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Solution of epidemic models with quenched transients
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We consider a model for single-season disease epidemics, with a @efeyt periodl in the onset of
infectivity and a decay(“quenching”) in host susceptibility described by time-varying rates of primary and
secondary infections. The classical susceptible-exposed-infegkdmodel of epidemiology is a special case
with constant rates. The decaying rates force the epidemics to slow down, and eventually stop in a “quenched
transient” state that depends on the full history of the epidemic including its initial state. This equilibrium state
is neutrally stabldi.e., has zero-value eigenvalyeand cannot be studied using standard equilibrium analysis.

We introduce a method that gives an approximate analytical solution for the quenched state. The method uses
an interpolation between two exactly solvable limits and applies to the whole, five-dimensional parameter
space of the model. Some applications of the solutions for analysis of epidemics are given.
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[. INTRODUCTION are different from the most-commonly found equilibrium
states, which are fixed points towards which a system
Epidemic models with latency and decaying rates of in-evolves regardless of its initial state. This feature makes
fection (“quenching”) [1,2] characterize a range of plai]  solving the SElg model a difficult mathematical problem:
and animal diseasdd] in which epidemic spread is limited standard methods of analysis, such as equilibrium analysis,
by a decay in susceptibility as the host, or cohort, matureswhich relies on the existence of stable-equilibrium states,
The susceptible-exposed-infect¢8El) model of classical and power-series expansions, which rely on knowledge of
epidemiology{5] is a special case with constant rates, approthe long-term asymptotic limit, do not apply.
priate for describing single-season epidemics. In this paper In this work we derive an explicit solution for the level of
we study the SEI model with quenching, which we denote bydisease of the quenched state in terms of the model param-
SElq. eters and initial condition. The solution is based on an ap-
The introduction of quenching is motivated by the follow- proximation which interpolates between two exact limiting
ing question: why is it that so often epidemics do not invadesolutions that bound the general solution above and below.
whole populations in the absence of any control measures @espite being an approximation, this result is shown to be
apparent antagonistic organisms? The evidence for this be&ccurate over large sections of parameter space. The explicit
havior comes, for example, from observations of plant dissolution allows easier and more transparent analyses of sen-
eases in seasonal crops in the field, in glasshouses, and sitivity and trade-offs between parameters than is possible
controlled experiment$1,2,6. A plausible explanation for with numeric solution of the differential equations governing
quenching is that it results from a change in susceptibilitythe model. We apply the solution to address questions rel-
which decays as hosts age and become more res[Staiit  evant to epidemiological applications. Specificall{) how
is likely that quenching also occurs with human and animatloes the final level of disease vary with the initial amount of
disease$4], but on time scales much larger than the durationinoculum and initial condition, and with the strength of
of a single outbreak. One possible exception, though, is thquenching?(2) What are the trade-offs between the latent
attenuation of pathogenicity of certain viruses with succesperiod and the strength of quenching?
sive passage through the h¢8t. In addition to examining the consequences of quenching
In the long term, quenching causes the epidemic tamn epidemics, this paper also revisits an older unsolved prob-
“freeze” in a transient state with a disease leyehction of  lem, that of solving the SEI model. Some analytical progress
the population which is infectedhat depends on the state of has been possiblée.g., Refs.[10,11]) with the standard
the epidemic at every point in timghe “dynamic path’) susceptible-infected-remové8IR) model of epidemiology,
since the initial condition. We refer to these long-term statesvhich is essentially a nonspatial forest-fire model. However,
as quenched transients, because the dependence on the initiaty few results have been reported on the solution of epi-
condition (and the spatial distribution of disease in spatially demic models with a latent period, such as the SEI and SEIR
explicit populationg is typical of transient states. This situa- models. The combination of nonlinearitin the infectious
tion is analogous to that of physical systems which, whercontacty and delay in infection make such models particu-
rapidly cooled(quenched stabilize in a state that is thermo- larly intractable. The method introduced in this paper pro-
dynamically out of equilibrium[9]. Mathematically, these vides a starting point.
states can be defined as being neutrally stadthile corre- The study and solution of epidemic models has been a
sponding eigenvalues have zero or imaginary valtleey  long-standing interest to theoretical physicists motivated by
analogies between spreading phenomena in epidemic and
physical systems and by the application of analytical tech-
*Corresponding author. Email address: jf263@cam.ac.uk nigues(e.g., Refs[12—15). Quenched transients, as studied
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here, are not restricted to epidemics but appear in a broastate of an isolated host has a lifetimey,land the latent
class of systems in physics, chemistry, and biochemistryperiod has an exponential distribution with meas 1/.
such as rapidly cooledquenchedl systems[9,16], thermal

explosiond17], and catalytic reactiond8—-20. The method Reformulation of the model

of solution examined here, therefore applies to a range of

systems including those governed by differential equations, €t we derive two formal modifications of the compart-
for which explicit bounding solutions are available. mental model. First, we define a new time variable that is

The outline of the paper is as follows: definition of the CONvenient for describing the dynamics of susceptibles and
model and exploration of the formalistSec. 1), exact so- €XPosed and for taking the long-term limit. Second, we in-
lution of the model in special caséSec. Ill), derivation and troduce a new state variable that obeys a single, higher-order

testing of an approximation to the full solutié8ec. I\), and ~ €duation equivalent to the original system of ODEs. Refor-
a discussior(Sec. \J. mulation of the compartmental model as a single differential

equation allows direct comparison with standard nonlinear

ODEs to check whether explicit solutions are knofiyngen-

eral it may also facilitate application of various analytical
We consider a model, denoted by SElq, that is an extenmethods.

sion of the standard deterministic and compartmental SEI We define the transformed time variable

model for one-season epidemi&, with quenched rates of .

infection[1]. The model represents a host population, that is T(t):f dt’e 9" =[1—e"9/q. (4)

homogeneous and large enough that it can be assumed to be 0

infinite, and in which each individual can be either in a sus-

ceptible ), exposed E), or infectious() state. We denote Note thatr(«)=1/q and lim _ 7(t)=t. Then, using the

the correspondinfractionsof the population in each state at relation S+ E+1=1, model (1)—(3) can be recast in the

timet by S(t), E(t), andl(t), respectively. The dynamics of form

the model are described by the following system of ordinary

Il. SElq EPIDEMIC MODEL

differential equation§ODES: ds
a ¢ 9 —=—S(a+pl), (5)
ds dr
——_ -qt
dt S(a+ple” ™, 1) di
— =) (1=S~1), (6)
dE dr
o —qt_
ar -~ Stetphe T-IE, @ herex=exp(q)=1—qr, dS/dr=(1/x)dFdt.
Equation(5) can be formally solved to give
dl
gi-'E 3 S(7)=Sye @7 P, @

with initial condition: S(0)=S,, 1(0)=l,=1-S, and here

E(0)=0. Note that, sincesS+E+I1=1, only two of the -

equations are independent. Alse;- B1,>0 is a necessary (;S(T):f d7’l ©)]
condition for the epidemic to take off, with representing 0
the initial inoculation rate andly being an initial import of

infected hosts, which, in botanical epidemics, is usually subl> @ New state vanable that depends explicitly on the ful

history of the system. The other state variables can also be

dominant. . . i
Infections may be of primary or secondary tyBeimary written in terms of¢, as follows:
infections may be caused by external inoculum, arriving |= ¢’ 9)
from outside the host population, or by internal inoculum, '
persisting in the environment for long periods; in agriculture, E=(x/1)¢", (10)

for example, the latter may occur from inoculum surviving in

the soil from previous cropsSecondary infectionare those where ¢’ =d@/dr, etc. Substituting Eq€7), (9), and (10)
resulting from contact between susceptible and infectiougyio S+ E+1=1 gives an equation fop,

hosts in the population. This model assumes that primary and

secondary infections occur at ratasexp(—qt) and B exp (XI) "+ ¢’ +Spe” ¥ PP=1. (11)
(—qt) I(t) per susceptible, respectively. The proportionality of

the latter rate td invokes the mean-field, omass-action This single, second-order ODE, with initial conditios(0)
principle, according to which infectives and susceptibles mix=0, ¢'(0)=1,, is equivalent to the system of equations
homogeneously. The exponential factor accounts for the tem(5)—(6). The original variables§ E, and| are recovered by
poral decay(with host age of the probability of infection of  replacing the solution of Eq.11) back into Eqs.(7)—(10).
hosts(given that contact with the pathogen has occyrrali ~ Although Eq.(11) resembles the Poisson-Boltzmann equa-
hosts are assumed to have the same age. The susceptibin [17], the correspondence is not exact and there is no
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known explicit solution of this nonlinear OD[21], and thus
to the system of equation($)—(6).

Ill. SOLVABLE LIMITING CASES

We first derive explicit solutions for two limiting cases:

PHYSICAL REVIEW BE7, 021906 (2003

absence of quenching, whep-0, does the whole popula-
tion become infected:,—1 andS,,—0.

During transients, there are two additional argumenqts,
andlt [note thatg7(t) is a function ofgt]. It is also apparent
that the natural temporal variable f&is 7(t), while the
natural temporal variable f&E=1—S—1 (whenx>0) ist,

one in the absence of a delay, and the other in the absence of consequence of the fact th& and | have nonzero
nonlinearity. These are then shown to provide upper an%symptotic limits(for q>0), while the number of exposel

lower bounds on the solution.

A. No latent period, k=0

When there is no latent perio@ € 1/1=0) and, therefore,

vanishes in the long term. These features reflect the result
(derived from asymptotic expansions in the Appendhat
there are two time scales involved in the approach to the
asymptotic limit, 14 and 1/ = «; which time scale domi-

susceptibles become infectious immediately on contact witthates the approach to this limit depends on which process is

the disease, the model reduces to Slq fptr2]. Substituting
I=1-Sin Eq. (5) yields the Bernoulli equation

ds
—=[—(a+p)S+BS], (12
dr
with solution, written in terms of =1—1S,
Ce—CT(t)
[(t)=0=1~— > : (13
c—BS[1-e ]
with 7(t) given by Eq.(4), and
c=a+p. (14)

B. No secondary infection,8=0

In the absence of secondary infectiogg=<0) the model
is linear. The solution is obtained from Eq¥) and (11),
which is now a first-order equation feb' =1, and reads

S(t),ezozsoeim(t)y (15
[(t) g_o=1—S[e * M+ aH(t)], (16)
with E(t) 5—o=SeeH(t) and
t ! ’
H(t)=e‘“J dt’ et gar(t’) (17
0

Note that the ternH(t) is purely transient, since Iime

=0. In the limit wheng— 0 the integral in Eq(17) can be
made explicitly, giving H=[exp(—at)—exp(=It)]/[l—«],
and hence Iir@ﬂol(t)ﬁ:ozl—so[l exp(—at)—aexp

(—1]/[1—al.

C. Consequences of quenching

slower, secondary infectioftontrolled byq) or latency.

When there are primary but no secondary infectiogs (
=0), the long-term level of infection is independent mf
although the transient level of infection depends anin
fact, there is a simple asymptotic relationship between the
two solutions(13) and(16): I(oo)ﬁzozlimﬁﬂol(oo),(:o. The

frequency of secondary infections depends gnbecause
infectious contacts are conditioned by the current number of
infectious individuals, which depends on Hence, in the
presence of quenching, a latent period reduces the final num-
ber of infections resulting from secondary contacts. How-
ever, if only primary infections take place, the effect of a
latent period is solely to delay the time when the level of
infection stabilizes.

D. Bounds on the general solution

The two limiting-case solutions derived above provide
upperandlower bounds to the full solution of the model for
any given time and over the whole parameter space. Specifi-
cally, since secondary infection provides an additional route
of infection and latency delays infectiofisoth primary and
secondary, we expect the following relations to hold at any
given timet:

S(t) c=0=S(t) <S(t) g-o=1—1(t) g0, (18)

(1) g=o=<I(t)<I() k=0, (19

where the left- and right-hand sides are given by E{8),
(15), and(16). Bounds on the asymptotic values, andl ., ,
are obtained by replacing=1/q and H,=0 in the exact
solutions. Whermq— 0, the upper and lower bounds equalize,
implying that S,=0 and|.=1. Figure 1 shows the gap
between bounds o, in the parameter subspace/€, 5/q).
The gap is large when botl and 8 have low values relative

Various behavioral features can be discerned from thd0 G, but is comparatively small elsewhere in parameter
above exact solutions, some of which are shared by the gefPace. Figure 2 illustrates the bounds on a transient solution
eral solution of the model. The long-term level of diseasefor given parameter values; although no formal test is avail-

Imzlimtﬁml(t), is obtained by takingr=1/q and (for «
>0) H,=0. This limit has a nontrivial valué, <1 that, in

the above special cases, only dependd pand on the pa-
rameter combinationa/q and B/q, although, in general, it
will depend on all parameters of the model. Only in the

able, the bounds provide a reasonably tight envelope around
the actual solution. From Ed18), usingE+1=1-S and
E(t) .=o=0, we also have

E(t) poot 1 () go=<E(M) +1()<I,o(t), (20
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more slowly whenB=0 for any given values of the other
parameters. Hence&(t) <S(t) z—o. Conversely, the formal
solution of Eq.(6),

I(t)=1—SOe"t—Ie‘”Jtdt’e""S(t’) (21)
0

is sufficient to prove that ifS(t)<S(t)g-o then I(t) -0
<I(t). On the other hand,(t) necessarily increases faster
when k=0. Hence,l (t)<I(t),-q, Which in turn implies,
G via Eq.(7), that S(t) .- o= S(t).

ap 0.5

IV. APPROXIMATE SOLUTION

The two, exact and bounding solutions obtained so far can
be used to construct two perturbative solutions in power se-
ries of B and «, respectively. These solutions approximate
the full solution in confined regions, where these parameters
are small relative to some combination of the remaining pa-

1 rameters. However, without a precise idea of the values, the
a/q ‘ B/ q parameters are likely to take, such confined parameter re-
4 gions can be too restrictive for general use. Accordingly, we

propose a different approach, that does not assume a particu-
lar relation between parameters and applies, in principle, to

FIG. 1. Gap inl, between upper and lower bounds for the the whole parameter space of the model. For ease of refer-
solution of the SElq model, in the parameter subspage,(8/q) ence and understanding, we present the sequence and steps in
with 1,=0. The bounds do not depend an deriving this approximate solution.

[t

o

which, together with Eq(19), is a necessary but not a suffi- A. Interpolation

f]loelrc]jts ?r?r:ﬁgl?;gsf:rsﬁgxrr:?i(lt:)iﬁz%Sbigtébgshlr?o{nﬁggﬂty en- We exploit the fact that the solution of the model must lie
eral 9: 9®Nhetween the two bounds, and that the gap between the

We briefly outline an heuristic proof of conjectuf&g)— bounds is not very wide in most parameter regigfig. 1). It

. : _ h is natural then to construct a solution that interpolates be-
(_12)(15 (tgo[nEsthde(;)]th;infsg:?tl) Z?\I(ijtl;r—sf(tfgtij??)(gvhgrztl) tween the bounds. A first guess is to approximate the solution
. . - 0

by the middle point between bounds,
=0) are monotonically increasing functions of ting}) is y P

a monotonically decreasing function of time that decreases le=o(D)+15-0(1)
Iapprox(t) = f (22)
1.0
RN However, this approximation has some drawbacks: it as-
c Ny sumes that the solution is always equidistant from the two
-g TTm—— bounds, and, most importantly, lacks any long-term depen-
% S dence on the latent period(since neither bound depends on
2 - ﬁ:l) “j} x whent—x). We compared expressia22), as well as
f_" 0.5 o g;l 2;0 perturbative solutions based on power serieskond g3,
) with the numeric solution of Eq91)—(3), and found that
S I neither of them approximated the latter qualitatively well,
5 except in restricted parameter regions.
o e A more promising approach is to use a nonlinear form of
L o interpolation, in which the two solutions are weighted by
a E coefficients that depend nonlinearly on the parameters. This
0.0 0 5 2 . P 10 takes the general form
time lapprolt) =B l—o(t; B,@) + K1 g-o(t;a), (23)

FIG. 2. Bounds on the model solutidobtained numerically ~ where B and K may be functions of time and any of the
provided by the two exactly solvable limiting cases. Fixed paramparameters, and={l,a,q}. We require that
eters:1o=0, «=0.1, =1, k=1=I, andq=0.7. Similarly tight
bounds were found for other parameter values. The groups of imB=0 and limB=1,
curves correspond to compartme§d, andE (top to bottom). B=0 k=0

021906-4



SOLUTION OF EPIDEMIC MODELS WITH QUENCHED. .. PHYSICAL REVIEW B7, 021906 (2003

imK=0 and limK=1, (24) B. Exploration of the epidemic surface

K=o A=0 The availability of an explicit expression for,, given by

the limitt—oo of Eq. (26), in terms of the model parameters,
so thatl ;ppr0x €qualsl 5o andl ., respectively, in each of makes it possible to explore this surface in detail with great
the limits. One way of formalizing these requirements is toease. It is often important to carry out a sensitivity analysis
write to assess how the long-term disease level changes with varia-
tion in each of the parameters. Such analysis involves evalu-
ation of the derivatives of,, with respect to the parameters;
B= B K = ()2 this is trivial using the approximate solution, but would be
Bl )t k(--+)g B )1t ()2’ considerably more difficult through numeric solution. Fig-
(25) ures 4a) and 4b) illustrate the sensitivity of,, with respect
to the latent period £) and the initial condition(or initial
where (--); and (---), represent arbitrary mathematical infeqtedg,lo)_, respgctively; note that the sensitivity of ep_i—
expressions which may depend on any of the parameter§eémic size is maximal for a nonzero amount of quenching
however, they must not alter the above limiting require-and for k=0 andl,=0, respectively. A second important
ments, and must be such thatand K are dimensionless feature is the trade-off between parameters, which reflects a
quantities. The latter condition implies thatwhich has di-  trade-off between biological processes: how much does one
mension “time,” must appear multiplied by, «, t, or 7. parameter have to change to compensate for change in an-
Similarly, 8, which has dimension “1/time,” must appear other_ parameter in order that the Iong-term level of disease
multiplied by 14, etc. remains unghangedaven thought the duration of the tran-
Next, we select a form for-(-); and (- -),. We focus Sient may diffef? The answer to this question can be found
on the long-term behavior, although the proposed solution graphically by examining the contours, “isobars,” in Fig. 3.
still applies to transientésee the DiscussionWe do so to ~ FOr example, the same level of disease observed in a system
exclude the possibility thaB and K might depend on time, With latent period« and amount of quenching, may be
and, in particular, to avoid taking into account additionalobserved in another system with longer latency but weaker
constraints, such as the form we expBcandK to have in ~ quenchindFigs. 3a), 3(b)]. Itis also clear that the trade-off
limit whent— 0. In this context the simplest possible choice €an be quite different at different points in parameter space:
seems to be(-);=1 and (- -),=q2 which leads to the for eéxample, contours in regions with largeand smallx
following ansatz for approximating the full solution of the ¢an be almost orthogonal to contours in regions with sygall

model: and largex [Figs. 3i), 3(j)].
5 V. DISCUSSION
Kq
I t)y=——l,.-o(B,a)+ ——lz-0(a In this paper we examined a nonstandard, SElg, compart-
approx( ) ,3+Kq2 O(ﬂ ) ,8+qu B O( ) pap q P

mental model for disease epidemics comprising latency and
temporal decay in the rates of infection, also known as
=lg_o(a)+ LZ[U:o(ﬂ,a)_'ﬁ:o(a)]- quenching1]. The model is motivated by field and experi-
B+ kq mental botanical epidemiological data which supports the
26) biological assumption that the host susceptibility decreases
with host agd 1,2,6,7. The main contribution of the paper is
the derivation of an approximation to the full solution in the
This expression has the expected limit, 1, wiqen0. Aless  long term. In Sec. IV we showed how to use this result to
simple choice for correct dimensionalization would beanswer generic epidemiological questions formulated in the
(---),=(q+a)?, while the choice (--),=«? would not Introduction.
satisfy the appropriate limits. Quenched transient§’he most important behavioral fea-
Figure 3 compares ansaf26) with the numeric solution ture of the model considered here is that, as the rates of
of the model represented by contour plots in various two-infection decrease with time, the epidemic gradually slows
dimensional parameter subspaces. A parameter has the sadwvn and eventually stops in a quenched transient state. This
value in all graphs in which it is kept constant. In particular, long-term state is not an equilibrium state in the usual sense:
the values ol ; and «, both of which may contribute to the it is characterized by a disease level that depends on the
start of an epidemic, were chosen to be very small to maxiwhole history of the epidemic including the initial condition.
mize the nonlinearity of the model and provide very demandMathematically, this state is a neutrally stable equilibrium,
ing conditions on the performance of the approximation. Weand there is an infinite number of such solutions depending
see that the ansatz captures the qualitative, and even tloa the initial condition, so some properties cannot be studied
guantitative behavior of the model extremely well; it did sovia standard equilibrium or asymptotic analyses which rely
much better than any of the above alternative approachesn solving equations dbr in the vicinity of) a single point.
Note that the dependence of expressi@6) on the latent On the other hand, although numerical solution of Efs-
period « is very simple, and yet picks up the essential fea-(3) is trivial for given parameter values, a full study of be-
tures of behavior. havior over all dimensions of parameter space is a tedious
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Approximation Numeric and inefficient way of gaining insight even for such a simple
model.

Analysis We proposed a different way of studying
quenched transients, by considering an explicit approximate
solution describing how the level of disease of the quenched
state depends on all parameters of the model. This is given
by Eg. (26), which is the central result of the paper. The
solution was constructed as an interpolation between two
exactly solvable limiting cases, one without latency and an-
other without nonlinearity, shown to provide upper and lower
bounds to the exact solution. We demonstrated, in several
two-dimensional parameter subspacegy. 3), that the ap-
proximation follows the numeric solution of the model very
closely. Since the approximation is free from assumptions
about the magnitude of the parameters, it is not restricted to
particular parameter regions in the same way that a power-
series perturbative solution would be. The regions in which
the approximation might perform less well are likely to be
those in which the gap between bourilsistrated in Fig. 1
is greater. Future work will provide more understanding as to
why the approximation works well and under which condi-
tions it may break down when applied to other models. One
possible route, is to derive an exact equation for the mixing
coefficientB [Eq. (25)], currently given bys/[ B+ kg?]. Itis
worth pointing out an analogy between the current interpo-
lative solution and an approximate solutiptb] to related
spatially explicit epidemic models. The latter method also
formulates a solution by combining upper and lower bounds;
however, the bounds are not exact solutions, they rely on the
use of cluster approximatioi&2], and the derivation of the
weighing coefficients is different from the current one.

Analysis of transient dynamic$he approximation given
by Eq.(26) was applied to the long-term limit, and exam-
ined in detail in this case, but, in principle, it can also be
applied to transients. Application of E@26) to transients
revealed, as expected, that the approximation, in its current
form, performs less well than in the long term, as it tends to
show more limited agreement with the numeric solution.
Transient behavior is more general and complex than long-
term behavior, and therefore more difficult to approximate;
in this case the mixing coefficien® and K may be time
dependent and have to satisfy additional constrgmts, on
their limit ast—0). Investigating how to extend these coef-
ficients to the transient case will be the subject of further
work.

Other applications Quenched-transient states have con-
siderable practical relevance not only in epidemiology but in
other areas concerned with invasive organisms or species
[10,11,18-20 The existence of decaying rates of spread
could, however, be difficult to establish in practice as there
may be competing factors limiting the spread of invasive
species. Nevertheless, the model and method of approxima-
tion presented here do have wider application than the simple
epidemic system, which is analogous to an irreversible

FIG. 3. Comparison of the approximatéeft) and numeric ~chemical reaction. We note that the essential effect of the
(right) solutions to the long-term level of infectioh, , in the SElq  decaying rates could also be achieved by bifurcating the flow
model. Fixed parameter${0)=1,=0.01, «=0.05, B=1, k=1 from the susceptible compartment; for example, allowing
=1, andgq=0.2, except where indicated otherwise. Lines represensusceptibles to become resistant at certain rates. Systems in
contours of constant values bf . which mass flows monotonically from one compartment to
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Sensitivity to latent period cur within a small neighborhood of the sour2?]. How-
ever, the current model is driven by requirements of tracta-

bility, and we believe that the insight gained from the
analysis can, in essence, be transposed to a spatial context,
where such an analysis would not be feasible. A challenge
that remains open is to extend the interpolation approxima-
tion to describe the transient dynamics. Such an extension
would be welcome for both theoretical and practical reasons:
it would lead to a more complete study; it would also trivi-
alize the task of estimating the latent period and other pa-
rameters by fitting an explicifrather than a numernicsolu-

tion to epidemic time series. Finally, it could allow an
extension of the analysis to models with recurrent epidemics,
such as the SIR and SEIR models.

0.04

0.02

dl/dx
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APPENDIX: TEMPORAL ASYMPTOTICS

In this appendix we examine the approach to the long-
term state of the model, and illustrate the emergence of two
time scales, 4 and 1/, in the asymptotic dynamics.

Assuming that a power-series expansion about the long-
term level of disease exists in the forh{t)=1.,+a;x
+a,x?+ - - -, with x being a time-decaying quantity such as
exp(—qt), we obtain recursive equations for the coefficients
a, that involve the leading termy=1... Sincel, cannot be
determined by this or other exact methods that we know of,
none of the coefficients can be determined explicitly in terms
of the parameters of the model. Singand| are the param-
eters naturally arising in transient expressid8gc. Il A),
the general term in an asymptotic power series is more likely

3 to be of the forma,,x"y™, with x=exp(—qt) andy=exp
02 /'/’o's’/// (—=It), but this more elaborate form would not change the
(b) ! q above conclusion. Therefore, derivation of a power-series so-

lution is not appropriate for this model. However, it is pos-
sible to derive the leading asymptotic terms in the approach
FIG. 4. Sensitivity of the epidemic with respect(@ the latent  to the long-term state, without assuming the nature of those
period, 1. /d«, in the parameter subspace,); (b) the initial  terms; we succeeded in doing so at least in the case When
condition,dl../dl, in the parameter subspaag, k) (maximum at <q. Consider the following expression:
1o,=0 andq~0.65). Fixed parameter$(0)=1,=0.01, a=0.05,
B=1, andk=1=1I. t
E(t)=e’“f dt’e” @ DUS(t)[a+BI(t")], (AL)
another, or to several others, and have an intermediate, tran- 0
sient state could also exhibit upper and lower solvable
bounds which could, in principle, be used to construct simiwhich results from formal integration of Eq2). When |
lar approximate solutions. <(q the integral in Eq(2) has a finite limit ag—oc. Hence,
ExtensionsAlthough the SEIq model fits into the frame- expressing the integral af;dt’---—[idt’-- -, replacing
work of standard epidemiological mod€]l§], it is still a  S(a+Bl) in the second integral by its dominant termtas
considerable oversimplification of real epidemiological sys-—c, and simplifying, gives the leading terms
tems. For example, the model relies on a mean-field or
perfect-mixing assumption, i.e., it does not account for the E(t)=Ae '=Be 9+ ... (t—x), (A2)
spatial distribution of infectives which is known to affect
disease spread, in particular, when secondary infections ogvhere
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A= Jxdt’e‘“")t/s(t’)[awl(t’)], I(t)=|x—Ae‘“+|—Be‘qt+ .
0 q
S
_S.a+pl.) S, &U=Sf~ae”4~~uﬂwy (A3)
- g1 gl

Derivation of an analogous result in the casejefl appears

technically less straightforward, but would not modify the
andA<(a+ B)/(q—1). Expressior{A2) implies, via Eq(3)  qualitative message from the above results, i.e., the emer-
andS=1—-E-1, that gence of two time scales.
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