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Solution of epidemic models with quenched transients

J. A. N. Filipe* and C. A. Gilligan
Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom

~Received 30 August 2002; published 19 February 2003!

We consider a model for single-season disease epidemics, with a delay~latent period! in the onset of
infectivity and a decay~‘‘quenching’’! in host susceptibility described by time-varying rates of primary and
secondary infections. The classical susceptible-exposed-infected~SEI! model of epidemiology is a special case
with constant rates. The decaying rates force the epidemics to slow down, and eventually stop in a ‘‘quenched
transient’’ state that depends on the full history of the epidemic including its initial state. This equilibrium state
is neutrally stable~i.e., has zero-value eigenvalues!, and cannot be studied using standard equilibrium analysis.
We introduce a method that gives an approximate analytical solution for the quenched state. The method uses
an interpolation between two exactly solvable limits and applies to the whole, five-dimensional parameter
space of the model. Some applications of the solutions for analysis of epidemics are given.
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I. INTRODUCTION

Epidemic models with latency and decaying rates of
fection ~‘‘quenching’’! @1,2# characterize a range of plant@3#
and animal diseases@4# in which epidemic spread is limited
by a decay in susceptibility as the host, or cohort, matu
The susceptible-exposed-infected~SEI! model of classical
epidemiology@5# is a special case with constant rates, app
priate for describing single-season epidemics. In this pa
we study the SEI model with quenching, which we denote
SEIq.

The introduction of quenching is motivated by the follow
ing question: why is it that so often epidemics do not inva
whole populations in the absence of any control measure
apparent antagonistic organisms? The evidence for this
havior comes, for example, from observations of plant d
eases in seasonal crops in the field, in glasshouses, an
controlled experiments@1,2,6#. A plausible explanation for
quenching is that it results from a change in susceptibil
which decays as hosts age and become more resistant@7#. It
is likely that quenching also occurs with human and anim
diseases@4#, but on time scales much larger than the durat
of a single outbreak. One possible exception, though, is
attenuation of pathogenicity of certain viruses with succ
sive passage through the host@8#.

In the long term, quenching causes the epidemic
‘‘freeze’’ in a transient state with a disease level~fraction of
the population which is infected! that depends on the state
the epidemic at every point in time~the ‘‘dynamic path’’!
since the initial condition. We refer to these long-term sta
as quenched transients, because the dependence on the
condition ~and the spatial distribution of disease in spatia
explicit populations! is typical of transient states. This situa
tion is analogous to that of physical systems which, wh
rapidly cooled~quenched!, stabilize in a state that is thermo
dynamically out of equilibrium@9#. Mathematically, these
states can be defined as being neutrally stable~the corre-
sponding eigenvalues have zero or imaginary value!; they
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are different from the most-commonly found equilibriu
states, which are fixed points towards which a syst
evolves regardless of its initial state. This feature ma
solving the SEIq model a difficult mathematical problem
standard methods of analysis, such as equilibrium analy
which relies on the existence of stable-equilibrium stat
and power-series expansions, which rely on knowledge
the long-term asymptotic limit, do not apply.

In this work we derive an explicit solution for the level o
disease of the quenched state in terms of the model pa
eters and initial condition. The solution is based on an
proximation which interpolates between two exact limitin
solutions that bound the general solution above and be
Despite being an approximation, this result is shown to
accurate over large sections of parameter space. The ex
solution allows easier and more transparent analyses of
sitivity and trade-offs between parameters than is poss
with numeric solution of the differential equations governi
the model. We apply the solution to address questions
evant to epidemiological applications. Specifically:~1! how
does the final level of disease vary with the initial amount
inoculum and initial condition, and with the strength
quenching?~2! What are the trade-offs between the late
period and the strength of quenching?

In addition to examining the consequences of quench
on epidemics, this paper also revisits an older unsolved p
lem, that of solving the SEI model. Some analytical progr
has been possible~e.g., Refs.@10,11#! with the standard
susceptible-infected-removed~SIR! model of epidemiology,
which is essentially a nonspatial forest-fire model. Howev
very few results have been reported on the solution of e
demic models with a latent period, such as the SEI and S
models. The combination of nonlinearity~in the infectious
contacts! and delay in infection make such models partic
larly intractable. The method introduced in this paper p
vides a starting point.

The study and solution of epidemic models has bee
long-standing interest to theoretical physicists motivated
analogies between spreading phenomena in epidemic
physical systems and by the application of analytical te
niques~e.g., Refs.@12–15#!. Quenched transients, as studi
©2003 The American Physical Society06-1
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here, are not restricted to epidemics but appear in a br
class of systems in physics, chemistry, and biochemis
such as rapidly cooled~quenched! systems@9,16#, thermal
explosions@17#, and catalytic reactions@18–20#. The method
of solution examined here, therefore applies to a range
systems including those governed by differential equatio
for which explicit bounding solutions are available.

The outline of the paper is as follows: definition of th
model and exploration of the formalism~Sec. II!, exact so-
lution of the model in special cases~Sec. III!, derivation and
testing of an approximation to the full solution~Sec. IV!, and
a discussion~Sec. V!.

II. SEIq EPIDEMIC MODEL

We consider a model, denoted by SEIq, that is an ex
sion of the standard deterministic and compartmental
model for one-season epidemics@5#, with quenched rates o
infection @1#. The model represents a host population, tha
homogeneous and large enough that it can be assumed
infinite, and in which each individual can be either in a su
ceptible (S), exposed (E), or infectious~I! state. We denote
the correspondingfractionsof the population in each state a
time t by S(t), E(t), andI (t), respectively. The dynamics o
the model are described by the following system of ordin
differential equations~ODEs!:

dS

dt
52S~a1bI !e2qt, ~1!

dE

dt
5S~a1bI !e2qt2 l E, ~2!

dI

dt
5 l E, ~3!

with initial condition: S(0)5S0 , I (0)5I 0512S0, and
E(0)50. Note that, sinceS1E1I 51, only two of the
equations are independent. Also,a1bI 0.0 is a necessary
condition for the epidemic to take off, witha representing
the initial inoculation rate andI 0 being an initial import of
infected hosts, which, in botanical epidemics, is usually s
dominant.

Infections may be of primary or secondary type.Primary
infections may be caused by external inoculum, arrivin
from outside the host population, or by internal inoculu
persisting in the environment for long periods; in agricultu
for example, the latter may occur from inoculum surviving
the soil from previous crops.Secondary infectionsare those
resulting from contact between susceptible and infecti
hosts in the population. This model assumes that primary
secondary infections occur at ratesa exp(2qt) and b exp
(2qt) I(t) per susceptible, respectively. The proportionality
the latter rate toI invokes the mean-field, ormass-action
principle, according to which infectives and susceptibles m
homogeneously. The exponential factor accounts for the t
poral decay~with host age! of the probability of infection of
hosts~given that contact with the pathogen has occurred!; all
hosts are assumed to have the same age. The susce
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state of an isolated host has a lifetime 1/q, and the latent
period has an exponential distribution with meank51/l .

Reformulation of the model

Next we derive two formal modifications of the compa
mental model. First, we define a new time variable that
convenient for describing the dynamics of susceptibles
exposed and for taking the long-term limit. Second, we
troduce a new state variable that obeys a single, higher-o
equation equivalent to the original system of ODEs. Ref
mulation of the compartmental model as a single differen
equation allows direct comparison with standard nonlin
ODEs to check whether explicit solutions are known~in gen-
eral it may also facilitate application of various analytic
methods!.

We define the transformed time variable

t~ t !5E
0

t

dt8e2qt85@12e2qt#/q. ~4!

Note that t(`)51/q and lim
q→0

t(t)5t. Then, using the

relation S1E1I 51, model ~1!–~3! can be recast in the
form

dS

dt
52S~a1bI !, ~5!

dI

dt
5~ l /x!~12S2I !, ~6!

wherex5exp(2qt)512qt, dS/dt5(1/x)dS/dt.
Equation~5! can be formally solved to give

S~t!5S0e2at2bf(t), ~7!

where

f~t!5E
0

t

dt8I ~8!

is a new state variable that depends explicitly on the
history of the system. The other state variables can also
written in terms off, as follows:

I 5f8, ~9!

E5~x/ l !f9, ~10!

wheref85df/dt, etc. Substituting Eqs.~7!, ~9!, and ~10!
into S1E1I 51 gives an equation forf,

~x/ l !f91f81S0e2at2bf51. ~11!

This single, second-order ODE, with initial condition:f(0)
50, f8(0)5I 0, is equivalent to the system of equation
~5!–~6!. The original variablesS, E, and I are recovered by
replacing the solution of Eq.~11! back into Eqs.~7!–~10!.
Although Eq. ~11! resembles the Poisson-Boltzmann equ
tion @17#, the correspondence is not exact and there is
6-2
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SOLUTION OF EPIDEMIC MODELS WITH QUENCHED . . . PHYSICAL REVIEW E67, 021906 ~2003!
known explicit solution of this nonlinear ODE@21#, and thus
to the system of equations~5!–~6!.

III. SOLVABLE LIMITING CASES

We first derive explicit solutions for two limiting case
one in the absence of a delay, and the other in the absen
nonlinearity. These are then shown to provide upper
lower bounds on the solution.

A. No latent period, kÄ0

When there is no latent period (k51/l 50) and, therefore,
susceptibles become infectious immediately on contact w
the disease, the model reduces to SIq form@1,2#. Substituting
I 512S in Eq. ~5! yields the Bernoulli equation

dS

dt
5@2~a1b!S1bS2#, ~12!

with solution, written in terms ofI 512S,

I ~ t !k50512
S0ce2ct(t)

c2bS0@12e2ct(t)#
, ~13!

with t(t) given by Eq.~4!, and

c5a1b. ~14!

B. No secondary infection,bÄ0

In the absence of secondary infections (b50) the model
is linear. The solution is obtained from Eqs.~7! and ~11!,
which is now a first-order equation forf85I , and reads

S~ t !b505S0e2at(t), ~15!

I ~ t !b50512S0@e2at(t)1aH~ t !#, ~16!

with E(t)b505S0aH(t) and

H~ t !5e2 l tE
0

t

dt8e( l 2q)t8e2at(t8). ~17!

Note that the termH(t) is purely transient, since lim
t→`

H

50. In the limit whenq→0 the integral in Eq.~17! can be
made explicitly, giving H5@exp(2at)2exp(2lt)# / @l2a#,
and hence lim

q→0
I (t)b50512S0@ l exp(2at)2a exp

(2lt)# / @l2a#.

C. Consequences of quenching

Various behavioral features can be discerned from
above exact solutions, some of which are shared by the
eral solution of the model. The long-term level of disea
I `5 lim

t→`
I (t), is obtained by takingt51/q and ~for k

.0) Ha50. This limit has a nontrivial valueI `,1 that, in
the above special cases, only depends onI 0 and on the pa-
rameter combinationsa/q andb/q, although, in general, it
will depend on all parameters of the model. Only in t
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absence of quenching, whenq→0, does the whole popula
tion become infected:I `→1 andS`→0.

During transients, there are two additional arguments,qt
andl t @note thatqt(t) is a function ofqt]. It is also apparent
that the natural temporal variable forS is t(t), while the
natural temporal variable forE512S2I ~whenk.0) is t,
a consequence of the fact thatS and I have nonzero
asymptotic limits~for q.0), while the number of exposedE
vanishes in the long term. These features reflect the re
~derived from asymptotic expansions in the Appendix! that
there are two time scales involved in the approach to
asymptotic limit, 1/q and 1/l 5k; which time scale domi-
nates the approach to this limit depends on which proces
slower, secondary infection~controlled byq) or latency.

When there are primary but no secondary infectionsb
50), the long-term level of infection is independent ofk,
although the transient level of infection depends onk. In
fact, there is a simple asymptotic relationship between
two solutions~13! and~16!: I (`)b505 lim

b→0
I (`)k50. The

frequency of secondary infections depends onk, because
infectious contacts are conditioned by the current numbe
infectious individuals, which depends onk. Hence, in the
presence of quenching, a latent period reduces the final n
ber of infections resulting from secondary contacts. Ho
ever, if only primary infections take place, the effect of
latent period is solely to delay the time when the level
infection stabilizes.

D. Bounds on the general solution

The two limiting-case solutions derived above provi
upperand lower bounds to the full solution of the model fo
any given time and over the whole parameter space. Spe
cally, since secondary infection provides an additional ro
of infection and latency delays infections~both primary and
secondary!, we expect the following relations to hold at an
given timet:

S~ t !k50<S~ t !<S~ t !b50512I ~ t !b50 , ~18!

I ~ t !b50<I ~ t !<I ~ t !k50 , ~19!

where the left- and right-hand sides are given by Eqs.~13!,
~15!, and~16!. Bounds on the asymptotic values,S` andI ` ,
are obtained by replacingt51/q and Ha50 in the exact
solutions. Whenq→0, the upper and lower bounds equaliz
implying that S`50 and I `51. Figure 1 shows the gap
between bounds onI ` in the parameter subspace (a/q,b/q).
The gap is large when botha andb have low values relative
to q, but is comparatively small elsewhere in parame
space. Figure 2 illustrates the bounds on a transient solu
for given parameter values; although no formal test is av
able, the bounds provide a reasonably tight envelope aro
the actual solution. From Eq.~18!, using E1I 512S and
E(t)k5050, we also have

E~ t !b501I ~ t !b50<E~ t !1I ~ t !<I k50~ t !, ~20!
6-3
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which, together with Eq.~19!, is a necessary but not a suffi
cient condition for havingE(t)b50<E(t). This inequality
holds in the case shown in Fig. 2 but does not hold in g
eral.

We briefly outline an heuristic proof of conjecture~18!–
~19!. Consider the formal solutionS(t)5S0exp@2at(t)
2bf(t)# @Eq. ~7!#. Since t(t) and f5*0

t(t)dt8I ~where I
>0) are monotonically increasing functions of time,S(t) is
a monotonically decreasing function of time that decrea

FIG. 1. Gap in I ` between upper and lower bounds for th
solution of the SEIq model, in the parameter subspace (a/q,b/q)
with I 050. The bounds do not depend onk.

FIG. 2. Bounds on the model solution~obtained numerically!
provided by the two exactly solvable limiting cases. Fixed para
eters:I 050, a50.1, b51, k515 l , andq50.7. Similarly tight
bounds were found for other parameter values. The groups
curves correspond to compartmentsS, I, andE ~top to bottom!.
02190
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more slowly whenb50 for any given values of the othe
parameters. Hence,S(t)<S(t)b50. Conversely, the forma
solution of Eq.~6!,

I ~ t !512S0e2 l t2 le2 l tE
0

t

dt8e2 l t 8S~ t8! ~21!

is sufficient to prove that ifS(t)<S(t)b50 then I (t)b50
<I (t). On the other hand,I (t) necessarily increases fast
when k50. Hence,I (t)<I (t)k50, which in turn implies,
via Eq. ~7!, thatS(t)k50<S(t).

IV. APPROXIMATE SOLUTION

The two, exact and bounding solutions obtained so far
be used to construct two perturbative solutions in power
ries of b and k, respectively. These solutions approxima
the full solution in confined regions, where these parame
are small relative to some combination of the remaining
rameters. However, without a precise idea of the values,
parameters are likely to take, such confined parameter
gions can be too restrictive for general use. Accordingly,
propose a different approach, that does not assume a par
lar relation between parameters and applies, in principle
the whole parameter space of the model. For ease of re
ence and understanding, we present the sequence and st
deriving this approximate solution.

A. Interpolation

We exploit the fact that the solution of the model must
between the two bounds, and that the gap between
bounds is not very wide in most parameter regions~Fig. 1!. It
is natural then to construct a solution that interpolates
tween the bounds. A first guess is to approximate the solu
by the middle point between bounds,

I approx~ t !5
I k50~ t !1I b50~ t !

2
. ~22!

However, this approximation has some drawbacks: it
sumes that the solution is always equidistant from the t
bounds, and, most importantly, lacks any long-term dep
dence on the latent periodk ~since neither bound depends o
k when t→`). We compared expression~22!, as well as
perturbative solutions based on power series ofk and b,
with the numeric solution of Eqs.~1!–~3!, and found that
neither of them approximated the latter qualitatively we
except in restricted parameter regions.

A more promising approach is to use a nonlinear form
interpolation, in which the two solutions are weighted
coefficients that depend nonlinearly on the parameters. T
takes the general form

I approx~ t !5B Ik50~ t;b,a!1K I b50~ t;a!, ~23!

where B and K may be functions of time and any of th
parameters, anda5$I 0 ,a,q%. We require that

lim
b50

B50 and lim
k50

B51,

-

of
6-4
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lim
k50

K50 and lim
b50

K51, ~24!

so thatI approx equalsI b50 andI k50, respectively, in each o
the limits. One way of formalizing these requirements is
write

B5
b~••• !1

b~••• !11k~••• !2
, K5

k~••• !2

b~••• !11k~••• !2
,

~25!

where (•••)1 and (•••)2 represent arbitrary mathematic
expressions which may depend on any of the parame
however, they must not alter the above limiting requi
ments, and must be such thatB and K are dimensionless
quantities. The latter condition implies thatk, which has di-
mension ‘‘time,’’ must appear multiplied byq, a, t, or t.
Similarly, b, which has dimension ‘‘1/time,’’ must appea
multiplied by 1/q, etc.

Next, we select a form for (•••)1 and (•••)2. We focus
on the long-term behavior, although the proposed solutio
still applies to transients~see the Discussion!. We do so to
exclude the possibility thatB andK might depend on time
and, in particular, to avoid taking into account addition
constraints, such as the form we expectB andK to have in
limit when t→0. In this context the simplest possible choi
seems to be (•••)151 and (•••)25q2, which leads to the
following ansatz for approximating the full solution of th
model:

I approx~ t !5
b

b1kq2
I k50~b,a!1

kq2

b1kq2
I b50~a!

5I b50~a!1
b

b1kq2
@ I k50~b,a!2I b50~a!#.

~26!

This expression has the expected limit, 1, whenq→0. A less
simple choice for correct dimensionalization would
(•••)25(q1a)2, while the choice (•••)25a2 would not
satisfy the appropriate limits.

Figure 3 compares ansatz~26! with the numeric solution
of the model represented by contour plots in various tw
dimensional parameter subspaces. A parameter has the
value in all graphs in which it is kept constant. In particul
the values ofI 0 anda, both of which may contribute to the
start of an epidemic, were chosen to be very small to ma
mize the nonlinearity of the model and provide very dema
ing conditions on the performance of the approximation.
see that the ansatz captures the qualitative, and even
quantitative behavior of the model extremely well; it did
much better than any of the above alternative approac
Note that the dependence of expression~26! on the latent
period k is very simple, and yet picks up the essential fe
tures of behavior.
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B. Exploration of the epidemic surface

The availability of an explicit expression forI ` , given by
the limit t→` of Eq. ~26!, in terms of the model parameter
makes it possible to explore this surface in detail with gr
ease. It is often important to carry out a sensitivity analy
to assess how the long-term disease level changes with v
tion in each of the parameters. Such analysis involves ev
ation of the derivatives ofI ` with respect to the parameter
this is trivial using the approximate solution, but would b
considerably more difficult through numeric solution. Fi
ures 4~a! and 4~b! illustrate the sensitivity ofI ` with respect
to the latent period (k) and the initial condition~or initial
infecteds,I 0), respectively; note that the sensitivity of ep
demic size is maximal for a nonzero amount of quench
and for k50 and I 050, respectively. A second importan
feature is the trade-off between parameters, which reflec
trade-off between biological processes: how much does
parameter have to change to compensate for change in
other parameter in order that the long-term level of dise
remains unchanged~even thought the duration of the tran
sient may differ!? The answer to this question can be fou
graphically by examining the contours, ‘‘isobars,’’ in Fig.
For example, the same level of disease observed in a sy
with latent periodk and amount of quenchingq, may be
observed in another system with longer latency but wea
quenching@Figs. 3~a!, 3~b!#. It is also clear that the trade-of
can be quite different at different points in parameter spa
for example, contours in regions with largeb and smallk
can be almost orthogonal to contours in regions with smab
and largek @Figs. 3~i!, 3~j!#.

V. DISCUSSION

In this paper we examined a nonstandard, SEIq, comp
mental model for disease epidemics comprising latency
temporal decay in the rates of infection, also known
quenching@1#. The model is motivated by field and exper
mental botanical epidemiological data which supports
biological assumption that the host susceptibility decrea
with host age@1,2,6,7#. The main contribution of the paper i
the derivation of an approximation to the full solution in th
long term. In Sec. IV we showed how to use this result
answer generic epidemiological questions formulated in
Introduction.

Quenched transients. The most important behavioral fea
ture of the model considered here is that, as the rate
infection decrease with time, the epidemic gradually slo
down and eventually stops in a quenched transient state.
long-term state is not an equilibrium state in the usual sen
it is characterized by a disease level that depends on
whole history of the epidemic including the initial condition
Mathematically, this state is a neutrally stable equilibriu
and there is an infinite number of such solutions depend
on the initial condition, so some properties cannot be stud
via standard equilibrium or asymptotic analyses which r
on solving equations at~or in the vicinity of! a single point.
On the other hand, although numerical solution of Eqs.~1!–
~3! is trivial for given parameter values, a full study of b
havior over all dimensions of parameter space is a tedi
6-5
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FIG. 3. Comparison of the approximate~left! and numeric
~right! solutions to the long-term level of infection,I ` , in the SEIq
model. Fixed parameters:I (0)5I 050.01, a50.05, b51, k51
5 l , andq50.2, except where indicated otherwise. Lines repres
contours of constant values ofI ` .
02190
and inefficient way of gaining insight even for such a simp
model.

Analysis. We proposed a different way of studyin
quenched transients, by considering an explicit approxim
solution describing how the level of disease of the quenc
state depends on all parameters of the model. This is g
by Eq. ~26!, which is the central result of the paper. Th
solution was constructed as an interpolation between
exactly solvable limiting cases, one without latency and
other without nonlinearity, shown to provide upper and low
bounds to the exact solution. We demonstrated, in sev
two-dimensional parameter subspaces~Fig. 3!, that the ap-
proximation follows the numeric solution of the model ve
closely. Since the approximation is free from assumptio
about the magnitude of the parameters, it is not restricte
particular parameter regions in the same way that a pow
series perturbative solution would be. The regions in wh
the approximation might perform less well are likely to b
those in which the gap between bounds~illustrated in Fig. 1!
is greater. Future work will provide more understanding as
why the approximation works well and under which cond
tions it may break down when applied to other models. O
possible route, is to derive an exact equation for the mix
coefficientB @Eq. ~25!#, currently given byb/@b1kq2#. It is
worth pointing out an analogy between the current inter
lative solution and an approximate solution@15# to related
spatially explicit epidemic models. The latter method a
formulates a solution by combining upper and lower boun
however, the bounds are not exact solutions, they rely on
use of cluster approximations@22#, and the derivation of the
weighing coefficients is different from the current one.

Analysis of transient dynamics. The approximation given
by Eq. ~26! was applied to the long-term limitI ` and exam-
ined in detail in this case, but, in principle, it can also
applied to transients. Application of Eq.~26! to transients
revealed, as expected, that the approximation, in its cur
form, performs less well than in the long term, as it tends
show more limited agreement with the numeric solutio
Transient behavior is more general and complex than lo
term behavior, and therefore more difficult to approxima
in this case the mixing coefficientsB and K may be time
dependent and have to satisfy additional constraints~e.g., on
their limit as t→0). Investigating how to extend these coe
ficients to the transient case will be the subject of furth
work.

Other applications. Quenched-transient states have co
siderable practical relevance not only in epidemiology bu
other areas concerned with invasive organisms or spe
@10,11,18–20#. The existence of decaying rates of spre
could, however, be difficult to establish in practice as th
may be competing factors limiting the spread of invas
species. Nevertheless, the model and method of approx
tion presented here do have wider application than the sim
epidemic system, which is analogous to an irreversi
chemical reaction. We note that the essential effect of
decaying rates could also be achieved by bifurcating the fl
from the susceptible compartment; for example, allowi
susceptibles to become resistant at certain rates. System
which mass flows monotonically from one compartment
t

6-6
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another, or to several others, and have an intermediate,
sient state could also exhibit upper and lower solva
bounds which could, in principle, be used to construct si
lar approximate solutions.

Extensions. Although the SEIq model fits into the frame
work of standard epidemiological models@5#, it is still a
considerable oversimplification of real epidemiological s
tems. For example, the model relies on a mean-field
perfect-mixing assumption, i.e., it does not account for
spatial distribution of infectives which is known to affe
disease spread, in particular, when secondary infections

FIG. 4. Sensitivity of the epidemic with respect to~a! the latent
period, ]I ` /]k, in the parameter subspace (q,k); ~b! the initial
condition,]I ` /]I 0, in the parameter subspace (q,I 0) ~maximum at
I 050 andq'0.65). Fixed parameters,I (0)5I 050.01, a50.05,
b51, andk515 l .
02190
n-
e
i-

-
r

e

c-

cur within a small neighborhood of the source@22#. How-
ever, the current model is driven by requirements of trac
bility, and we believe that the insight gained from th
analysis can, in essence, be transposed to a spatial con
where such an analysis would not be feasible. A challe
that remains open is to extend the interpolation approxim
tion to describe the transient dynamics. Such an exten
would be welcome for both theoretical and practical reaso
it would lead to a more complete study; it would also triv
alize the task of estimating the latent period and other
rameters by fitting an explicit~rather than a numeric! solu-
tion to epidemic time series. Finally, it could allow a
extension of the analysis to models with recurrent epidem
such as the SIR and SEIR models.
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APPENDIX: TEMPORAL ASYMPTOTICS

In this appendix we examine the approach to the lo
term state of the model, and illustrate the emergence of
time scales, 1/q and 1/l , in the asymptotic dynamics.

Assuming that a power-series expansion about the lo
term level of disease exists in the formI (t)5I `1a1x
1a2x21•••, with x being a time-decaying quantity such a
exp(2qt), we obtain recursive equations for the coefficien
an that involve the leading terma05I ` . SinceI ` cannot be
determined by this or other exact methods that we know
none of the coefficients can be determined explicitly in ter
of the parameters of the model. Sinceq and l are the param-
eters naturally arising in transient expressions~Sec. III A!,
the general term in an asymptotic power series is more lik
to be of the formanmxnym, with x5exp(2qt) and y5exp
(2lt), but this more elaborate form would not change t
above conclusion. Therefore, derivation of a power-series
lution is not appropriate for this model. However, it is po
sible to derive the leading asymptotic terms in the appro
to the long-term state, without assuming the nature of th
terms; we succeeded in doing so at least in the case whl
,q. Consider the following expression:

E~ t !5e2 l tE
0

t

dt8e2(q2 l )t8S~ t8!@a1bI ~ t8!#, ~A1!

which results from formal integration of Eq.~2!. When l
,q the integral in Eq.~2! has a finite limit ast→`. Hence,
expressing the integral as*0

`dt8•••2*0
t dt8•••, replacing

S(a1bI ) in the second integral by its dominant term ast
→`, and simplifying, gives the leading terms

E~ t !5Ae2 l t2Be2qt1•••~ t→`!, ~A2!

where
6-7
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A5E
0

`

dt8e2(q2 l )t8S~ t8!@a1bI ~ t8!#,

B5
S`~a1bI `!

q2 l
52

S8̀

q2 l
,

andA,(a1b)/(q2 l ). Expression~A2! implies, via Eq.~3!
andS512E2I , that
c.

c.

f

es

l-

02190
I ~ t !5I `2Ae2 l t1
l

q
Be2qt1•••,

S~ t !5S`2
S8̀

q
e2qt1•••~ t→`!. ~A3!

Derivation of an analogous result in the case ofq, l appears
technically less straightforward, but would not modify th
qualitative message from the above results, i.e., the em
gence of two time scales.
R.
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