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Truncation and reset process on the dynamics of Parrondo’s games
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The counter-intuitive feature of Parrondo’s games is illustrated on various dynamical systems combined
from different deterministic and stochastic subsystems. The concept of truncation and reset process is intro-
duced, which provides a transparent perspective to understand the underlying mechanism of this class of
dynamics, including the transport of flashing ratchets, and clarifies the puzzlement why random switching
between two games can generate reversal dynamics as periodical switching does.
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Parrondo’s games are considered counter intuitive@1–3#.
As stated by Parrondoet al. in Ref. @1# ‘‘the apparent para-
dox points out that if one combines two dynamics in which
given variable decreases, the same variable can increa
the resulting dynamics.’’ This statement has caught imme
public interest and brought about broad ranges of discus
in different disciplines, including mating pattern in evolutio
@3#, investment strategy@4#, biased Brownian motion by
flashing ratchet mechanism@3#, pattern formation@5#, quan-
tum games@6#, and games in Ising and Potts models@7#. The
most dominant feature in Parrondo’s games is the reve
dynamics after two subsystems are combined. However,
feature itself is not unexpected, because a combined sy
usually exhibits different behavior if the subsystems
coupled, as the examples in Fig. 2 show. Instead of that
essential question on these games is at which point these
subsystems are coupled and how this unapparent and w
couple can change the dynamics dramatically. This ques
is the main concern of this work and is investigated on va
ous dynamical systems combined from deterministically c
otic and stochastic subsystems. Therein, the concept of t
cation and reset process is introduced, which provide
transparent perspective to understand the underlying me
nism of the combined dynamics and clarifies the frequ
puzzlement why random switching between two subsyste
can induce new biased dynamics, as well as period
switching.

The coin-tossing model~CTM! frequently mentioned in
Parrondo’s games consists of three biased coins with
probabilities of winningPwin and losingPloss

Coin 1 Coin 2 Coin 3

Pwin 1/22« 3/42« 1/102«
Ploss 1/21« 1/41« 9/101«

where« is a small number and winning~losing! means that
the player receives~loses! one dollar in his capitalX(n) in
the nth tossing. The coin used in gameA andB for the nth
tossing is determined by the game rules:
1063-651X/2003/67~2!/025101~4!/$20.00 67 0251
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Games Coins Condition to use this coin

A coin 1

B H coin 2

coin 3

if X~n21! mod 350

if X~n21! mod 351, 2.

That is, in gameA only coin 1 is used. In gameB either coin
2 or coin 3 is used depending on, respectively, whether
previous capitalX(n21) is a multiple of 3 or not. Analytical
estimation and simulation results@2# show that both games
are losing games for a small«.0, when they are played
individually. However, the player wins when switching b
tween two games.

At first sight, this phenomenon is counter intuitive b
cause the coin-tossing processes in gameA and B are both
stochastic and should be independent. Intuitively, the cha
of winning in the combined dynamics should equal to t
average of the two individuals. However, a closer look at
rules shows that these two individual game dynamics in
combined game are not completely independent. In cont
to gameA, which is independent on gameB after the com-
bination, gameB is not independent on gameA, because of
the condition of multiple 3. This condition provides a wea
couple between these two games and affects the whole
namics. To illustrate this coupled effect, the determinis
condition of multiple 3 in gameB of the CTM is replaced
with a stronger condition, given by the deterministic ma
~2! and ~5!.

The first dynamics considered is the mapTA :@0,1#
→@0,1#, with

TAx5H «A for xP@0,1
2 #,

12«A for xP@ 1
2 ,1#,

~1!

where 0,«A,1 @see example for«A50.9 in Fig. 1~a!#. We
call it step map because this dynamics has only two val
«A and 12«A , depending on in which region the pointx is
located. The second dynamics is the circle mapTB :@0,1#
→@0,1#, with

TBx5x1«B mod1, ~2!
©2003 The American Physical Society01-1
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where 0,«B,1 is an irrational number@see examples fo
«B5p23 and 42p in Fig. 1~b,c!#. Given an initial point
x0P@0,1#, these mapsT generate an orbit$x0 , x1 , x2 , . . . %
with x15Tx0 , x25T2x0 , . . . . Thenumberxn corresponds
to the coin value in thenth tossing. Notably, the valuexn in
coin tossing is stochastic and not related toxn21, while the
valuexn here depends onxn21 and is therefore deterministic
The game rule is such that one gainssn5xn2 1

2 dollar for an
outcomexn . SincexnP@0,1#, the gainsnP@2 1

2 , 1
2 # can be

both positive and negative. The new capitalX(n) changes
from the previous amountX(n21) by X(n)5X(n21)
1sn . GameA andB are generated by dynamicsTA andTB ,
respectively, and gameAB is generated by dynamics switch
ing betweenTA andTB randomly.

The individual gameA is a fair game becausexn , n
50, 1, 2, . . . ,oscillates between«A and 12«A with an av-
erage of12 . The capitalX(n) does not increase for largen, as
plotted by the green curve in the inset of Fig. 2. The in
vidual gameB is also a fair game, becauseTB is unique
ergodic with Lebesque measure as the ergodic measure@8#.
That is, the points in an orbit spread uniformly in the interv
@0,1#. Therefore, the average value ofxn andsn are 1

2 and 0,
respectively, for infinite time iteration. The oscillating capit
X(n) is bounded close to zero and does not increase for la
n, as plotted by the red and blue curves forTB1

andTB2
in

the inset of Fig. 2. However, the combined gameAB is no
longer a fair game. For the«A , «B1

, and«B2
values in Fig. 1,

the gameAB1 (AB2) is a losing~winning! game, as plotted
by the red~blue! curve in Fig. 2 with negative~positive!
slope. Modifying the definition of the gain slightly by chan
ing sn5xn2 1

2 to sn5xn2 1
2 2e with a smalle.0, it pro-

duces the same observation in the CTM that combining
losing games induce a winning game. This simple exam
reveals that a combined dynamics can behave comple
differently from the original individual two.

The dynamics of gamesA and B in above example are
both deterministic, generated by the mapsTA andTB . How-
ever, gameA in the CTM is stochastic and gameB is pseu-

FIG. 1. ~Color! ~a! Step mapTA with «A50.9. ~b! Circle map
TB1

with «B1
5p23. ~c! Circle mapTB2

with «B2
542p. ~d! A

route ofTB1
with the initial pointx0.
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dostochastic~due to the condition of multiple 3). To stud
examples closer to the CTM, the deterministicTA in our
gameA is replaced by the unbiased stochastic coin-toss
upon two values,xnP$«A , 12«A%, which is independent of
xn21. Obviously, the new gameA is a fair game and, fur-
thermore, independent on gameB. Numerical simulation
shows that the increasing and decreasing features of the
tal in Fig. 2 do not change after this modification.

The rapid increase or decrease in above capital is eas
understand by tracing the orbit$x0 , x1 , x2 , . . . % of TB . Fig-
ure 1~d! shows an example inTB1

, which shiftsxn step by
step from small numbers to large numbers. Afterx arrives at
a largest value, it jumps back to a small number,x5
P@0,«B1

), and forms a cycle ofN steps~The valueN'7 in

Fig. 2 depends on«B1
and x0). Thereafter, the dynamic

repeats similar cycles. Given an initial pointx0 close to zero,
the average (1/m)(n50

m xn is 1
2 for m5` and around1

2 when
m,` is close to the multiple of a complete cycle, howev
smaller than1

2 for most otherm. This cyclic repetition in-
duces the capital oscillation of gameB1 in Fig. 2. Now, when
game B1 is mixed with gameA, the dynamics ofTB1

is

truncated byTA continuously, say,

~3!

wherexn
AP$«A,12«A% are generated by gameA andxn

B1 by
gameB1. This sequence is divided into infinite number
segments~i!, ~ii !, ~iii !, ~iv!, . . . . Thevaluexn

A at the begin-
ning of every segment can be regarded as the initial poin
a new orbit ofTB1

, reset by gameA. Assume first gameA is

determined byTA . The segments with the initial pointxn
A

512«A50.1 have averages less than1
2 , in general, due to

the incomplete cycles mentioned above. The segments
the initial pointxn

A5«A50.9 will be balanced by the subse

FIG. 2. ~Color! The capitalX(n) of gameAB1 ~red curve with
negative slope! and gameAB2 ~blue curve with positive slope!. The
capital X(n) of individual gameA ~green!, gameB1 ~red!, and
gameB2 ~blue! are magnified in the inset.
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quent small value eitherxn11
A 512«A50.1 or xn11

B

5TB1
«A'0.042. The rest sequence after these points be

with small values and are less than1
2 on average, as in the

previous case. Thus, the whole sequence~3! has an average
^xAB1&, 1

2 . By analogy, this inequality holds also when gam
A is the unbiased coin-tossing upon$«A , 12«A%. Therefore,
the gain averagês&5^xAB1&2 1

2 is negative, which induces
the decreasing capitalX(n) in Fig. 2. For the increasing
X(n) of gameAB2, the argument is similar. The quantit
^xAB1& is the average of infinite number of orbit segments
gameB1 truncated by gameA, with different initial points of
different lengths. This average sensitively depends on
dynamical properties of both games, such as the distribu
of the reset points of gameA and the orbits of gameB1 after
these points. It is not generic that^xAB1& also exactly equals
1
2 , when the uncoupled gamesA and B1 have averages
^xA&5^xB1&5 1

2 , because they are different mathematical o
jects. From this perspective, a combined system exhibi
new biased dynamics is generic.

The reset process of gameA destroys the dynamical av
erage of the original gameB and induces a new biased d
namics. This effect is transparent in the deterministic dyna
ics TB because the orbit after a reset pointxn

A is completely
determined by this point. However, it is less transparen
the CTM because the orbit afterxn

A is rather stochastic an
less related to howxn

A is reset. Therefore, the reset proce
analysis on the probability density of the dynamics is nec
sary for understanding the CTM, which is demonstrated
the following example. The first dynamics considered is
r-adic mapTR :@0,1#→@0,1#, with

TRx5r x mod1, ~4!

wherer is a real number@see an example forr 510 in Fig.
3~a!#. The second map is the Gauss mapTG :@0,1#→@0,1#,
with

TGx5H 1

x
mod1, xÞ0

0, x50,

~5!

FIG. 3. ~a! r-adic map withr 510. ~b! Gauss map~the dots
denote further infinite number of branches!. ~c! f (x)5x2

3
2 ~dash-

dotted line!, LRf (x)5
21
202

1
10x ~dashed line!, and f R* (x)51 ~solid

line!. ~d! f (x)51 ~dash-dotted line!, LRf (x)5(n51
` (1/x1n)2

~dashed curve!, and f G* (x)5@(x11)ln 2#21 ~solid curve!.
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as shown in Fig. 3~b!. These two maps are highly chaoti
The dynamics of a single orbit is unpredictable after fe
steps of iteration. However, the evolution of an ensemble
initial points, depicted by a probability density, can be d
scribed by the Perron-Frobenius~PF! operator LT f (x)
5(yPT21x( f (y)/uT8(y)u), where the sum runs over the pre
imageT21x5$yPI uTy5x% of T andT8 denotes the deriva
tive of T @8,9#. While a mapT determines the evolution of a
point, its PF operatorLT determines the evolution of th
probability density. The leading eigenvalue of this operato
one. The corresponding eigenfunctionf * (x) is the invariant
probability density of the dynamical system, which is t
probability of finding the point at positionx after infinite
number of iterations. Notably, the transfer operator can
regarded as a continuous version of the transition matrix
ing on the Markovian chain with three probabilities, corr
sponding to the three capital values@X(n) mod350,1,2#,
which was used to determine the stationary probability of
CTM @2#.

The PF operator for ther-adic mapTR is

LTR
f ~x!5

1

r (
n50

r 21

f S n

r
1

x

r D , ~6!

with the invariant densityf R* (x)51. That is, any place in
@0,1# will be uniformly visited by an initial point after long
time iteration ofTR . Therefore, the position average ofTR is
mR5 1

2 . By analogy, the PF operator forTG is

LTG
f ~x!5 (

n51

` S 1

x1nD 2

f S 1

x1nD . ~7!

The corresponding invariant density is the Gauss mea
f G* (x)5@(x11)ln 2#21 and the position average ismG5(1
2 ln 2)/ln 2'0.44. Consequently, gameA ~B! characterized
by the gain rulesn5xn2m, with position averagem5mR
(mG) for TR (TG), is a fair game. The capitalX(n) in these
individual games is bounded close to zero and does not
crease or decrease for largen.

The density sequencesL R
n f (x) and L G

n f (x), for n
51,2, . . . , converge tof R* (x) and f G* (x) rather fast@8#, as
shown in Fig. 3~c,d!. The sequence of the position averag
in gameAB, say,

$m1
A ,m2

B ,m3
A ,m4

A ,m5
B ,m6

B ,m7
B ,m8

A ,m9
B , . . . %, ~8!

consists of an ensemble of segments of position averag
game B reset by gameA. A similar argument as that fo
sequence~3! leads to the inequalitŷmAB&.mG and the in-
creasingX(n). This result also holds true for the case wh
TR in gameA is replaced by the unbiased tossing upon v
ues in@0,1#, because then any density is reset tof * (x)51
immediately after every tossing, which is even faster than
convergence ofL R

n f (x). Accordingly, the reset process con
cept can be applied to dynamical systems described by p
abilities, including the dynamics in the CTM.

GameA in the CTM is stochastic and its invariant densi
f A* (x) is unity. GameB is pseudostochastic and its invaria
1-3



bo
r
o
on

m
te

-

re

o
n

icl
se
g
ic
n

o-
y

dy-
of

Due
m-
e-
ked,
ys-
led
ples
e
am-
e of
r-
and
bit
ned
ept
ctive
ent
dom

cil
C

RAPID COMMUNICATIONS

CHENG-HUNG CHANG AND TIAN YOW TSONG PHYSICAL REVIEW E67, 025101~R! ~2003!
density f B* (x), in general, is not a constant@2#. When game
A andB are mixed, the density tends to converge tof B* (x),
however, is continuously truncated and reset tof A* (x) by
gameA. The inequality between̂mAB& andmB leads to the
result that a combination between losing games can be
constructive and destructive, depending on the paramete«.
A constructive combination is then referred to a Parrond
game. A further feature attracting much attention in Parr
do’s games is that an increasing capitalX(n) can be gener-
ated not only by periodical switching but also by rando
switching. However, the concept of reset process indica
that an increasing or decreasingX(n) is not necessarily re
lated to periodical or random switching~corresponding to
reseting!. Consider the simple system in sequence~8! with
fast convergent densitiesLTR

n f (x) and LTG

n f (x). The aver-

age, ^mAB&'(nAmR1nBmG)/(nA1nB), of this dynamics
mainly depends on the total numbersnA andnB of gameA
andB but not on how gameA andB are switched.

Moreover, the truncation and reset mechanism is appa
in the dynamics of the flashing ratchets@3,10#, which is often
compared with Parrondo’s games. The probability density
the Brownian particle converges to the unity invariant de
sity, when the potential is turned off, because this part
tends to diffuse. However, this density is continuously re
to Dirac’sd function when the potential is turned on. Durin
this procedure, the position average of the Brownian part
is shifted to a certain direction, which induces a biased tra
et

lve
e

.

do
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port. Similar biased motion in diverse models for motor pr
teins, such as that in Ref.@11#, can also be understood b
using the interpretation of this mechanism.

In summary, Parrondo’s games belong to a class of
namical systems in which the dynamics is a combination
two subsystems with an unapparent couple in between.
to this couple, the combined dynamics can behave co
pletely differently from the uncombined ones. However, b
cause of its unapparentness, this couple is easily overloo
which leads to the wrong expectation that the combined s
tem should behave like the average of the two uncoup
subsystems. This puzzlement is clarified on various exam
with different levels of ambiguity in this work by using th
concept of truncation and reset process. Therein, the dyn
ics of a combined system is regarded as an ensembl
orbits reset to different initial values and truncated to diffe
ent lengths. Since an averaged quantity of this ensemble
the same averaged quantity of an infinitely long single or
are different objects and not identical, in general, a combi
dynamics exhibiting new behavior is genetic. This conc
and examples studied provide a more transparent perspe
to understand Parrondo’s paradox, including the frequ
question why a capital increase can be generated by ran
switching.
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