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Energy resolution and dynamical heterogeneity effects on elastic incoherent neutron scattering
from molecular systems
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Incoherent neutron scattering is widely used to probe picosecond-nanosecond time scale dynamics of mo-
lecular systems. In systems of spatially confined atoms the relatively high intensity of elastic incoherent
neutron scattering is often used to obtain a first estimate of the dynamics present. For many complex systems,
however, experimental elastic scattering is difficult to interpret unambiguously using analytical dynamical
models that go beyond the determination of an average mean-square displacement. To circumvent this problem
a description of the scattering is derived here that encompasses a variety of analytical models in a common
framework. The framework describes the time-converged part of the dynamic structure factor@the elastic
incoherent scattering function~EISF!# and lends itself to practical use by explicitly incorporating effects due to
the finite energy resolution of the instrument used. The dependence of the elastic scattering on wave vector is
examined, and it is shown how heterogeneity in the distribution of mean-square displacements can be related
to deviations of the scattering from Gaussian behavior. In this case, a correction to fourth order in the scattering
vector can be used to extract the variance of the distribution of mean-square displacements. The formalism is
used in a discussion of measurements on dynamics accompanying the glass transition in molecular systems. By
fitting to experimental data obtained on a protein solution the present methodology is used to show how the
existence of a temperature-dependent relaxation frequency can lead to a transition in the measured mean-
square displacement in the absence of an EISF change.

DOI: 10.1103/PhysRevE.67.021904 PACS number~s!: 87.15.2v, 87.64.Bx
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I. INTRODUCTION

Incoherent neutron scattering is a powerful technique
investigating picosecond and nanosecond time scale dyn
ics of condensed-phase molecular systems@1,2#. The scatter-

ing function S(QW ,v) ~where\QW is the momentum chang
and\v the energy change of the scattered neutrons! contains
information on both the time scales and the spatial cha
teristics of the dynamical relaxation processes involved.

The guiding picture in interpreting dynamic neutron sc
tering is that of a potential energy surface or ‘‘energy lan
scape.’’ The shape of this energy landscape determines
associated microscopic dynamics. For condensed-phase
lecular systems the energy landscape can be complex
rugged with many local minima. This leads to the prese
of a wide range of vibrational and diffusive dynamical pr
cesses. This complexity, together with instrumental limi
tions in the accessible (QW ,v) space, can make unequivoc
interpretation of experimental data using simplified, analy
cal descriptions of the dynamics~such as jump models o
continuous diffusion! difficult. One manifestation of this dif-
ficulty is the array of analytical descriptions which have be
proposed to model the experimental finding that ma
condensed-phase molecular systems undergo a devi
from harmonic, linear dependence of the average ato
mean-square displacement^Dr 2& with increasing tempera
ture (̂ Dr 2& is accessible via theQ→0 behavior of the elas
tic incoherent scattering!. Systems for which such a ‘‘dy
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namical transition’’ has been observed include glass-form
liquids, polymers, and proteins@3–9#. For proteins, sugges
tions have been made that the additional motions prese
temperatures above the transition may be important in b
logical function @6,10–13#. Several models have been us
to describe the dynamics activated at the dynamical tra
tion, including continuous diffusion@14#, jumping between
minima @3,5,15–17#, mode-coupling theory @18–20#,
stretched-exponential behavior@21#, and ‘‘effective force
constants’’@22#. Although these models are sometimes qua
tatively different all can reproduce available experimen
data well.

Even for relatively simple systems, distinguishing expe
mentally between microscopic dynamical models is poss
only if the range of (Q,v) accessed is large enough, inclu
ing comprehensive quasielastic scattering measurement
to high enough values ofQ and v. However, neutron scat
tering is limited by counting statistics, and the intensity
the high Q and v quasielastic scattering is often not hig
enough to permit its accurate determination. Often, the in
pretation must be based on elastic scattering. To a first
proximation the elastic scattering is proportional
exp@2(1/6)Q2^Dr2&#. It is therefore of particularly high inten
sity for atoms confined to microscopic volumes and at l
Q. In such cases, it can be accurately measured and us
obtain a first estimate of the dynamics in the system. Ho
ever, the elastic scattering does not necessarily contain
ficient information to distinguish between dynamical mode
If this is is the case, questions must be raised which ana
cal model should be used in any given case and how ph
cally meaningful derived quantities are, such as diffus
lengths, energy barriers, or effective force constants.
©2003 The American Physical Society04-1
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Here, we alleviate the problems associated with data o
interpretation by examining how one can extract useful
formation from experimental elastic incoherent neutron sc
tering data that goes beyond a simple determination of
mean-square displacement but without assuming a spe
dynamical model. It was considered of particular importan
in the present work to derive a way of treating the data t
could be of practical use. To do this, we propose a met
using a framework common to many analytical descriptio
The method proceeds in two stages: fitting to theQ depen-
dence of the elastic scattering, followed by decomposition
the resultinĝ Dr 2&.

In the Q dependence analysis the importance of high
order, non-Gaussian terms is underlined. Non-Gaussian
havior can have two origins. One is non-Gaussian dynam
of single atoms, an effect that has been extensively cha
terized previously@23#. The second effect, which can be pa
ticularly important in dynamically heterogeneous system
arises from the existence of a distribution of mean-squ
displacements. It is shown here that, when this effect do
nates, analysis of theQ dependence leads to the determin
tion of the variance of the mean-square displacement.

In the second stage of the method contributions to
experimentally determined̂Dr 2& are analyzed. A formalism
is presented in which the experimental^Dr 2& consists of two
parts: a converged~long time! part resulting from molecula
vibrations and changes in the elastic incoherent scatte
function ~EISF!, and a second contribution containing tho
displacements that are too slow to be resolved by the ins
ment used.

In Sec. III the method is applied to experimental da
obtained on the temperature-dependence of the dynamic
a protein solution~Ref. @24#!. The analysis leads naturally t
the discussion of alternative mechanisms for the obser
temperature dependence of the mean-square displacem
and it is shown that the data can be interpreted without
quiring changes in the EISF.

The method for interpreting neutron scattering results p
posed here is expected to be useful for interpreting the ela
incoherent scattering from a wide range of complex mole
lar systems.

II. THEORY

A. The dynamic structure factor

The basic quantity measured in incoherent neutron s
tering experiment is the double-differential cross secti
]2s/]V]E, which is the number of neutrons incoheren
scattered into the solid angle interval@V,V1DV# with an
energy transfer interval@E,E1DE#. The dynamic structure
factor is related to this cross section via

]2s

]V]v
5N

k

k0
s0S~QW ,v!, ~1!

whereE5\v, N denotes the number of atoms,k andk0 the
moduli of the incident and scattered wave vector,s0 is the
incoherent scattering length of the atoms. For simplicity
writing in what follows this is assumed here to be the sa
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for each atom. This is a reasonable assumption for hydrog
rich samples for which the incoherent scattering cross sec
of hydrogen dominates the measured signal. However,
general case is easily obtained by summing contribution
the different isotopic species.

S(QW ,v) is expressed in terms of the intermediate scat
ing function I (QW ,t) and the van Hove autocorrelation fun
tion G(rW,t):

S~QW ,v!5
1

2pE dt e2 ivtI ~QW ,t !, ~2!

I ~QW ,t !5
1

2pE drWe2 iQW rWG~rW,t !, ~3!

G~rW,t !5
1

N (
i
E drW8^d„rW2rW81RW i~0!…d„rW82RW i~ t !…&.

~4!

In Eqs. ~2!–~4! RW i(t) is the position vector of atomi ( i
51, . . . ,N) at time t and the bracketŝ•••& indicate an en-
semble average.G(rW,t) is the probability that a certain par
ticle can be found at positionrW at timet, given that it was at
the origin att50 ~here and throughout the article only th
classical limit of these functions is considered!. G(rW,t) de-
scribes how a system deviates from a given starting confi
ration. It is therefore a description of relaxation processe

B. Quasielastic and elastic scattering

Here, we repeat the standard formulation of quasiela
and elastic neutron scattering that is commonly used a
starting point for analytical interpretation of experimental r
sults. This formalism uses approximations that are su
ciently mild that they are likely to encompass the dynam
of most experimental scattering systems. The results of
section are discussed in detail in Ref.@1#.

The common starting point for analyzing experimen
spectra is to decompose the intermediate scattering func
I (QW ,t) into a vibrational and diffusive part as follows:

I ~QW ,t !5I V~QW ,t !•I D~QW ,t !. ~5!

The vibrational partI V(QW ,t) describes intramolcular and in
termolecular vibrations of the system, whereas the diffus
part contains relaxation processes.

S(QW ,v) then reads

S~QW ,v!5SV~QW ,v! ^ SD~QW ,v!. ~6!

The vibrational part can be written as

SV~QW ,v!5e22Wd~v!1Sinel
V ~QW ,v!, ~7!

whereW is the Debye-Waller factor andSinel
V (QW ,v) is in-

elastic scattering, consisting of peaks centered at the vi
tional frequencies of the system and multiples thereof.
4-2
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SD(QW ,v) gives rise to the quasielastic part of the spe
trum. For a spatially confined system it is typically given
a sum of Lorentzian functions as follows:

SD~QW ,v!5A0~QW !d~v!1(
l

Al~QW !•Ll~l l ,v!, ~8!

where A0(QW ) is the EISF andLl(l l ,v)5(1/p)(l l /l l
2

1v2) is a Lorentzian of widthl l .
The relaxation of the system is here decomposed in

sum of independent processes each labeled with the integl.
For certain dynamical models such as jump models, eac
these processes can be assigned a physical meaning
jump models the number of independent relaxation proce
is given by the number of potential wells and eachl l is
given by a suitable combination of jump rates betwe
minima ~see Ref.@1# for details!. Other dynamical models
such as diffusion-in-a-sphere, also lead to a sum of Lore
ians but lack a concrete physical interpretation of any sin
relaxation frequencyl l .

Since we restrict our analysis to elastic scattering we
glect the inelastic scattering and write for the elastic a
quasielastic scattering function

S~QW ,v!5e22WS A0~QW !d~v!1(
l

Al~QW !•Ll~l l ,v! D .

~9!

Equation~9! has been the starting point for the analysis
many quasielastic neutron scattering experiments on m
ecules. It has a form common to a wide class of microsco
models, including, for example, bounded diffusion or jum
models. These models are commonly used to exp
condensed-phase molecular scattering~see, e.g.,@3,5,14–
17#!.

The form of the functionsA0(QW ) andAl(QW ) depends on
the analytical dynamical model used. If the system is su
ciently simple that the underlying dynamical process
qualitatively known then the forms ofA0(QW ) andAl(QW ) can
be analytically incorporated into the analysis of experimen
elastic scattering data. For more complex systems, howe
the functional form of the quasielastic scattering is n
known a priori.

In what follows, we avoid having to elucidateA0(QW ) and
Al(QW ) and hence avoid specifying the dynamical models
sociated with them, and examine data rather in a pract
way, incorporating basic effects such as instrumental res
tion and heterogeneity in the mean-square displacement

C. Q dependence ofS„Q,0…

We first consider theQ dependence of the elastic scatte
ing. In what followsQ is spherically averaged so as to fu
ther mimic experimental conditions. ForQ→0 the elastic
scattering can be written as follows:

S~Q,0!5e2(1/6)Q2^Dr 2&. ~10!
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This is often referred to as the ‘‘Gaussian approximatio
@23#. The Gaussian approximation is strictly valid only in th
limit Q→0 and experimental scattering in condensed-ph
systems often exhibits non-Gaussian behavior.

There are two possible reasons for non-Gaussian be
ior. First, the dynamics of single atoms may lead to no
Gaussian scattering and second, non-Gaussian behavior
arise due to a distribution of mean-square displacement
the molecular system. We call the latter ‘‘dynamical hete
geneity.’’ We now examine both of these two possibilities

1. Non-Gaussian single-atom scattering

Non-Gaussian behavior can arise when the dynamics
single atoms exhibits certain properties. This case w
treated in Ref.@23# and is only briefly summarized here
I (Q,t) can be written as

I ~Q,t !5expF2(
l 51

`

~Q2! lg l~ t !G , ~11!

where theg l(t) are defined byl-point velocity correlation
functions. In Ref.@23#, it is shown that ifg l(t)→Cl rapidly
enough with time then the elastic scattering can be written

S~Q,0!5expF2(
l 51

`

~Q2! lCl G . ~12!

Comparison with the Gaussian approximation shows that
first constant is given byC15^Dr 2&/6.

The right-hand side~RHS! of Eq. ~12! can be expanded a

S~Q,0!5expF2(
l

~Q2! lCl G
5e2(1/6)Q2^Dr 2&S 11 (

m52

`

bm~2Q2!mD . ~13!

The parametersbm are combinations of theCl , ~e.g., b2
5C2) and are, therefore, determined by the dynamics of
system.

2. Dynamical heterogeneity

Dynamical heterogeneity, i.e., a distribution of mea
square displacements, also leads to corrections to the Ga
ian approximation. Assuming Gaussian single-atom sca
ing the elastic scattering function then reads

S~Q,0!5
1

N (
i

N

e2(1/6)Q2^Dr i
2&, ~14!

wherei denotes atomsi 51, . . . ,N. As a sum of Gaussians i
not, in general, Gaussian, corrections to Eq.~10! result.

Formally, we can rewrite Eq.~14! as follows:
4-3
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S~Q,0!5e2(1/6)Q2^Dr 2&S 1

N (
i

N

e2(1/6)Q2(^Dr i
2&2^Dr 2&)D

~15!

5e2(1/6)Q2^Dr 2&F (
m50

`
1

m! S 2Q2

6 D m

m~m!G
~16!

'e2(1/6)Q2^Dr 2&S 11
Q4

72
s2D . ~17!

Here,^Dr 2& is the average mean-square displacement of
system,m(m) is themth central moment of the distributio
of ^Dr 2&, and s2 is the variance. Eq.~17! is valid if
(2Q2/6)mm(m)!1. Thus, in systems where heterogene
is the dominating contribution to non-Gaussian behavior,
elastic scattering can in principle be used to obtain exp
mentally the variance and higher statistical moments of
distribution of mean-square displacements.

3. Practical analysis of S„Q,0…

To incorporate non-Gaussian behavior without restrict
the interpretation to a specific model, we propose the us
a heuristic function of the form

S~Q,0!5e2(1/6)Q2^Dr 2&S 11 (
m52

`

bm~2Q2!mD ~18!

'e2(1/6)Q2^Dr 2&~11bQ4!. ~19!

Here, thebm are parameters used to reproduce the exp
mentally observed elastic incoherent scattering. We sho
in the preceding two sections that both aspects of n
Gaussian behavior, single-atom dynamics and heterogen
lead to a function of the form of Eq.~18!. To what extent
each of these effects contributes to non-Gaussian beha
will vary from system to system and is not knowna priori.
Therefore, using Eq.~18! and treatingbm as heuristic param
eters is equivalent to making minimal assumptions about
system. In the lowQ range, as long as deviations fro
Gaussian behavior are small, i.e.,bm(Q2)m!1, we can ne-
glect higher-order terms and can derive two parameters f
the elastic scattering,^Dr 2& andb.

In the following section, the experimentally derive
^Dr 2& thus obtained will be examined in detail.

D. Finite energy resolution and the mean-square displacement

Fitting experimentally obtained elastic scattering data
ing Eq.~18! @or Eq.~19! for smallQ] yields the ‘‘measured’’
mean-square displacement, which we call^Dr 2&Expt . For
any given instrument̂ Dr 2&Expt may not be the time-
converged mean-square displacement, but may have co
butions due to finite energy resolution. We will now analy
the components of̂ Dr 2&Expt using Eq. ~9! as a starting
point.

Inspection of Eq.~9! suggests that the elastic scatteri
can be obtained by neglecting the quasielastic te
02190
e

e
i-
e

g
of

i-
ed
-

ity,

ior

e

m

-

tri-

,

( lAl(QW )•Ll(l l ,v). However, in a real experiment due t
finite energy resolution the intensity under the elastic pe
can contain contributions from quasielastic scattering.
represent this analytically, we write the measured ela
scattering,SExpt(Q,0) as

SExpt~Q,0!5E dvR~v!S~Q,v! ~20!

5e22WS A0~Q!1(
l

Al~Q!Dv l D , ~21!

where R(v) is the instrumental energy resolution functio
andDv l5*dvR(v)Ll(l l ,v).

Experimentally, ^Dr 2&Expt is obtained by plotting
ln@SExpt(Q,0)# againstQ2. Using the Gaussian approxima
tion, we have

^Dr 2&Expt526
]

]Q2
ln@SExpt~Q,0!#uQ250 . ~22!

We thus obtain from Eq.~21! for the measured mean
square displacement

^Dr 2&Expt526
]

]Q2
ln@SExpt~Q,0!#uQ250 ~23!

526
]

]Q2
ln~e22W! ~24!

26
]

]Q2 S lnFA0~Q!1(
l

Al~Q!Dv l G D , ~25!

^Dr 2&Expt5^Dr 2&Vib1^Dr 2&EISF2^Dr 2&Res ~26!

5^Dr 2&Conv2^Dr 2&Res. ~27!

^Dr 2&Expt in Eq. ~27! contains two contributions. One o
these,^Dr 2&Conv , is the long time, converged̂Dr 2&, con-
sisting of the vibrational contribution̂Dr 2&Vib , and the dif-
fusive contribution associated with the EISF,^Dr 2&EISF .

The second term in Eq.~27!, ^Dr 2&Res is the contribution
to ^Dr 2&EISF due to relaxation processes too slow to be
solved by the instrument. Its negative sign means that it
duces the observed̂Dr 2&. Neglecting this second term co
responds to making the assumption that all motions in
system are fast enough to be detected.

^Dr 2&Res is given by^Dr 2&Res[( lalDv l

with

al56
]

]Q2
Al~Q!uQ250 . ~28!

Dv l , the width of the Lorentzian function, is assumed he
to be independent ofQ. This is true for most analytical mod
els of spatially confined systems~e.g., jumping between
4-4
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a finite number of states, rotational or confined diffusio!.
However, in heuristic approaches to experimental data tr
ment the width is often taken to beQ dependent, in which
case ^Dr 2&Res would contain a second term. This woul
however, have no practical effect on the present analysis

Noting that

E
2`

`

dv
1

p

l l

l l
21v2

51, ~29!

inspection of Eq.~26! shows that the maximal contributio
of the relaxation modeAl(Q) to ^Dr 2&Res is given byal .
This is intuitive for systems in which a real physical proce
can be related to a given relaxation model. If a certain mode
l describes, for example, jumping between two minima, t
maximal contributional is given by the distance betwee
these minima, and Eq.~27! is simply the statement that thes
jumps will be detected only if they occur on time scal
accessible to the instrument. However, for models where
physical process involved cannot be described by a sin
relaxation mode, no direct physical interpretation ofal is
possible.

Finally, we derive an approximate functional form
Dv l . To do this, we make an approximation to the resolut
function R(v) that allowsDv l to be expressed analytically
i.e., R(v) is assumed to be a rectangular function of wid
Dv,

R~v!5H 1, 2Dv<v<Dv

0, other.
~30!

This allows us to write

^Dr 2&Expt5^Dr 2&Conv2(
l

al

2

p
arctan

Dv

l l
. ~31!

Equation~31! provides the second equation of practical u
in analyzing experimental data, the first being Eq.~18!.

E. Finite energy resolution and dynamical heterogeneity

We now examine how the interpretation of the parame
of Eq. ~17! changes if finite instrumental energy resolution
taken into account. The calculations are cumbersome so
restrict the analysis to the first correctionb. From Eq.~17! it
follows that

SExpt~Q,0!5e2(1/6)Q2^Dr 2&Expt1bQ41O~Q6!, ~32!

whereO(Q6) stands for terms of orderQ6 and higher. Thus,
the correction termb can be calculated by expandin
@SExpt(Q,0)2e2(1/6)Q2^Dr 2&Expt# to fourth order inQ. This
gives

bQ45@SExpt~Q,0!2e2(1/6)Q2^Dr 2&Expt#5
Q4

72
s1O~Q6!.

~33!

Equation~26! gives
02190
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^Dr 2&Expt5^Dr 2&Vib1^Dr 2&EISF2(
l

alDv l , ~34!

where^Dr 2&Vib and ^Dr 2&EISF make up the time-converge
part and2( lalDv l is the contribution due to finite energ
resolution.

Therefore,

s5sVib1
1

N (
i

N

^Dr i
2&EISF

2 2(
l

a2l
Dv l

2S 1

N (
i

N

^Dr i
2&EISF2(

l
alDv l D 2

, ~35!

wheresVib
2 is the variance of the vibrational^Dr 2&Vib and

a2l
is a multiple of the fourth-order coefficient of the Taylo

expansion ofAl(Q).
Inspection of Eqs.~35! and ~34! show that in the case o

perfect energy resolution,Dv l50, Eq. ~17! is recovered.
Therefore, although finite energy resolution does not alter
form of Eq. ~17!, it does alter the interpretation of the ob
tained parameters,^Dr 2& ands.

F. Practical implementation

To conclude this section, we propose a protocol for us
Eqs.~18! and ~31! to analyze experimental data.

In a first step Eq.~18! is fitted to theQ dependence of the
elastic scattering. The accessibleQ range here determine
how many independent parametersbm should be incorpo-
rated in the analysis. For the example analyzed in Sec. III~in
the rangeQ2<2 Å2), ^Dr 2&Expt and oneb parameter could
be determined.

In the second step the obtained^Dr 2&Expt is further ana-
lyzed with Eq.~31!. In practice, it is necessary to restrict th
number of relaxation frequenciesl l used—in the given ex-
ample only one frequency,l, was required, i.e.,

^Dr 2&Expt5^Dr 2&Conv2a
2

p
arctan

Dv

l
. ~36!

In what follows, we examine data on the temperature
pendence of the scattering of a protein solution. Differe
hypotheses can be tested using Eq.~36!. All fits were per-
formed using a Marquardt-Levenberg algorithm as imp
mented in the Gnuplot program@25#.

III. RESULTS

In this section, we use the formalism developed above
interpret a set of experimental data on the temperature
pendence of the dynamics of a cryosolution of the prot
glutamate dehydrogenase@24#. The data were obtained usin
the instrument IN6 at the Institut Laue-Langevin, with a
energy resolution of;50 meV.

A. S„Q,0… at low Q

Figure 1 shows fits of Eq.~19! to lnS(Q,0) versusQ2 data
4-5
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at five different temperatures, following the procedure d
scribed in ‘‘methods.’’ The fits show that the data can
adequately fitted with terms up toO(Q4). The resulting pa-
rameters are shown in Table I. For a protein computer sim
lations have shown that over theQ range examined here (0
<Q2<2 Å2) the single-atom scattering is Gaussian and t
non-Gaussian contributions arise principally from dynami
heterogeneity@26#. Thus, the parametersb can be assigned a
s, the variance of the mean-square displacement.

Some caution must be taken in interpreting the abso
values of the fitted parameters. Incorporating higher order
Q, @up to O(Q8)], while keeping initial values near those i
Table I changed neither the value of the parameters^Dr 2&
andb, nor the goodness of fit. Therefore, the fit was loca
stable. However, incorporating higher-order corrections
arbitrarily changing the initial values was found to lead
additional solutions with different absolute values of^Dr 2&
andb ~data not shown!. Nevertheless, all fits showed an in
crease in botĥDr 2&Expt andb going through the dynamica
transition from low to high temperature.

The fact that fitting Eq.~19! is not stable against arbitrar
changes of the initial values underlines the need to incor
rate higher-order corrections even in the relatively lowQ
range (0 –2 Å22) studied here. Clearly, however, the mea
ing of the corresponding coefficients will depend not only
the system dynamics but also on the accuracy of the exp
mental measurements—in some cases higher-order t
will compensate experimental errors.

FIG. 1. Equation~17! ~dot-dashed line! fitted to experimental
data from Ref.@24#.

TABLE I. Mean-square displacement and variance from fitti
Eq. ~17! to the experimental data obtained in Ref.@24#.

T ~K! ^Dr 2& ( Å2) b ( Å4)

200 0.0260.02 0.00960.009
230 0.0860.05 0.0960.09
260 0.3760.06 0.4560.1
280 0.660.2 0.360.2
300 1.160.1 0.860.1
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B. Mean-square displacement

The next step is to interpret^Dr 2&Expt using the formal-
ism outlined in Sec. II F. Figure 2 showŝDr 2&Expt as a
function of temperature. The data exhibit a dynamical tra
sition at ;220 K involving a sharp increase in̂Dr 2&Expt .
Equation~31! shows that two different processes can lead
a temperature-dependent transition in^Dr 2&Expt , a nonlinear
change in^Dr 2&EISF with T or equally well a temperature
dependence of the relaxation frequencyl. A discussion of
both possibilities is now given.

1. Temperature-dependentŠDr 2
‹EISF

Models involving a nonlinear temperature dependence
^Dr 2&EISF have been frequently invoked to explain dynam
cal transition behavior. We will therefore only briefly sum
marize them here. In these models, the dynamical transi
results from a change withT of the equilibrium, converged
long-time atomic probability distribution, i.e., the EISF. On
example of such models is that in Ref.@5# which consists of
a two-state potential with a free-energy difference betwe
the states ofDU, separated by a distanced. The increased
population of the higher energy state with increasing te
perature leads to a transition in̂Dr 2&EISF and, thus,
^Dr 2&Expt . Another model is that, in Refs.@22# and @27#, in
which the energy landscape is approximated by two h
monic potentials with different force constants. Here, t
probability of atoms occupying the lower force-constant p
tential increases with temperature, thus, as well leading to
increase of̂ Dr 2&EISF .

For the present purposes the distinguishing experime
characteristic of the above models is that they lead
^Dr 2&Expt independent of the instrumental resolution pr
vided that resolution is sufficiently high that all the rela
ation processes in the system are accessed.

2. Temperature-dependentŠDr 2
‹Res

The alternative mechanism for nonlinear behavior
^Dr 2&Expt involves a nonlinear increase withT of ^Dr 2&Res,

FIG. 2. ^Dr 2&Expt determined on a protein solution~glutamate
dehydrogenase in 70% CD3OD/30% D2O) using the instrument
IN6 at the ILL @24#, and fitted using Eq.~36!.
4-6
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due to motions becoming fast enough to be detected. In p
ciple, this effect can lead to apparent dynamical transit
behavior in the absence of any change in^Dr 2&EISF . Figure
2 shows a fit of Eq.~36! to the experimentally determine
^Dr 2& from Ref. @24#. The agreement with experiment
satisfactory. Figure 3 shows the associated relaxation t
t(T)51/l(T). t changes from the nanosecond to the pic
second time scale with increasing temperature, passing
the instrumental time resolution window of;100 ps.

To understand the kind of physical process that can l
to a ^Dr 2&Res—driven apparent dynamical transition it is in
structive to temporarily suspend our analysis and to cons
a simple potential of the form illustrated in Fig. 4, in whic
two identical wells are separated by a barrier of heightDU.
Assuming jumping between the wells the scattering funct
of such a potential is well known and is as follows~see Ref.
@28# for details!:

S~Q,v!5expS 2
1

2
Q2^Dr 2&VibD FA0~Q!d~v!

1
1

p
A1~Q!

2t

41v2t2G , ~37!

with

A0~Q!5
1

2
@11 j 0~Qd!#,

A1~Q!5
1

2
@12 j 0~Qd!#,

with j 0(x) being the zeroth-order Bessel function of the fi
kind, 1/t the jump rate andd the distance between th
minima. The term exp(21

2Q
2^Dr2&Vib) is the Debye-Waller

factor due to vibrational motions not included in the jum
model.

The probability of finding a particle in one of the tw
wells is 1

2 and is independent of temperature. Consequen

FIG. 3. Characteristic relaxation time 1/l(T) as a function of
temperature.l(T) was determined by fitting Eq.~31! to ^Dr 2&Expt

from Ref. @24#.
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there will be no change in̂Dr 2&EISF with temperature. How-
ever, an apparent dynamical transition can occur through
nite energy resolution effects.

Using Eq. ~37! as starting point and repeating the ste
leading from Eq.~9! to Eq. ~31! ^Dr 2&Expt reads

^Dr 2&Expt5^Dr 2&Vib1
6d2

4 F1

2
2

1

p
arctanS Dv

2
t D G .

~38!

With ^Dr 2&EISF56d2/8,a56d2/8, andl51/t this is of
the form of Eq.~36!.

A suitable functional form oft(T) for barrier crossing is
Arrhenius:t(T)5aeb/T. For the potential of Fig. 4 the pa
rameterb is related to the energy byb5DU/k, k being the
Boltzmann constant. The parameters then resulting from
fit in Fig. 2 are shown in Table II. However, as we ha
discussed, this interpretation is model dependent and, a
have discussed, these parameters may not be physicall
alistic. Describing the transition by Eq.~36! is more general
than assuming a specific model, and is equally valid fo
model based, for example, on diffusion in a sphere, in wh
casel would be related to a diffusion constant andb not
directly related to an energy barrier. Figure 3 retains gen
ality in that any dynamical model fulfilling the assumption
leading to Eq.~36! and having a temperature dependence
the relaxation frequency similar to Fig. 3 will lead to th
same observed transition behavior.

In this section, we showed how the formalism derived
Sec. II can be used to analyze experimentally obtained ela
incoherent scattering spectra. Eqs.~19! and~36! are suitable
functions that can be used to test hypotheses concerning
perimental phenomena such as the dynamical transition.
ferent interpretations are consistent with experimental me
square displacements observed for a protein solution, t
stressing the necessity of an analysis of experimental sca

FIG. 4. Double-well potential.

TABLE II. Parameters obtained by analyzing^Dr 2&Expt in terms
of a double-well potential~see Fig. 4!.

^Dr 2&v /T DU

S Å2

K D S kcal

molD d
~Å!

t0

~s!

IN6 0.0003 5.360.2 1.460.1 1.1•10215
4-7
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ing for complex molecular systems that encompasses a w
range of dynamical phenomena.

IV. SUMMARY

This paper presents a method of analyzing elastic inco
ent neutron scattering of dynamically heterogeneous mole
lar systems in which the form of the energy landscape is
imposed. The need for this approach has arisen from
realization that, for complex systems that may possess a
riety of anharmonic dynamics, the imposition of a simplifi
analytical model~e.g., a double well or spherical potentia!
may be over-restrictive.

The present analysis concentrates on elastic incohe
scattering and explicitly incorporates effects of the inst
mental energy resolution. In doing so a practical analy
method is proposed that should be of widespread applica
ity. The method consists of two separate steps. In the
step the measured elastic scattering spectra is fitted to
~18!. This function incorporates non-Gaussian behav
Non-Gaussian elastic scattering arises either from n
Gaussian single-atom dynamics of the system or by het
geneity of the mean-square displacements. Both effects
to corrections of the orderQ4.

In a second step the obtained parameters are further
lyzed. Equation~31! describes the experimentally dete
mined mean-square displacement,^Dr 2&Expt in terms of a
converged displacement,^Dr 2&Conv that would be obtained
with an instrument of perfect energy resolution, and a c
tribution due to unresolved motions present in the sys
p-
ci-

ed

Na

riv

. E

at

io-

io
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described byl, a relaxation frequency anda, the amount this
relaxation mode contributes tôDr 2&EISF .

The description of thêDr 2& in terms of converged and
resolution-dependent contributions highlights two possi
causes of dynamical transition behavior in condensed-ph
systems. One of these describes the transition in terms
change in the~long-time! equilibrium position distribution
leading to a nonlinear increase in^Dr 2&EISF . The tempera-
ture at which this occurs is independent of the instrumen
energy resolution. In the alternative mechanism the temp
ture dependence of the dynamical relaxation frequencyl
leads to acceleration of the relaxation processes with incr
ing temperature until they become detectable by the ins
ment. This leads to an apparent dynamical transition or
nating in the variation of̂ Dr 2&Res with the instrumental
energy resolution. It is demonstrated here that this alterna
description can reproduce experimental data for a pro
solution, obtained in Ref.@24#. However, in many systems
including protein solutions, the complexity of the ener
landscape may lead to both kinds of transitions occurri
Therefore, in these cases the relevant problem would no
the determination of which of the two alternative descr
tions of the dynamical transition is present, but rather se
ration of the contributions of both. This separation requi
extraction of the EISF from incoherent scattering measu
ments. For this it is necessary to accurately determine
temperature dependence of both the quasielastic and el
contributions and to characterize the relaxation processe
more detail by analyzingS(Q,v) and I (Q,t).
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