as periodicatondition of multiple 3 in gamd of the CTM is replaced
switching. with a stronger condition, given by the deterministic maps
The coin-tossing modelCTM) frequently mentioned in  (2) and(5).
Parrondo’s games consists of three biased coins with the The first dynamics considered is the map:[0,1]

coin2 if X(n—1) mod 3=0

probabilities of winningP,,;, and 10SiNgP s —[0,1], with
Coin 1 Coin 2 Coin 3 = for xe[0,3],
Tax= (1)
Puin 1/2—¢ 3/4—¢ 1/10- & 1-ea for xe[3.1],
Ploss 1/2+e 1/4+¢ 9/10+¢

where 0<eg,<1 [see example fos,=0.9 in Fig. 1a)]. We

call it step map because this dynamics has only two values
wheree is a small number and winningosing means that e, and 1-¢,, depending on in which region the poixts
the player receivefloses one dollar in his capitak(n) in  located. The second dynamics is the circle miaa[0,1]
the nth tossing. The coin used in gardeandB for thenth ~ —[0,1], with

tossing is determined by the game rules:
TegX=X+eg modl, (2
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FIG. 2. (Color) The capitalX(n) of gameAB; (red curve with
negative slopeand gameAB, (blue curve with positive slopeThe
) 7 ) capital X(n) of individual gameA (green, gameB,; (red, and
route of Tg with the initial pointx,. gameB, (blue) are magnified in the inset.

FIG. 1. (Color (a) Step mapT, with £,=0.9. (b) Circle map
Tg. with eg =7—3. (c) Circle mapTg_ with eg.=4—a. (d) A
1 1 2 2

where 0<eg<1 is an irrational numbefsee examples for
eg=m—3 and 4= in Fig. 1b,0]. Given an initial point
Xp€[0,1], these mapd generate an orbifxg, X1, X5, . . .}
with X;=TXg, X,=T?Xg, . ... Thenumberx, corresponds
to the coin value in thath tossing. Notably, the value, in
coin tossing is stochastic and not relatedkfo 1, while the
valuex, here depends ox},_; and is therefore deterministic.
The game rule is such that one gasis=x,— 3 dollar for an
outcomex,,. Sincex,e[0,1], the gains,e[—3,3] can be
Rgtr: ptﬁzltlgree;gﬂsnzgrzgzikmi ;;V\é;a)r()(ﬁ(;)lrz ;(hnaf%’is understand by tracing the ort_{ixo, X1, X, - . ._} of Tg. Fig-
+s,. GameA andB are generated by dynamigs, andTs ure 1(d) shows an example i, which shiftsx, s_tep by
respectively, and gam&B is generated by dynamics switch- Step from small numbers to large numbers. Aft@rrives at

dostochastiddue to the condition of multiple 3). To study
examples closer to the CTM, the determinisiig in our
gameA is replaced by the unbiased stochastic coin-tossing
upon two valuesx,e{ea, 1— e}, which is independent of
Xn—1- Obviously, the new gam4 is a fair game and, fur-
thermore, independent on gani Numerical simulation
shows that the increasing and decreasing features of the capi-
tal in Fig. 2 do not change after this modification.

The rapid increase or decrease in above capital is easy to

ing betweenT, and Tg randomly. a largest value, it jumps back to a small numbeg,
The individual gameA is a fair game because,, n  €[0.s,), and forms a cycle oN steps(The valueN~7 in
=0,1,2,...,oscillates betwees, and 1—e, with an av-  Fig. 2 depends OEg, and x,). Thereafter, the dynamics

erage of;. The capitalX(n) does not increase for largeas  repeats similar cycles. Given an initial poigj close to zero,
plotted by the green curve in the inset of Fig. 2. The indi-the average (W)= X, is 3 for m=o and arounds when
vidual gameB is also a fair game, becaudg is unique  m<w js close to the multiple of a complete cycle, however,
ergodic with Lebesque measure as the ergodic med8lire  smajler than} for most otherm. This cyclic repetition in-
That is, the points in an orbit spread uniformly in the interval gyces the capital oscillation of garBg in Fig. 2. Now, when

[0,1]. Therefore, the average valuexpfands, are3 and O, ameB; is mixed with gameA, the dynamics ofTg. is
respectively, for infinite time iteration. The oscillating capital truncated byT, continuously, say. !
A ) ’

X(n) is bounded close to zero and does not increase for large
n, as plotted by the red and blue curves Tqu andTB2 in A B, A A B, B, B A B
the inset of Fig. 2. However, the combined gafB is no bl x; ’fi’x“ X5 xgh g gt (9)
longer a fair game. Fpr the, ,. &g, .anc'stZ values in Fig. 1, @ (i) (iii) (iv)
the gameAB; (AB,) is a losing(winning) game, as plotted
by the red(blue) curve in Fig. 2 with negativépositive
slope. Modifying the definition of the gain slightly by chang-
iNg S,=X,— 3 t0 S,=X,—3— € with a smalle>0, it pro-
duces the same observation in the CTM that combining tw o ;
losing games induce a winning game. This simple examplé"ng of every segment can be regarded as t.he initial p_omt of
reveals that a combined dynamics can behave completefy N€W Orbit ofTg,, reset by gamé. Assume first game is
differently from the original individual two. determined byT,. The segments with the initial point)

The dynamics of gameA and B in above example are =1—&,=0.1 have averages less thanin general, due to
both deterministic, generated by the mapsandTg. How-  the incomplete cycles mentioned above. The segments with
ever, gameA in the CTM is stochastic and ganeis pseu-  the initial pointx3=g,=0.9 will be balanced by the subse-

wherex> e {e,1— &, are generated by gaml?eandxf:1 by
gameB;. This sequence is divided into infinite number of
éegments{i), (i), (i), (iv), .... Thevaluexﬁ at the begin-
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1 1 as shown in Fig. @). These two maps are highly chaotic.
(@) (b) . . L :
5 The dynamics of a single orbit is unpredictable after few
:n: Lol steps of iteration. However, the evolution of an ensemble of

initial points, depicted by a probability density, can be de-
scribed by the Perron-Frobeniud®F) operator Lt f(x)
0 x L 0 X 1 =3y c1-u(f(Y)/[T'(y)]), where the sum runs over the pre-
imageT 'x={yel|Ty=x} of TandT’ denotes the deriva-
tive of T [8,9]. While a mapT determines the evolution of a
point, its PF operatoi’; determines the evolution of the
probability density. The leading eigenvalue of this operator is
one. The corresponding eigenfunctith(x) is the invariant
probability density of the dynamical system, which is the
FIG. 3. (a) r-adic map withr=10. (b) Gauss mapthe dots  probability of finding the point at positiox after infinite
denote further infinite number of brancheg) f(x)=x—3 (dash- number of iterations. Notably, the transfer operator can be
dotted ling, £xf(X)= 32— 5x (dashed ling andf%(x)=1 (solid  regarded as a continuous version of the transition matrix act-
line). (d) f(x)=1 (dash-dotted ling Lgf(x)==;_,(1/x+n)? ing on the Markovian chain with three probabilities, corre-
(dashed curve andf%(x)=[(x+1)In 2]"* (solid curve. sponding to the three capital valugX(n) mod3=0,1,2],
which was used to determine the stationary probability of the
quent small value eitherx),;=1-s,=0.1 or x%,, CTM[2].
=Tg,ea~0.042. The rest sequence after these points begins The PF operator for the-adic mapTr is

with small values and are less thanon average, as in the r—1
previous case. Thus, the whole seque(®)ehas an average Lr f(X)= 1 2 f E+ X (6)
(xAB1y< 3. By analogy, this inequality holds also when game Tr raso \r r)

A'is the unbiased coin-tossing upf#,, 1—¢,}. Therefore,
the gain averagés)=(x"P1)—3 is negative, which induces with the invariant densityf%(x)=1. That is, any place in
the decreasing capitaX(n) in Fig. 2. For the increasing [0,1] will be uniformly visited by an initial point after long
X(n) of gameAB,, the argument is similar. The quantity time iteration ofTg. Therefore, the position averageB§ is
(x"B1) is the average of infinite number of orbit segments ofmg= 1. By analogy, the PF operator fdi; is
gameB; truncated by gam@, with different initial points of

201

(|

[

1

different lengths. This average sensitively depends on the
X+n X+n

dynamical properties of both games, such as the distribution Ly f(x)= 21
of the reset points of gam®& and the orbits of gamB, after "

. . . AB
tlhese points. It is not generic that™*1) also exactly equals 1pq corresponding invariant density is the Gauss measure

5, when the uncoupled games and B; have averages f£(x)=[(x+1)In2]"* and the I o
A\ /yB1y— 1 . . c(X)= position average mg=(1
.<X t>_|<:X Y _tﬁ because tt_hey are dlffk(Ja_rendt matthematlzakl)_(t)_b-_ln 2)/In 2~0.44. Consequently, gam®& (B) characterized
jects. From this perspective, a combined system exhi ||n%y the gain rules,=x,— m, with position averagen=mg

new biased dynamics is generic. . . . )
. (mg) for Tg (Tg), is a fair game. The capitdd(n) in these
The reset process of ganfedestroys the dynamical av- individual games is bounded close to zero and does not in-

erage of the original gamB and induces a new biased dy- crease or decrease for large
namics. This effect is transparent in the deterministic dynam- The density sequence£f(x) and £1f(x), for n
R G '

icsTg k_)ecause th_e orplt after a rese_t ponﬁt|s completely =12, converge tofi(x) and f4(x) rather fas{8], as

determined by this point. However, it is less transparent mshown in Fig. 8.d). The sequence of the position averages

the CTM because the orbit aftef, is rather stochastic and 9. %.0. a P g
A in gameAB, say,

less related to how; is reset. Therefore, the reset process

analysis on the probability density of the dynamics is neces-

sary for understanding the CTM, which is demonstrated in

the following example. The first dynamics considered is the,gnsists of an ensemble of segments of position average of
r-adic mapTg:[0,1]—[0,1], with gameB reset by gameA. A similar argument as that for
sequencé3) leads to the inequalitym”®)>mg and the in-
creasingX(n). This result also holds true for the case when
Tr in gameA is replaced by the unbiased tossing upon val-
ues in[0,1], because then any density is resefftgx) =1
immediately after every tossing, which is even faster than the
convergence of’ xf(x). Accordingly, the reset process con-
cept can be applied to dynamical systems described by prob-

. (7)

A B A A B B B A B
{m{,m3,mg,my,me,mg,m7,mg,mg, ...}, 8

Trx=r x mod1, 4

wherer is a real numbefsee an example far=10 in Fig.
3(a)]. The second map is the Gauss mggp:[0,1]—[0,1],
with

1
—modl, Xx#O0 abilities, including the dynamics in the CTM.

Tex=1 X 5 GameA in the CTM is stochastic and its invariant density
0, x=0, A (X) is unity. GameB is pseudostochastic and its invariant
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densityfg(x), in general, is not a constaf]. When game  port. Similar biased motion in diverse models for motor pro-
A andB are mixed, the density tends to convergeffgx),  teins, such as that in Reff11], can also be understood by
however, is continuously truncated and resetffgx) by  Using the interpretation of this mechanism.
gameA. The inequality betweetm*8) andmg leads to the In summary, Parrondo’s games belong to a class of dy-
result that a combination between losing games can be boff@Mmical systems in which the dynamics is a combination of
constructive and destructive, depending on the paramseter WO Subsystems with an unapparent couple in between. Due
A constructive combination is then referred to a Parrondo’d0 this couple, the combined dynamics can behave com-
game. A further feature attracting much attention in ParronPletely differently from the uncombined ones. However, be-
do’s games is that an increasing capi¢h) can be gener- C€ause of its unapparentness, this c;ouple is easily oyerlooked,
ated not only by periodical switching but also by randomWhich leads to the wrong expectation that the combined sys-
switching. However, the concept of reset process indicate®M should behave like the average of the two uncoupled
that an increasing or decreasiXgn) is not necessarily re- SL_Jbsy_stems. This puzzleme_nt is c!arn‘u_ad on various gxamples
lated to periodical or random switchingorresponding to with different Ievells of ambiguity in this work by using the
reseting. Consider the simple system in sequeri8gwith f:oncept of trun_catlon and re_set process. Therein, the dynam-
fast convergent densitieS} f(x) and £T f(x). The aver- ics of a combined system is regarded as an ensemble of
AB R 6 " , orbits reset to different initial values and truncated to differ-
age, (M%)~ (namg+ngMmg)/(Na+ng), of this dynamics o engths. Since an averaged quantity of this ensemble and
mainly depends on the total numberg and_nB of gameA  ihe same averaged quantity of an infinitely long single orbit
andB but not on how gamé andB are switched. are different objects and not identical, in general, a combined
. Moreover, the truncation and reset mechanism is appareRnamics exhibiting new behavior is genetic. This concept
in the dynamics of the flashing ratche810], which is often 5 examples studied provide a more transparent perspective
compared with Parrondo’s games. The probability density of, nderstand Parrondo’s paradox, including the frequent

the Brownian particle converges to the unity invariant den- etion why a capital increase can be generated by random
sity, when the potential is turned off, because this part'd%witching.

tends to diffuse. However, this density is continuously reset

to Dirac’s 6 function when the potential is turned on. During  This work is supported by the National Science Council
this procedure, the position average of the Brownian particlef the Republic of China, Taiwan, under Contract No. NSC
is shifted to a certain direction, which induces a biased trans90-2112-M-007-067.
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