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The Waxman-Peck theory of population genetics is discussed in regard of soil bacteria. Each bacterium is
understood as a carrier of a phenotypic parametd@he central objective is the calculation of the probability
density with respect tp, ®(p,t;py), of the carriers living at time&>0, provided that initially at,=0, all
bacteria carried the phenotypic paramegigr=0. The theory involves two small parameters: the mutation
probability u and a parametey involved in a functiorw(p) defining the fitness of the bacteria to survive the
generation timer and give birth to an offspring. The mutation from a stptéo a stateq is defined by a
Gaussian with a dispersiomzm. The author focuses our attention on a functipfp,t) which determines
uniquely the function®(p,t;p,) and satisfies a linear equati¢axman’s equation The Green function of
this equation is mathematically identical with the one-particle Bloch density matrix, wheharacterizes the
order of magnitude of the potential energiyn the x representation, the potential energy is proportional to the
inverted Gaussian with the dispersiof). The author solves Waxman’s equation in the standard style of a
perturbation theory and discusses how the solution depends on the choice of the fithess fufj}iom a
sense, the function(p)=1—-w(p)/w(0) is analogous to the dispersion functi(p) of fictitious quasipar-
ticles. In contrast to Waxman’s approximation, whef@) was taken as a quadratic functia{p)~ yp?, the
author exemplifies the problem with another functiofp) = y[ 1— exp(—ap?)], wherey is small buta may be
large. The author shows that the use of this function in the theory of the population genetics is the same as the
use of a nonparabolic dispersion & E(p) in the density-matrix theory. With a general functiofp), the
distribution function®(p,t;0) is composed of @-function componentN(t) 5(p), and a blurred component.
When discussing the limiting transition for-o0, the author shows that his functi@fp) implies thatN(t)
—N()#0 in contrast with the asymptotidd(t) —0 resulting from the use of Waxman'’s functiagp)
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. INTRODUCTION conditional probability density P(x,t]|Xo) ={8(x(t) —x))
=0,

During the last century, the development of the quantum
theory has been paralleled with the development of the aP(x,t|x) A @?P(x,t|xo) 1 4
theory of stochastic processes. When comparing the time-— 5~ —___[F(X (X,t|xo)],
dependent Schdinger equation of the quantum mechanics 1)
with the Fokker-Planck equation of the stochastic dynamics,
we may assert that bot_h these equations are (_)f the same kind. P(X,+0|Xq) = 8(X—Xo). 2)
Mathematically speaking, both these equations are linear
second-order partial differential equations of the parabolidf x(t) is the instantaneous position of a Brownian particle
type. The Fokker-Planck equation can be derived for anynoving along a line, we may speak of the diffusion coeffi-
process that can be described by the Langevin equatiocientD (such that 2)?D=A>0) and of the mobility 1# of
pdx(t)/dt—F[x(t)]=1f(t) (cf., e.g., Refs.[1,2]). In the the particle. TherF(x)=—dVg(x)/dx is a driving force,
Langevin equationy>0 is a deterministic constarfi(x) is  f(t) is the Langevin stochastic force, and E#). is the gov-
a deterministically defined real-valued function, &it) isa  €rning equation of the Brownian dynamics. Equatidhcan
stochastically defined zero-centered stationary Gaussidp€ transformed into an equation of the Salinger type by
white-noise function[As a rulex(t) andf(t) are considered Substituting
as real random functions of the real time variahleThe
stationarity off(t) is meant in the stochastic sensésing P(x,t|xo)=ex;{2[VB(xo)—VB(x)] R(X,t|Xo). (3
the angular brackets) for the averaging with respect to the A
randomness off(t), we assume that(f(t))=0 and . .
(F(t) F(t))=AS(t,—t,) at all time instantst, ,t,. Theini- 1€ functionR(x,t|xo) obeys the equation
tial value ofx(t), x(0)=x,, is usually a deterministic value

2
given in advance. The Fokker-Planck equation concerns the IR(X,t|Xo) _ A R(X,t|xo) VRO, (4)
ot 279? ax? o

2 772 ax?
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In the present paper, we will generalize Waxman'’s theory.

1[1/dVg(x)\? d?Vg(x

V(x):z— K( dB>(< )) — Bi ) In the momentum representation, Waxman'’s kinetic energy is
K dx quadratic,(p| T|p)~p?, as it is in the quantum mechanics.
1 [[F(x)]? dF(x) On the other hand, we assume thpjtﬂ p), being a positive

(5 function, need not be quadratic; we only require its analytic-
ity along the reabp axis. This variability offers further pos-
Equation(4) is known as the real Schdinger equation. It sibilities to model the genetic evolution by adequate fitness
is replaced byh B, wherekgT=1/8, Eq. (4), with some  functions(cf. Sec. 1). Obviously, if (p|T|p)>0 is nonqua-
change of symbols, becomes the Bloch equation for the onedratic, the mathematical relation between the evolution equa-
particle canonical density matrix of boltzons of a constanttion of the population genetics and the quantum theory be-
(effective mass in the thermodynamic equilibrium at the comes somewhat more sophisticated than in Waxman's case.
temperatureT [3]. Thus, when comparing Eqél) and (4), Namely, when paying heed to thxerepresentation, we have
we can always juxtapose the Brownian dynamics and thgenerally to consider a more complicated equation than the
quantum theory(This juxtaposition can also be based onreal Schrdinger equation: in general, our equation, with the

Feynman's path-integral theoify,5].) The transition from  Hamilton operatorE(p) +V(x), where E(p)~c(p), is a
the formalism of the Brownian theory to the formalism of the ¢ | .01 i o) equation[Note thatp= —id/dx. The

guantum theory is easy because if we define the driving forcﬁ/chaurin development af(p) may involve an infinite num-

\F/EQ acc%\r{fiﬁg/tixﬁ(\;vé)ca[@igge\,cézga:flgﬁée t:?eesftjomf:itrlm?jn ber .c'>f termg. For solid state theqrists, such an .equation is
F(x) corresponding to é given functi,o\ﬂ(x) one has to familiar as the transformed effective mass equa(n:fn e.g.,
solve Eq.(5) which is nonlinear Equatio(B)’is known as f[he monograpfi15] or our pape|[_16]). This equation was
the Riccéti equation Comparelwith any handbook on ncml_nventeq for envelope wave functions of electrons in crystal-
' line solids.[Synonymously, we may also speak of the real

ll:gi?ljlncgggr(e);lttﬁle eRciIg?atllt?lsjst.i?)H iﬁeﬂsso]l'viSe?g:it(l)yl;stherob_Schr"cdinger-Wannier equation. It is identical with the “one-
. 9 Ving pr Particle Bloch equation” for the canonical density matrix
lems of classical and quantum mechanics has been widely

corroborated7—11]. Nonetheless, except for the rare possi-With the HamiltonianE(p) +V(x).] o
bility to derive analytical solution§ (x) of this equation, in From the viewpoint of the effectiveness of calculations in

some cases Whevi(x) is chosen in a very simple and special the present paper, we degm the momentum representation
form, Eq. (5) cannot be solved otherwise than numerically. better than the representation. Under the assumption of the
Thus, the problem of finding a Brownian model to a givenSMallness of the parameter we can apply the “plane-wave
quantum-mechanical model is relatively difficiit. perturbation theory (S(_ac. I of thg densny—rr_\atnx theory.

In evolutionary theories of various populations, we mayFor a broad class of fithess functions, the distribution func-

usex(t)=In n(t)—Inn(), takingn(t) as the number of indi- tion of the theory of the population genetics can be expressed

viduals of a certain kind at the time instantand defining as a linear expression of the mutation parameier
Inn(t) as an average value of mft). Sincen(t) may repre-

sent very large numbers(t) may be treated as a continuous
function so that the values aft) may span the whole set of
real numbers. Since mutations are random events, a formal | et ys assume that a large enough haltitath as a given

stochastic theory of the population genetics can certainly b§olume of soi) hosts bacteria of a certain kind. The habitat
based on the use of the Langevin equation and, correspongields space, food, moisture, temperature, inhibitory sub-
ingly, of the Fokker-Planck equatiofi). If it is advanta-  stances, and other needs for the survival of the bacteria in the
geous, we may also use the equivalent Sdimger-type sense that the total number of bacteria will never decrease to
equation(4). zero and will never increase to infinity. Most of the bacteria
NOtW|thStand|ng, recently, Waxman has shown that ther%re free_"ving micro_organisms mu|t|p|y|ng by Simp|e fis-
is also another mathematical relation between the populatiogion. This means that their reproduction is asexual. In other
genetics and the quantum mecharjitg]. Waxman's theory  words, each bacterial individual has only one parent. The
concerns a simplified, but well-founded, model that we Ca”typical number of bacteria may be huge indeed: 1 g of soil
the Waxman-Peck modelCompare with Refs[13,14, and  may contain several hundred million bacteria. Although the
references quoted thereinWaxman's Schrdinger-type pacteria are small organisms—usually 0.3 in
equation involves, in thex representation, the “potential- giameter—their morphology is well distinguishable micro-
enel’gy" fUnCtion Scopica"y_
There are two most frequent shapes of soil bacteria: short

6) rods andslightly deformed spheres. In both these cases, we

may characterize each bacterium by its siz€or instance, if
. . the bacterium resembles a rod, we defings the length of
with two mutation parametersu>0 and on>0. The  the rod. Denoting the average ofdrasins, we define the
“kinetic-energy” opera}torT in Waxman’s equation was cho- phenotypic parameter as=In s—Ins. Recalling biology, we
sen in the usual forml ~ — 9%/ 9x2. consider the phenotypic parameter as an inheritable value. If

:27] A * dx

Il. THE WAXMANN-PECK MODEL
OF THE POPULATION GENETICS

TmX

V(X)~—pu exp( -
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there were no mutations in the reproduction of the bacteriagqual tor give birth to an offspring. Some of the bacteria die
all the bacterial individuals in each generation would bebefore becoming mature. These bacteria do not take part in
equally long, i.e.p would be a constant equal ip=0. But  producing the individuals of the next generatipHowever,
then, the mutations—however infrequent they may be—we assume that even the fittest mother bacterium dies soon
account for a dispersal of the valpeamong the individuals, after giving birth to the daughter bacterium. Therefore, we
despite the fact that all individuals under consideration dado not include the mother bacteria in the number of the bac-
still belong to the same biological type. teria living in the time interval (,,t,, 1). The mother bac-
Generally, the theory has to respect both mutations causedria have been included in the number of the bacteria living
by environmental effects and spontaneous mutations. For thea the time interval {,_1,t,)]. The fitness of the bacteria to
sake of simplicity, we will consider no other than the spon-live in their environment until their maturity can be modeled
taneous mutations. The spontaneous mutations are mainby a non-negative functiow(p). Requiring that
due to transcription mistakes in the replication of the DNA,
i.e., in the transmission of the genetic information just at the 0<w(p)<1, (8

reproduction events. Let>0 be the probability of the oc- . . A .
currence of such a mutation. In the case of soil bacteria/¢ May 9IVé the functiom(p) a probabilistic meaning. We

biologists have estimated the valuesobetween 108 and ﬁ}ssur:e thattalljewbotr_? ca;rlg: of t?ﬁ tﬁhenotgpglyplhas
107°. If a mother bacterium is the carrier of the phenotypic € chance 1o five until matunty wi e probabiliy(p).

valuep, the daughter bacterium will carry the same vatue The number of mature carriers of the phenotypic vaiue

: B from the interval p,p+dp) in the nth generation is propor-
with the probability equal to + w. (We assume that a new- . .
born daughter bacterium grows quickly enough to the adul{!onaI to w(p)®n(p). To determine the shape of.the.func-
n, w(p) should be a matter of thorough biological inves-

size before becoming mature so that we need not distinguisﬁﬁo i ¢ ¢ Wi W d Peck
between the size of young and adult bactetiathe birth of Igations Irom case fo case. We assume, as Vvaxman and Fec

the daughter bacterium is accompanied with a mutation ofid: thatw(p) behaves analytically around the valpg=0

the DNA, then there is a nonzero probabill(q— p)dq for and that this value corresponds to the maximum value of
the poss'ibility that the phenotypic valupof the daughter w(p). (Apparently, the fittest bacterial individuals are those

bacterium may lie in the intervalg(q+dq), provided that ﬂhose phengtypic parameteris equal to the average value
the phenotypic value of the mother bacterium was equpl to P- However,p=0.)

Following Waxman, we take the functivi(p) as a Gauss- ~ Waxman and Peck have chosen the functidip) in the
ian, special form
1\ ) w(p)=w(0)exp(—yp?), 0<w(0)<1,  (8a
M(p)=M(p;om) = ( o2 ) exp( - ﬁ) (7). assuming that & y<1. [In fact, expressiori8a definesthe
m m

Waxman-Peck model. The value @f(0) is insignificant

since the distribution function® are independent of
Here,afn is the dispersion of values qf 0). n(P) P

w
Now, to formulate the evolution equation of the popula-  “there are, of course, many other possibilities to model
tion genetics, we have to introduce the average generaticw(p) by slowly varying functions with the maximum a,
time 7. Simplifying the problem, we may consider a discrete _ 5 " These functions need not tend to zerdpif—o. (The
time variable as follows. Let the births of the bacteria happeniness function has been defined agrabability, not as a
at time instantst,=(n—1)7, n=1.2,... .Then we may y onapility density. In order to illustrate how the theory may
say that the bacteria of tiveh generation live between_1  gepend on the choice of the functier(p), we will treat, in
andt,. Thus,n is the generation index. The time discretiza- qgition to the Waxman-Peck model, also an alternative

tion is an auxiliary, rather formal, mathematical trick which 1,41 Our modelconsidered as an example defined by
loses its significance if the timeis continualized. For each ine fitness function

n, we define the distribution functionb,(p) so that

®,(p)dp may be interpreted as the probability of the occur- w(p)=w(0){1—y[1—exp—ap?)]}. (8b)

rence of the phenotypic valyein the interval p,p+dp) in

the nth generation. The basic problem is to relate the distriHere, we assume thatOy<1, admitting thaa>0 need not

bution function of the generation numbe# 1 (“generation ~ be a small number. ExpressidBb) tends tow(0)(1— )

of daughters} with the distribution function of the genera- >0 if |p|—d.

tion numbern (“generation of mothers}. The distribution functiond®,,,(p) of the generation of
Before writing the recurrent formula between the func-daughters is determined by two contributions from the

tions®,,, 1(p) and®,(p), which is our primary objective in generation of mothers. The first stems from the births with-

this section, we have still to mention one important point.out mutations. The phenotypic valpeis unchanged at such

Even if we have neglected the environmental influence upokirths and the probability of occurrence of such births

the mutations, we do have to consider environmental effectis equal to . The first contribution to® . (p) is

in a Darwinian sense. Namely, we have to respect that not afiroportional to (+ w)w(p)®,.(p). The second contri-

bacteria, after their birth, are equally fit to survive over thebution to ®,,,(p) is proportional to wuf=_.dgM(p

whole generation time. Only those bacteria whose age is —q;o,,)W(q)®,(q). The interpretation of this expression is
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clear: if the birth of the carrier of the phenotypic valpeés  we require that

accompanied with a mutation, we have to consider mature

individuals, allowing all possible phenotypic valug®f po- f“’ _ J°° _

tential mothers. To exhaust all such possibilities, we have to _mdpdbn(p) _wdp(b”“(p) = ©
integrateM (p—q; o)W(q)P,(g) with respect tog. Since

both &,(p) and ®,,,(p) are probability densities, Therefore, we write the equality

(1—M)W(p)cbn(p)+uf:dql\/l(p—q;crm)W(q)cbn(q)

Pni1(p)= (10

|” daw@ay@

The denominator on the right hand side of EtQ) warrants  while in the case of the model defined by functi@),
the fulfillment of condition(9). Sincey is small, it is conve-
nient to introduce the complementary functiafp) to

w(p)/w(0): c(p)=[1—exp(—ap?)]. (11b)
w(p) : : : N
c(p)=1- W (11) From the viewpoint of biology, the smallness gfimplies
that the comparison of the survival fitness of the majority of
In the case of the Waxman-Peck model, the bacteria with the survival fitness of the fittest bacteria
should not reveal too conspicuous differences. When using
c(p)=1—exp — yp?), (114 the functionc(p), we can rewrite formuld10) in the form

(1—u)[l—c(p)]cbn(p)wf:dqM(p—q:am)[l—c(q)]Cbn(q)
Dia(p)= = : (109
1- [ dade,a)

With realistic values op aroundp,=0, the values ofyp?
are small. Thus, in the case of the Waxman-Peck model, the Pn+1(P)=Pn(p)—
values ofc(p) are also small and

C(p):,yp2+o(72). (11&) _M[q)n(p)_ f_mqu(p_an'm)ch(Q)}

On the other hand, in the case of the model defined by func- o (109

tion (8b), we have to keep expressighlb) intact sincea  Now, in the approximation neglecting the terms symbolized
need not be a small parameter. o by the dots, we are ready to go over into the formalism
We may take advantage of the possibility to neglect allemploying the continual time variable realizing that the
terms of the order of magnitude of, as well as ofyu. SO value of the generation indexmay be high. Typically, the
we write generation timer of soil bacteria is about 20 min. This
means that after the elapse of 100 days, the genetic informa-
% tion passes over more than 7000 generations of the bacteria.
” =1+f dgc(q)®n(q)+ - - If n>1, we may identify® ,(p) with ®(p,t) and approxi-
1—J dqc(q)®,(q) o mate the differenc®,, . 1(p) —®,(p) as the time derivative

c(p)—ﬁdqc(q)%(q)}@n(p)

1

ad(p,t)
ot

Pnia(p) = Pn(p)=7 e (12)

and
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Thus, we can rewrite Eq. (1P in the approximate integro-
differential form

ad(pt) 1
at

T

[c(p)—f:dqo(mcb(q,t)}cb(p,t)

—%[cb(p,t)—J:quw—q:om)@(q.t)}
a3

This equation was derived in Ref12] (where, however,
c(p) was approximated agp?). Evidently, Eq.(13) is non-

linear. Fortunately, this nonlinearity does not mean a serious

problem, since we may employ the substitution

e(p,t)

O (p,t)= , (14

fﬁ dge(q,t)
and require the validity of the equation

de(p,t)
ot

1 e
=—;c(p)<p(p,t)+7

| damip-aomean.
(15)

Equation(15) is linear. After integrating it with respect o
we obtain the equation d/dtf” . .dqge(q,t)

=—(Un)[Z.dpc(p)e(p,t) + (u/7)[Z..dae(a,t) and
when substituting expressidid4) for ¢(p,t), we arrive at
the identity

d o0
aJ_wdQQD(q,t)

0 1 © M
=f_ dqw(q.t){—;f_ dpe(p)®(p,t)+ —|.
(16)
The differentiation of expressio{l4) gives the identity

de(p,t) 9P
a

(p,t) (=
g f_wdQ¢(q.t)

d [«
+<I>(p,t)§fodq<p(q,t)- (17

When equalizing the right hand sides of E¢k5) and (17)
and when respecting identityt6), we obtain Eq(I3) for the
function ®(p,t). Thus, instead of directly solving E¢L3),
we may solve Waxman’s equati@h5) at first. This task, as
we will show in Sec. Ill, is not difficult. If the function
®(p,t) obeys linear boundary conditions, the function
¢(p,t) has to obey the same boundary conditions. We wil
simply assume that

®(p,t)—0 if |p|—ce.

and o¢(p,t)—0 (18

PHYSICAL REVIEW E 67, 021913(2003

It remains still to discuss the initial condition. Whichever
initial function

®(p,0)=Do(p) (19)
is chosen, the solutio (p,t) for t>0 of Eq.(13) is unique.
Since Eq.(15) is linear, we may multiplyp(p,t) by an arbi-
trary constantA. If ¢(p,t) gives the functiond(p,t), then
Aop(p,t) does also give the same functidn(p,t). There-
fore, we may choose the integrfil ..dqe(g,0) (which is a
constant equal to unity. Then formulél4) and equality(19)
give us the initial condition
@(p,0)=o(p) (20)
for the functione(p,t).

If ®y(p) is an even function, Eq(15) implies that the
function ¢(p,t) is also even in the variablep and ®
(= p,t)=®(p,t) at all timest>0. In this case, the mean
value ofp is invariant in time(i.e., a constanf

p= fldp pe(p.1)=0. (21)

Equation(15) is formally the same as the Schlinger-
Wannier equation in the momentum representation. It can
easily be Fourier transformed. We define the function

P(x,t)= J%f:dpexp(ipx)so(p,t)- (22

This function is the solution of the functional differential
equation

2.2

ap(xt)y 1 . d 12 m
Fram ;c( —|&) P(x, 1)+ 7exp( - P(X,t).
(23)
In Waxman’s approximation, Eq23) reads
ap(x.t) Y PPt u cr?nx2>
o P + —exp( - P(Xx,1).
(239

If c(p) is taken in the form of expressiofilh), the func-
tional differential equation fogs(x,t) reads

AP(x,t 9?
l//((?t )2% exp( aﬁ>—1 P(X,1)
M 0'sz2
+;ex - P(x,1). (23b

I Ill. THE PLANE-WAVE PERTURBATION THEORY

Instead of solving Eq(239 or Eq.(23b) and carrying out
the integration
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t)— ,—_J' d —i t) (2 ) ( t; ) ( ) X ( )t) ( )
@eLP, xex 1P X X, 1), 4 G P, ;P 1 P—Po)€ - . 33
(p > K P )l/l( 0 0 0 d T

With this function, we can write down the integral form of

we prefer to calculate the functiop(p,t) directly. Defining Eq. (28)

the potential-energy operatdt(p)

t )
- 1 (= G(p,t;po):Go(p,t;po)+MJ dtlf dp,G
V(p)cp(p,t)=;fﬁxdql\/l(p—q;om)so(q,t), (29 o I

X (p,t—t1;p1)V(P1)Go(P1,t1;po). (34)

This gives a Dyson-type seri¢sf., e.g., Ref[17].) The first-
order term in this seriedinear in u) reads

let us write Eq.(15) in the form

de(p.t )
goff . C(f Lo+ V(pe(p), (28

t o
#G1(p,t;p )=Mf dt f dpiGo(p,t—ty;p1)
and define the Green functio@(p,t;py) of this equation. ! ° R t

Employing the Green function, we writg(p,t) (for t>0) as

the integral X V(p1)Go(P1.t1;Po)
ST
- =—| dt Go(p,t—ty;
<p(p.t)=f7 dpoG(P,t:Po) ¢(Po.0)- 27 7)ot APiGo(P = tiipy)
The initial function ¢(p,0) has been defined by equality Xf dgM(p;—0d;0m)Go(q,t1;Po)-

(20). The Green function itself obeys the equation

(35)
dG(p,t;po)  c(p) , - , _ _ _ :
pn == G(p.ttpo) + 1V(P)G(p.t:Po)- After inserting expression&) and (33) here, we obtain the
(28) function

1/2
According to equality(27), G(p,t;p,) satifies the initial con- Gu(pit:po) = mlo 1 oxd — (p—Ppo)?
dition pPLPo) =T 55 T 202

Om

G(p,0;Po) = 3(P—Po)- (29 thdtlexp<—C(p)(t_tlHC(pO)tl).
0

In the special case wher(p) is approximated by the qua- 7

dratic function, Eq(28) is formally identical with the Bloch  after performing the integration with respegt, we arrive,
equation for the one-particle canonical density matrixitn respect to formuld?), at the final result

Cs(p,po) in the thermodynamic equilibrium. In the case of a

general functionc(p), we have to speak of quasiparticles — uGy(p,t;pg)=uM(pP—PpPo;om)

with a nonparabolic dispersion law. The functiGn o(p,po)

is equal tos(p— p,) for quantum-mechanical reasons. When exf —c(po)t/ 7] —exd —c(p)t/7]
transforming Eq(28) into thex-representation form, one ob- X c(p)—c(po) '
serves that the potential energy correspondswela it is an

inverted Gaussiafcf. expressior(6)]. (36)

We can deriveG(p,t; po) as the series In the same way, we could also calculate higher-order terms

o (i.e., the terms proportional to) with j>1) in series(30).

G(p,t;po)=2, Min(p,t;po)- (300  We expect, however, that higher-order terms are negligible,

=0 since the mutation probability is, as biologists have proved
_ ) ) in their extensive studies, very small.
The zero-order term is the solution of the equation
. IV. DEVELOPMENT OF THE PHENOTYPIC DIVERSITY
dGo(p.t;po)  c(p)
E— Go(P,t;Po) (31) IN A POPULATION WHOSE INDIVIDUALS ARE
ot T INITIALLY EQUAL

with respect to the condition If all individuals of a population are initially, at the time
to=0, carriers of the same phenotypic valpg the initial
Go(p,0;pg) = d(p—po)- (32 distribution function®y(p) is equal to thes function:
When solving Eq(31), we obtain, fort>0, the function Dy(p)=48(p). (37
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(p0=5=0 according to our definition of the phenotypic pa-

rameterp.) In regard to identity(20), Eq. (27) allows us to
assert that

@(p,t)=G(p,t;0). (39

Sincec(0)=0 [cf. expressior(11)], formulas(33) and(36)
imply, respectively, that

Go(p,t;0)=&(p) (39

and

1—exd —c(p)t/7]
c(p)

uG1(p,t;0)=uM(p;om) (40

at all timest>0. Hence, in the linear approximation with

respect tou, we have got the function

1—-exd —c(p)t/
¢(P=5(p)+ LM(p;o) eXp[C(pf;(p) 7]

(41)

The only problem that we have still left unsolved is the cal-

culation of the integral

T2,
dpexp — —=
2770'r2n —» 20'ﬁ1

><1—exp[—c(p)t/7-] .

fﬁ dpe(p,t)=1+wu

c(p) “
Recall that, according to Eq14),
@(p,H)=N(t)¢(p.1), (43
where
N(t)=“ldp¢(p,t)}l. (@)

We will calculate the functiom(t) approximately, assuming
that 0<o,<1. (In fact, it is probable thair,,<1). The
most relevant values gb contributing to the value of the
integral on the right hand side of formul@?2) lie in the
interval (—opm,0m)-

A. Distribution function @®(p,t;0) in the model where
c(p)=1—exp(—p? (the Waxman-Peck mode)

Since < yaﬁ]<l, we may use, when calculating integral

(42), the approximation expressed by formula (“)1arhus,

PHYSICAL REVIEW E 67, 021913(2003

1\ s p2
dpexp ——
2 77'0%1 j, o P 20’5n

« 1—exp(— yp?t/7)
yp?

1 1/2ft .
dtf d
2mwal o P
1 t
—exg —— +
207, T

After carrying out the integration with respectgpwe obtain
the simple result

fﬁ dpe(p,t)~1+pu

—1+2
-

X p?|.

E t dtl
TJo (1+2yolt,/7)Y?

2’)/0'2t 1/2
(1+ Tm) -1

f dpe(p,t)~1+

s

YOm

=1+

Hence, according to formuld4), we obtain the distribution
function

1—exp( — yp2t/r
p2

®(p,t;0)=N(1) 5(p>+%M(p;am>

(439

with the normalizing coefficient
2702t 1/2 -1
1+ —— ) ~1|t . (449

From the probabilistic viewpoint, the functidd(t) is well
understood. When counting all the bacteria living at the time
instantt, we have to distinguish whether they are carriers of
the original phenotypic valu@p,=0 or whether they carry
other values,p#0. Since [€_dpd(p,t;0)=N(t) (f €
—+0), we may say that a randomly chosen bacterium may
be the carrier of the valug,= 0 with the probability equal to
N(t). If t—oo, the probabilityN(t) decreases towards zero.
However, this decreasing—the process influenced both by
the mutations and by the fitness of the bacteria to live in their
environment—is slow. Indeed, let us take=0.02, o,
=0.05, andu=10"5. Then u/(yo2)=0.2 and oit/r

=1 for the generation numbéfr=10". If these values of

and o,,, together with the value 20 min for the generation
time 7, may be taken as realistic for some soil bacteria, the
total timet comprising the lifetime of 10 000 generations of
these bacteria equals about five months. If the timis
roughly ten timegor more than ten timesshorter, formula
(449 can be simplified:

N(t)=[1+ -
YOm

t\"1  2yolt
1+M7 if T <1.

N(t)~ (45)
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As a rule, the mutation probability is smaller than aoﬁq. wherec(p) was approximated agp? with some small pa-
Thus, we may write rametery>0, we emphasize that(p) may be chosen from
a wider class of functions. In particular, we have dealt with
the model defined by the functia(p) =y 1—exp(—ap)].

We have calculated the distribution function as a series
with respect to the mutation probabilitg. Our iteration
scheme for calculating the Green functiGfp,t;py) of the

2
2yont

pt o
N(O)~1-— if <1. (45')

B. Distribution function ®(p,t;0) in the model where

P equation fore(p,t) has been used in the same manner as in
=v[1 . .
_C(p) vI1-exp(—ap)] the density-matrix theory.
Now we consider a small parameter (0<y<1) and The replacement of(p) by E(p), t by 8 (with Z=1),

anothezr parametex>0, which need not be small. Onl32/ if andGy(p,t;po) by the unperturbed canonical density matrix
a<1l/oy,, we may accept the approximatiar(p)~yap C(BO)(p,po) yields the equation
and there is no essential difference from the Waxman-Peck

model, onlyvy is replaced byya. aC(ﬁO)(p Po)

~ Otherwise, ifffla'rzn is comparable with unity, the integra- > =E(D)Cfgo)(p,po)- (46)
tion of the functione(p,t) with respect top is much more B

complicated but can be accomplished expliciii is pre-

sented in the Appendjx With adequately chosen functida(p), this equation may

Here, we confine ourselves to discussing what comegoncern conduction electrons in a homogeneous nondegen-
about ifao?>1. Essentially, under this condition, we may erate semiconductofSinceE(p) is not equal to the kinetic

approximate *exp(—ap?) by unity. Then we obtain the e€nergy of an electron in vacuum, we may interpret the con-
simple result duction electrons as quasiparticles defined by the dispersion

law E=E(p).]
b4l Our second remark concerns analogy with the diffusion
1-exp ——J|. theory. The Fourier transform of the functid®(p,t;po)
(multiplied by a constantcan be interpreted as the concen-
Correspondingly, ifagfn>1, then tration C(x,t;Xg) of diffusants which all were initially, at the
timety=0, localized in the poink,. In the approximation of

1—ex;{ B yt } the present paper, we may generally write the equation
T 1

= ©
f dp@(p,t)~1+;

‘P(p,t;O)%N(t){ 5(Z)+%M(p:crm)

(43b) dCo(X,t;Xg) 1 X
o 2C T ColXitiXo)
Where Jt T X

m

0_2 2
1—exp(—77t>Hl. (44b) +§exy{— 5 )C(x,t;xo). 47

In the short-time approximation, formulé45) and(45') are  If c(p)=yp?, the concentratiolC(x,t;x,) obeys the usual
equally valid as in the cask Note that expressio@3b) for  diffusion equation with the diffusion coefficiemi= /7. If
the distribution function®(p,t) would be correct ifc(p) c(p)# yp?, the diffusion is anomalous. In any case, the
=1-w(p)/w(0) might be approximated by a small constantpositiveness of the potential-energy term means that4.
v>0. In this caseN(t) may again be approximated as 1 involves acreation of diffusants.

N(t)=

1+ 2
y

— ut/y at short enough times. However,ti-, thenN(t) If =0, we observe thalNy=[7_.dxCy(X,t;Xy) is a
does not tend to zer@n contrast to the case analyzed in the quantity not varying in time. Therefore, we may define the
preceding section probability densityPq(X,t;Xg) = Co(X,t;Xp)/Ng and put the
theory on an equal footing with the theory of the Brownian
lim N(t)= Y motion.
e y+u' If ¢(p)=7yp? and =0, we may write down the Lange-
vin equationx(u)=(2y/7)¥%(u) for the stochastic paths
V. CONCLUDING REMARKS x(u) (O=u=<t) which all start from the common point

x(0)=x, at the time instanty=0. The value of the end

In the present paper, we have focused our attention on theoint x(t)=x at a given time instant>0 may be arbitrary
importance of the fitness functiom(p) in the theory of the and Py(x,t;Xo) =(8(x—x(t))). In the terminology of the
population  genetics. Assuming that <@(p)=1 theory of stochastic processegu) is the Wiener process.
—w(p)/w(0)<1, we have essentially followed Waxman  But then a natural question arises: which stochastic pro-
and Peck who derived the distribution functid{p,t) of the  cess corresponds to the case when the fitness funatipin
population genetics as a functional of a functip(p,t) [cf. is modeled by functior{8b), with which we have exempli-
expression14)] satisfying alinear integrodifferential equa- fied our problem? About ten years ago, we dealt with the
tion [cf. Eqg. (15)]. However, in contrast with Ref[12], equation

021913-8
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[Compare with Eq(48) in Ref. [18]; see also Ref[19]]  critical reading of my manuscript.
Equation(48) corresponds to a stochastic process with paths

x(u) defined by the stochastic equatiofu)=[(2D)? APPENDIX

+aZjo(u—u;)]f(u), where f(u) is the standard zero- _
centered Gau55|an white-noise function and where the sum In the rrrlw(]jcel where(p)= [ 1~ exp(-ap)], we have to
represents a point process, in whighare random time in- manage the function
stants distributed in the Poissonian way. The Poissonian pro-
cess consists of equalpulses: all the pulses are taken with 1 —exf — c(p)t/r] 1—exp{—y[1—exp —ap?)]t/7}
the same amplituda. The average frequency of these pulses c(n) >
is equal toy/r. Clearly, we consider anultiplicative sto- P y[1-exp—ap?]
chastic procesx(u) (0<u<t). The probability density 1 (t Y[1—exp(—ap?) ]ty
Po(X,t;%0) =(5(x—x(t))) is the fundamental solution of Eq. = f dtlex;{ - )
(48). Alternatively (as we have shown in Rgf18]), Eq. (48)
can be written in the equivalent integrodifferential form J

dtlex;{ )

0
NG

T

dPo(X,t;Xg) yfx
_— = dx’

at T

— oo

" 1 (x—x")?
(Zwa)lIZeX 2a

F?Po(X,t:Xo)
NG

xex;{y—exq ap?)|.

—O0(x—x")

We have to calculate the integral

X Po(X,t;%g)+ Dy (49

o t
f dpe(pt)=1+ %f dtlexp( - %) I(ty),
In the case wheD,=0, Eq.(49) was employed by Laskin °
[20] in a theory of the channeling of high-energy particles in
crystals.(The channeling occurs when a ray of equi-energywhere
particles bombarding a crystal is collimated very precisely in
a favorable direction.
In the framework of the diffusion theory, we may con- 1(ty) (
clude that the parameter of the theory of the population

T sl -2
> f dpexp — —
o —o 207,
genetics corresponds to an environmental noisg=D, the .
noise is absent. Yt 2
Section IV of the present paper has been devoted to the Xex[{ T exp—ap’) .
problem of the evolution of a population in which all indi-
viduals are initially equal, being the carriers of the pheno-
typic valuep,=0. The distribution functiorb (p,t;0) of the
population is the sum of a shar@-function component,
N(t) 8(p), and a blurred component. Similarly, as in the ther-

When developing the second exponential in the MacLaurin
series, we obtain the following sum of the Laplace integrals:

modynamics, we may distinguish two phases in the popula- 1 \¥2> tJ 1
tion at any timet>0. Let us denote them as phaSeand I(t)= . dpex —| == *ia p?
phaseB. The phaseS consist of the carriers of the initial o =0 jl7 Om

phenotypic valugpy=0. The phaseB consists of the indi-

viduals carrying the phenotypic values#py. In the  pence,

Waxman-Peck moddlcf. expressiong43ag and (443], the

probability N(t) tends to zero it—c. Therefore, we may _

say that the phasgdissolves gradually in the phaBeln the t)

model with the fithess functiow(p) defined by expression I(t1)=_20 i1 A(142iag2)Y?’
(8b) (or by another similar expressigrthe probabilityN(t) L jaoy)
does not tend asymptotically to zero: this model predicts that

both the phaseS andB may coexist ift— . In this way, we have obtained the result

©
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)

> 1
J’iwdp¢(p,t)=l+§2 . Jtdtl ®(p,t;0)=N(t)

=0 jid(1+2jack) Yo

6(p>+%M(p;am>

ty) —ext — v 1—exy — ap?
Xexr{ _ &)tll ><1 exp{— y[1—exp(—ap“)t/7]
T 1—exp(—apt/7)

The integral on the right hand side of this equality is easilywhere
calculable

|+l t\ o Kk N(t)—[1+'u><§w: !
T = PYaY T Lo 2 12
f dtlexp( )t e 1—exp( - 1) > Y (50 yl(1+2jach)
,y]+1 T | k=0 k! 7_k . )
i _
1- exp(——)Z 7— ] .
Thus, we have obtained the distribution function k=0 kl7
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