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Incoherent neutron scattering is widely used to probe picosecond-nanosecond time scale dynamics of mo-
lecular systems. In systems of spatially confined atoms the relatively high intensity of elastic incoherent
neutron scattering is often used to obtain a first estimate of the dynamics present. For many complex systems,
however, experimental elastic scattering is difficult to interpret unambiguously using analytical dynamical
models that go beyond the determination of an average mean-square displacement. To circumvent this problem
a description of the scattering is derived here that encompasses a variety of analytical models in a common
framework. The framework describes the time-converged part of the dynamic structure [fhet@lastic
incoherent scattering functidiEISP] and lends itself to practical use by explicitly incorporating effects due to
the finite energy resolution of the instrument used. The dependence of the elastic scattering on wave vector is
examined, and it is shown how heterogeneity in the distribution of mean-square displacements can be related
to deviations of the scattering from Gaussian behavior. In this case, a correction to fourth order in the scattering
vector can be used to extract the variance of the distribution of mean-square displacements. The formalism is
used in a discussion of measurements on dynamics accompanying the glass transition in molecular systems. By
fitting to experimental data obtained on a protein solution the present methodology is used to show how the
existence of a temperature-dependent relaxation frequency can lead to a transition in the measured mean-
square displacement in the absence of an EISF change.
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I. INTRODUCTION namical transition” has been observed include glass-forming
liquids, polymers, and proteirf8-9]. For proteins, sugges-
Incoherent neutron scattering is a powerful technique fotions have been made that the additional motions present at
investigating picosecond and nanosecond time scale dynarffmperatures above the transition may be important in bio-
ics of condensed-phase molecular systgmg]. The scatter- logical function[6,10-13. Several models have been used
ing function S(3,w) (where#Q is the momentum change to describe the dynamics activated at the dynamical transi-

: tion, including continuous diffusiofl4], jumping between
f"“]ldﬁ“’:.he energytﬁhtf;ngtg of the sl,catter(;dtgeuljrort).etlalr;]s minima [3,5,15-17, mode-coupling theory [18-2(,
information on both e time scales and he spatial Charatsy atched-exponential behavigel], and “effective force
teristics of the dynamical relaxation processes involved.

o 4 S X : constants’{22]. Although these models are sometimes quali-
The guiding picture in interpreting dynamic neutron scat-iatively different all can reproduce available experimental
tering is that of a potential energy surface or “energy land-yata well.
scape.” The shape of this energy landscape determines the gyen for relatively simple systems, distinguishing experi-
associated microscopic dynamics. For condensed-phase M@rentally between microscopic dynamical models is possible
lecular systems the energy landscape can be complex agghy if the range of Q, ) accessed is large enough, includ-
rugged with many local minima. This leads to the presencgng comprehensive quasielastic scattering measurements out
of a wide range of vibrational and diffusive dynamical pro- , high enough values & and w. However, neutron scat-
cesses. This complexity, together with instrumental limita-ering is limited by counting statistics, and the intensity of
tions in the accessibleQ(,w) space, can make unequivocal the highQ and » quasielastic scattering is often not high
interpretation of experimental data using simplified, analyti-enough to permit its accurate determination. Often, the inter-
cal descriptions of the dynamidsuch as jump models or pretation must be based on elastic scattering. To a first ap-
continuous diffusiondifficult. One manifestation of this dif- proximation the elastic scattering is proportional to
ficulty is the array of analytical descriptions which have beerexd —(1/6)Q%Ar?)]. It is therefore of particularly high inten-
proposed to model the experimental finding that manysity for atoms confined to microscopic volumes and at low
condensed-phase molecular systems undergo a deviatigh In such cases, it can be accurately measured and used to
from harmonic, linear dependence of the average atomigbtain a first estimate of the dynamics in the system. How-
mean-square displacemefkr?) with increasing tempera- ever, the elastic scattering does not necessarily contain suf-
ture ((Ar?) is accessible via th®—0 behavior of the elas- ficient information to distinguish between dynamical models.
tic incoherent scattering Systems for which such a “dy- If this is is the case, questions must be raised which analyti-
cal model should be used in any given case and how physi-
cally meaningful derived quantities are, such as diffusion
*Electronic address: biocomputing@iwr.uni-heidelberg.de lengths, energy barriers, or effective force constants.
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Here, we alleviate the problems associated with data overffor each atom. This is a reasonable assumption for hydrogen-
interpretation by examining how one can extract useful in+ich samples for which the incoherent scattering cross section
formation from experimental elastic incoherent neutron scatef hydrogen dominates the measured signal. However, the
tering data that goes beyond a simple determination of thgeneral case is easily obtained by summing contributions of
mean-square displacement but without assuming a specifibe different isotopic species.

dynamical model. It was considered of particular importance 5(Q, ) is expressed in terms of the intermediate scatter-

in the present wo.rk to derive a way of treating the data tha 9 functionl(@,t) and the van Hove autocorrelation func-
could be of practical use. To do this, we propose a methonon G(F ):

using a framework common to many analytical descriptions.
The method proceeds in two stages: fitting to elepen- 1
dence of the elastic scattering, followed by decomposition of S(Q,w)= _f dt e 't (Q,1), 2)
the resulting{Ar?). 2m

In the Q dependence analysis the importance of higher- 1
order, non-Gaussian terms is underlined. Non-Gaussian be- 2 | qra-iQrear
havior can have two origins. One is non-Gaussian dynamics Q.Y quf dre G(r.b, @
of single atoms, an effect that has been extensively charac-
terized previously23]. The second effect, which can be par- - 1 .. - -
ticularly important in dynamically heterogeneous systems, CG(I\D=1{ Z fdr’(5(r—r’+Ri(0))5(r’—Ri(t))>_
arises from the existence of a distribution of mean-square (4)
displacements. It is shown here that, when this effect domi-

nates, analysis of th@ dependence leads to the determina-|,, Egs. (2)—(4) ﬁi(t) is the position vector of aton (i

tion of the variance of the mean-square displacement. =1,... N) at timet and the bracketé: - -} indicate an en-
In the second stage of the method contributions to the ’

experimentally determinegAr?) are analyzed. A formalism ;emble averagds(r,t) is _thea pro.bability.that a cgrtain par-
is presented in which the experimentalr2) consists of two ticle can be found at positionat timet, given that it was at
parts: a convergetiong time part resulting from molecular the origin att=0 (here and throughout the artlclg only the
vibrations and changes in the elastic incoherent scatteringlassical limit of these functions is considere@(r,t) de-
function (EISP), and a second contribution containing thosescribes how a system deviates from a given starting configu-
displacements that are too slow to be resolved by the instruation. It is therefore a description of relaxation processes.
ment used.

In Sec. lll the method is applied to experimental data B. Quasielastic and elastic scattering

obtained on the temperature-dependence of the dynamics of Here, we repeat the standard formulation of quasielastic
a protein solutior(Ref.[24]). The analysis leads naturally to i P : . 9
8nd elastic neutron scattering that is commonly used as a

the discussion of alternative mechanisms for the observe . ; o ; 4

temperature dependence of the mean-square displacemef’ﬁartlng point for analyncal mterpreta_tlon.of experimental re-
and it is shown that the data can be interpreted without re§.mts' Th_|s formalism uses approximations that are Su.ff"
quiring changes in the EISF. ciently mild that they are likely to encompass the dynamics

The method for interpreting neutron scattering results prog L([,Tt]igit aer)épgir;r:jsnstgljSiﬁaéftgﬂ%nsgg]ms' The results of this
posed here is expected to be useful for interpreting the elastic . . S .
The common starting point for analyzing experimental

incoherent scattering from a wide range of complex molecu- ; : . . i
lar systems. spectra is to decompose the intermediate scattering function

1(Q,t) into a vibrational and diffusive part as follows:

Il THEORY 1(Q.0=1Y(Q.1)-1°(Q,1). (5)
A. The dynamic structure factor .
The vibrational partV(Q,t) describes intramolcular and in-

The basic quantity measured in incoherent neutron sca%— lecular vibrai { th : h the diffusi
tering experiment is the double-differential cross section - o -ecu’ar vibrations ot the system, whereas the difiusive

#%0l9QJE, which is the number of neutrons incoherently part contains relaxation processes.

scattered into the solid angle interjdl, Q)+ AQ] with an S(Q,w) then reads

energy transfer intervdlE,E+ AE]. The dynamic structure R v = o, A

factor is related to this cross section via S(Q,0)=S(Q,0)®S(Q,w). (6)
o k R The vibrational part can be written as

$'(Q.0)=e"2"5(w) + Sjpe(Q,w), )
whereE=%w, N denotes the number of atonsandk, the N
moduli of the incident and scattered wave vectay,is the ~ whereW is the Debye-Waller factor angY,.(Q,®) is in-
incoherent scattering length of the atoms. For simplicity inelastic scattering, consisting of peaks centered at the vibra-
writing in what follows this is assumed here to be the samdional frequencies of the system and multiples thereof.
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SD(Qw) gives rise to the quasielastic part of the spec- This is often r.eferred to as the “Gaus_sian approxim_ation"
trum. For a spatially confined system it is typically given by [23] The Gaussian approximation is strictly valid only in the
a sum of Lorentzian functions as follows: limit Q—0 and experimental scattering in condensed-phase
systems often exhibits non-Gaussian behavior.
There are two possible reasons for non-Gaussian behav-
SP(Q,w)=Ag(Q)8(w)+ > A(Q)-Li(\,w), (8  ior. First, the dynamics of single atoms may lead to non-
' Gaussian scattering and second, non-Gaussian behavior may
arise due to a distribution of mean-square displacements in
where AO(Q) is the EISF andL;(\,,w)=(1/m7)(\, /)\|2 the molecular system. We call the latter “dynamical hetero-

+ w?) is a Lorentzian of width\, . geneity.” We now examine both of these two possibilities.
The relaxation of the system is here decomposed into a
sum of independent processes each labeled with the integer 1. Non-Gaussian single-atom scattering

For certain dynamical models .such as jump.models, e_ach of Non-Gaussian behavior can arise when the dynamics of
these processes can be assigned a physical meaning. F@ggie atoms exhibits certain properties. This case was

jump models the number of independent relaxation processgssated in Ref[23] and is only briefly summarized here.
is given by the number of potential wells and eachis 1(Q,t) can be written as

given by a suitable combination of jump rates between

minima (see Ref[1] for detailg. Other dynamical models, "

such as diffusion-in-a-sphere, also lead to a sum of Lorentz- _ ol
ians but lack a concrete physical interpretation of any single I(Q,t)—ex;{ _;1 Q) n(®)
relaxation frequency, .

Since we restrict our analysis to elastic scattering we ne-

glect the inelastic scattering and write for the elastic and’"her_e they,(t) are dgfi_ned byl-point \_/elocity correlgtion
quasielastic scattering function functions. In Ref[23], it is shown that ify,(t)— C, rapidly

enough with time then the elastic scattering can be written as

: 11)

S(Q,w)=e"2W Ao<©>6<w>+2I A(Q)-Li(\ ,w>).

© S(Q,0)=exr{ -3 (Q%'q}. 12

Equation(g)_ has _been the starting point for t.he analysis OfComparison with the Gaussian approximation shows that the
many quasielastic neutron scattering experiments on molﬂrst constant is given b, =(Ar?)/6

ecules. It has a form common to a wide class of microscopic - ;
models, including, for example, bounded diffusion or jump The right-hand sidéRHS) of Eq. (12) can be expanded as

models. These models are commonly used to explain

<1:c7)]r;(.jensed—phase molecular scatterisge, e.g.,[3,5,14— S(Q,O)=ex;{—2 (QZ)'C|}
The form of the functionsAo(Q) andA,(Q) depends on

the analytical dynamical model used. If the system is suffi- — o~ (1BQ%(Ar?)

ciently simple that the underlying dynamical process is

qualitatively known then the forms @,(Q) andA,(Q) can

be analytically incorporated into the analysis of experimentair,q parameterd,, are combinations of th€,, (e.g., b,

elastic scattering data. For more complex systems, howeveL ¢y and are, therefore, determined by the dynamics of the
the functional form of the quasielastic scattering is ”Otsystem.

known a priori.
In what follows, we avoid having to elucidat\a)(@) and 2. Dynamical heterogeneity
A(Q) and hence avoid specifying the dynamical models as-
sociated with them, and examine data rather in a practica‘g)q
way, incorporating basic effects such as instrumental resoly
tion and heterogeneity in the mean-square displacements.

1+ 22 bm(—QZ)m). (13)

Dynamical heterogeneity, i.e., a distribution of mean-
uare displacements, also leads to corrections to the Gauss-
an approximation. Assuming Gaussian single-atom scatter-
ing the elastic scattering function then reads

C. Q dependence ofS(Q,0) N

1 _ 2 2
We first consider th& dependence of the elastic scatter- S(QO=y >, e (MOQXArD, (14)
ing. In what followsQ is spherically averaged so as to fur- '
ther mimic experimental conditions. F&@—0 the elastic

scattering can be written as follows: wherei denotes atomis=1, . . . N. As a sum of Gaussians is
S not, in general, Gaussian, corrections to E) result.
3(Q,0) = e~ (WOQYArT), (10) Formally, we can rewrite Eq14) as follows:
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N = . .
B 5 a1 B 22 2 21A(Q)-Li(\,w). However, in a real experiment due to

S(Q,0)=e~ (MORTAr >(N EI e~ (MOIQT(Ar)—(Ar >)> finite energy resolution the intensity under the elastic peak

(15) can contain contributions from quasielastic scattering. To

represent this analytically, we write the measured elastic

o _ m scattering Sg,p( Q,0) as
:e—(l/e)Q2<Ar2>LE_O %( 52) w(m) oo
a6 500~ | doR(@)S(Q.0) @0
—(1/6)Q%(Ar? Q* 2
~e (1/6)Q“(Ar <) 1+ io’ ) (17) :e—ZW(AO(Q)_,r_EI AI(Q)AwI , (21)

2 . .
Here,(Ar?) is the average mean-square displacement of thnere R(w) is the instrumental energy resolution function
system,u(m) is themth central moment of the distribution andAw,= [doR(w)L,(\,)
2 2 . . . . 1 "
of (Ar¢), and o° is the variance. Eq(17) is valid if Experimentally, <Ar2>Expt is obtained by plotting

(—Q?%6)™u(m)<1. Thus, in systems where heterogeneity|n[SExpl(Q'O)] againstQ2. Using the Gaussian approxima-
is the dominating contribution to non-Gaussian behavior, thgo;, “we have

elastic scattering can in principle be used to obtain experi-

mentally the variance and higher statistical moments of the p

distribution of mean-square displacements. <Ar2>EXpt= _GFIn[SEXpI(Qio):”QZ:O- (22
J

3. Practical analysis of $Q,0) .
) _ _ ) o We thus obtain from Eq(21) for the measured mean-
To incorporate non-Gaussian behavior without restrictingsquare displacement

the interpretation to a specific model, we propose the use of
a heuristic function of the form

J
B} (Ar®)ecp=— 6a—Qzln[sExpt<Q,0>]|Qz=o (23
S(Q,0)=e WO 14 3 b (—Q)™| (19
m=2
J
20002 =—6——In(e" W) (24)
me‘(l/G)Q (Ar )(1+ bQ4) (19) aQZ
Here, theb,, are parameters used to reproduce the experi- 9
mentally observed elastic incoherent scattering. We showed —6—2( In AO(Q)+E A(Q)Aw, ) (25
in the preceding two sections that both aspects of non- JQ !
Gaussian behavior, single-atom dynamics and heterogeneity, ) ) ) )
lead to a function of the form of E¢18). To what extent (Ar9expt=(Arvip T (Ar9eise=(Arres  (26)
each of these effects contributes to non-Gaussian behavior ) 5
will vary from system to system and is not knownpriori. =(Arcon —(Ar)Res (27)

Therefore, using Eq18) and treating,,, as heuristic param- 2 . . I

eters is equivalent to making minimal assumptions about theh (Ar >Exzm N Eq_. (27) contalr_ls two contrlbutlonzs. One of
system. In the lowQ range, as long as deviations from t'e.se,(Afr gcomfb’ IS thellong t_Lr)ne_, con;/erge(jArd),r]cczjr)]:
Gaussian behavior are small, i.b,,(Q?)™M<1, we can ne- sisting of the vibrational contributiofAr©)yi,, and the dif-

: TR : ! 2
glect higher-order terms and can derive two parameters frorfisive contribution associated W'tg the .EIS{E\r >E'S.F' .
the elastic scatteringAr?) andb The second term in Eq27), (Ar“)resis the contribution

In the following section, the experimentally derived to (Ar®)eis dge to relaxation processes 100 slow to be. re-
(Ar?) thus obtained will be examined in detail. solved by the instrument. Its negative sign means that it re-
duces the observed\r?). Neglecting this second term cor-
responds to making the assumption that all motions in the
system are fast enough to be detected.
Fitting experimentally obtained elastic scattering data us- (Ar2)gqsis given by(Ar?)g.=3aA 0,
ing Eq.(18) [or Eq.(19) for small Q] yields the “measured”
mean-square displacement, which we c(allr2>EXpt. For
any given instrument{Ar2>EXpt may not be the time- 5
converged mean-square displacement, but may have contri- a7
butions due to finite energy resolution. We will now analyze & 6,9Q2A'(Q)|Q2:°' 28)
the components o(ArZ)EXpt using Eg.(9) as a starting
point. Aw, the width of the Lorentzian function, is assumed here
Inspection of Eq.(9) suggests that the elastic scatteringto be independent dp. This is true for most analytical mod-
can be obtained by neglecting the quasielastic termels of spatially confined system®.g., jumping between

D. Finite energy resolution and the mean-square displacement

with
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a finite number of states, rotational or confined diffugion ) ) )
However, in heuristic approaches to experimental data treat- (AT expr= (Arvip+(Ar >EISF_2| aAw, (34
ment the width is often taken to @ dependent, in which

case(Ar2>Res would co_ntain a second term. This Wou_ld, Where<Ar2)Vib and<Ar2>EISF make up the time-converged
howeyer, have no practical effect on the present analysis. part and—3,a,Aw, is the contribution due to finite energy
Noting that resolution.
Therefore,
* 1 )\|
do————=1, (29
—® ™ )\| +w

1 N

o=0ovipty EI <Ari2>EISF_ZI aAw
inspection of Eq(26) shows that the maximal contribution
of the relaxation modé\;(Q) to (Ar?)r.is given bya,. 1 N )
This is intuitive for systems in which a real physical process “IN > (Ardeise— 2 ado| (39
can be related to a given relaxation mdd# a certain mode ' !
| describes, for example, jumping between two minima, thi
maximal contributiona, is given by the distance between
these minima, and E@27) is simply the statement that these ]
jumps will be detected only if they occur on time scales@Xpansion ofA(Q). _
accessible to the instrument. However, for models where the Inspection of Eqs(35) and(34) show that in the case of
physical process involved cannot be described by a singlBerfect energy resolutiomw; =0, Eg. (17) is recovered.
relaxation mode, no direct physical interpretation agfis Therefore, although finite energy re_solunon d_oes not alter the
possible. form of Eq. (17), it does alter the interpretation of the ob-

Finally, we derive an approximate functional form of tained parametergAr?) ando.
Aw, . To do this, we make an approximation to the resolution

2

%Nherea\z,iIO is the variance of the vibrationglAr2),;, and
ay is a multiple of the fourth-order coefficient of the Taylor

function R(w) that allowsA w, to be expressed analytically, F. Practical implementation
i.e., R(w) is assumed to be a rectangular function of width 14 conclude this section, we propose a protocol for using
Ao, Egs.(18) and(31) to analyze experimental data.
1 —Aw<w<A In a first step Eq(198) is fitted to theQ dependence of the
R(w)= ' W=w=80 elastic scattering. The accessilfierange here determines
w) (30) : :
0, other. how many independent parametdrg should be incorpo-
rated in the analysis. For the example analyzed in Segnlll
This allows us to write the rangeQ?<2 A?), (Ar?)g,,, and oneb parameter could

) A be determined.
2 — /A2 _ < ot In the second step the obtain(a‘(ﬂrz)Expt is further ana-
(AT exp= (AT con Z & arcta N 31 lyzed with Eq.(31). In practice, it is necessary to restrict the
number of relaxation frequenci@s used—in the given ex-
Equation(31) provides the second equation of practical useample only one frequency, was required, i.e.,
in analyzing experimental data, the first being ELf).

) _ 5 B E Aw
(Ar )Expt (AT con awarctan—. (36)

E. Finite energy resolution and dynamical heterogeneity A

We now examine how the interpretation of the parameters |, \yhat follows, we examine data on the temperature de-
of Eq. (17) changes if finite instrumental energy resolution is pendence of the scattering of a protein solution. Different
taken into account. The calculations are cumbersome so WR/potheses can be tested using E2f). All fits were per-
restrict the analysis to the first correctibnFrom Eq.(17) it t5rmed using a Marquardt-Levenberg algorithm as imple-
follows that mented in the Gnuplot prograf2s).

Sep( QO =€~ W e hQ +O(Q%), (32 lll. RESULTS
6 6 H
whereO(Q") stands for terms of ord&®” and higher. Thus, In this section, we use the formalism developed above to

the correction (tl%mtz) can be calculated by expanding jnterpret a set of experimental data on the temperature de-
[Sexpd(Q.0)— ™ >Q(Ar®)expd to fourth order inQ. This  pendence of the dynamics of a cryosolution of the protein

gives glutamate dehydrogenaf24]. The data were obtained using
oG the instrument IN6 at the Institut Laue-Langevin, with an
_ 2 2 i
bQ4:[SEpr(Q10)_e (1/6)Q%(Ar >Exp[]: ﬁUJrO(Qe)_ energy resolution of-50 ueV.
(33

A. S(Q,0) at low Q
Equation(26) gives Figure 1 shows fits of Eq19) to In S(Q,0) versusQ? data

021904-5



T. BECKER AND J. C. SMITH

PHYSICAL REVIEW BE57, 021904 (2003

OF of I "EER T ::!::I:: it j = 1.5 T T T T T T T T
%:¥‘¥~‘i ? * -i ————————— :i A Experiment
NOYRLOT TRl —— Theol
0.1} ‘}E\i\ i g Rls S 1 i ry ,
AP SN < T ¥
3 -02f '~.£\ .\I\ - = él
g .03 e N i ~n 05k /} J
| ® 200K \}\.\ A }} }
oaf |1 Foeig 1 _ ,I,
I o 300K 045---}-—-}---}'}%—%_&_},1}—%@ i
05553 15 2 00 150 20 250 300

1
Q2 [ A'Z] Temperature [K]

FIG. 1. Equation(17) (dot-dashed linefitted to experimental
data from Ref[24].

FIG. 2. (Ar?)g,, determined on a protein solutidiglutamate
dehydrogenase in 70% GDD/30% D,O) using the instrument
ING at the ILL[24], and fitted using Eq(36).

at five different temperatures, following the procedure de-
scribed in “methods.” The fits show that the data can be
adequately fitted with terms up ©(Q*). The resulting pa- The next step is to interprétr?)e,,; using the formal-
rameters are shown in Table I. For a protein computer simuism outlined in Sec. Il F. Figure 2 shows\r?)g,,, as a
lations have shown that over ti@ range examined here (0 function of temperature. The data exhibit a dynamical tran-
<Q2<2 A?) the single-atom scattering is Gaussian and thasition at~220 K involving a sharp increase ii\r?)g,p;.
non-Gaussian contributions arise principally from dynamicalEquation(31) shows that two different processes can lead to
heterogeneity26]. Thus, the parametebscan be assigned as a temperature-dependent transitior{ &r ), ;, a nonlinear
o, the variance of the mean-square displacement. change in(Ar?)g,se with T or equally well a temperature
Some caution must be taken in interpreting the absolutéependence of the relaxation frequencyA discussion of
values of the fitted parameters. Incorporating higher orders ihoth possibilities is now given.
Q, [up to O(Q?)], while keeping initial values near those in
Table | changed neither the value of the parametans’)
andb, nor the goodness of fit. Therefore, the fit was IocaIIy Models involving a nonlinear temperature dependence of
stable. However, incorporating higher-order corrections an(éAr2>E|SF have been frequent]y invoked to exp|ain dynami_
arbitrarily changing the initial values was found to lead tocal transition behavior. We will therefore only briefly sum-
additional solutions with different absolute values(afr®)  marize them here. In these models, the dynamical transition
andb (data not shown Nevertheless, all fits showed an in- results from a change with of the equilibrium, converged,
crease in botlfAr®)e,,; andb going through the dynamical |ong-time atomic probability distribution, i.e., the EISF. One
transition from low to high temperature. example of such models is that in RES] which consists of
The fact that fitting Eq(19) is not stable against arbitrary a two-state potential with a free-energy difference between
changes of the initial values underlines the need to incorpothe states oAU, separated by a distance The increased
rate higher-order corrections even in the relatively IQv  population of the higher energy state with increasing tem-
range (0—2 kZ) studied here. CIearIy, however, the mean-perature leads to a transition imr2>EISF and, thus,
ing of the corresponding coefficients will depend not only 0n<Ar2>Expt- Another model is that, in Ref§22] and[27], in
the system dynamics but also on the accuracy of the expenjyhich the energy landscape is approximated by two har-
mental measurements—in some cases higher-order termgonic potentials with different force constants. Here, the
will compensate experimental errors. probability of atoms occupying the lower force-constant po-
tential increases with temperature, thus, as well leading to an
TABLE I. Mean-square displacement and variance from fittingincrease of Ar?)g sk

Eq. (17) to the experimental data obtained in Rigt4]. For the present purposes the distinguishing experimental
characteristic of the above models is that they lead to

B. Mean-square displacement

1. Temperature-dependeAr2)g gr

T (K) (Ar?) (A?) b (A% (Ar2>EXpt independent of the instrumental resolution pro-
vided that resolution is sufficiently high that all the relax-

200 0.02-0.02 0.009-0.009 ation processes in the system are accessed.

230 0.08-0.05 0.09:£0.09

260 0.370.06 0.45:-0.1 2

280 0.6-0.2 0.3+ 0.2 2. Temperature-dependerAr <) ges

300 1.2+0.1 0.8-0.1 The alternative mechanism for nonlinear behavior of
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1sF T - T . T ' T ; ] U(x)
—, -10| -
2
g AU
<
e O ]
S d X
-
o - FIG. 4. Double-well potential.
00 T 30 % 300 there will be no change itAr2)g, s with temperature. How-
Temperature [K] ever, an apparent dynamical transition can occur through fi-
o o . nite energy resolution effects.
FIG. 3. Characteristic relaxation timeN{/T) as a function of Using Eq.(37) as starting point and repeating the steps

temperature\ (T) was determined by fitting Eq31) to <Ar2)EXpt leading from Eq/(9) to Eq. (31) <Ar2>Ex  reads
from Ref.[24]. P

due to motions becoming fast enough to be detected. In prin- (A2 g o= (Ar2)y i+ 6_‘12[1_ iarctarGA—w
. . . e Expt Vib T

ciple, this effect can lead to apparent dynamical transition 4 |2 m 2
behavior in the absence of any changdAr?)g,sr. Figure (39)
2 shows a fit of Eq(36) to the experimentally determined
(Ar?)y from Ref. [24]. The agreement with experiment is  With (Ar?)g,sp=6d%8,a=6d%/8, and\=1/r this is of
satisfactory. Figure 3 shows the associated relaxation timehe form of Eq.(36).
7(T)=1/N(T). 7 changes from the nanosecond to the pico- A suitable functional form ofr(T) for barrier crossing is
second time scale with increasing temperature, passing intarrhenius: 7(T)=ae”". For the potential of Fig. 4 the pa-
the instrumental time resolution window 6f100 ps. rameterb is related to the energy by=AU/k, k being the

To understand the kind of physical process that can lea@oltzmann constant. The parameters then resulting from the
to a(Ar?)g.s—driven apparent dynamical transition it is in- fit in Fig. 2 are shown in Table Il. However, as we have
structive to temporarily suspend our analysis and to considatiscussed, this interpretation is model dependent and, as we
a simple potential of the form illustrated in Fig. 4, in which have discussed, these parameters may not be physically re-
two identical wells are separated by a barrier of heifyhk. alistic. Describing the transition by E¢36) is more general
Assuming jumping between the wells the scattering functiorthan assuming a specific model, and is equally valid for a
of such a potential is well known and is as folloygee Ref. model based, for example, on diffusion in a sphere, in which
[28] for details: case\ would be related to a diffusion constant ahcdot
directly related to an energy barrier. Figure 3 retains gener-

1., ., ality in that any dynamical model fulfilling the assumptions
S(Q,w)=exp — 5 Q(Ar%)vip || Ao(Q) &(w) leading to Eq(36) and having a temperature dependence of
the relaxation frequency similar to Fig. 3 will lead to the
1 27 same observed transition behavior.
+ —Al(Q)ﬁl, (37) In this section, we showed how the formalism derived in
. 4+ or Sec. Il can be used to analyze experimentally obtained elastic

incoherent scattering spectra. E¢k9) and (36) are suitable
functions that can be used to test hypotheses concerning ex-
1 perimental phenomena such as the dynamical transition. Dif-
Ao(Q)= §[1+j0(Qd)], ferent interpretations are consistent with experimental mean-
square displacements observed for a protein solution, thus,
stressing the necessity of an analysis of experimental scatter-

with

1
A(Q)=5[1-jo(Qd)],
! 2 ° TABLE II. Parameters obtained by analyzitr?)g,, in terms

o . . . of a double-well potentialsee Fig. 4.
with jo(x) being the zeroth-order Bessel function of the first

kind, 1/r the jump rate andd the distance between the (Ar2), /T AU

minima. The term expf3Q%Ar?);,) is the Debye-Waller A2 keal

factor due to vibrational motions not included in the jump (?) ol g 7o

model. mo o ©
The probability of finding a particle in one of the two N6 0.0003 5.30.2 1.4-0.1 1.110°%

wells is 3 and is independent of temperature. Consequently:
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ing for complex molecular systems that encompasses a widgescribed by, a relaxation frequency ara the amount this

range of dynamical phenomena. relaxation mode contributes @A r?)g,ge.
The description of théAr?) in terms of converged and
IV. SUMMARY resolution-dependent contributions highlights two possible

This paper presents a method of analyzing elastic incoheaUses of dynamical transitio_n behavior in .c.ond_ensed—phase
ent neutron scattering of dynamically heterogeneous moleciystems. One of these describes the transition in terms of a
lar systems in which the form of the energy landscape is noghange in the(long-time¢) equilibrium position distribution
imposed. The need for this approach has arisen from thigading to a nonlinear increase {Ar?)g sg. The tempera-
realization that, for complex systems that may possess a védre at which this occurs is independent of the instrumental
riety of anharmonic dynamics, the imposition of a simplified energy resolution. In the alternative mechanism the tempera-
analytical model(e.g., a double well or spherical potential ture dependence of the dynamical relaxation frequency,
may be over-restrictive. leads to acceleration of the relaxation processes with increas-

The present analysis concentrates on elastic incohereittg temperature until they become detectable by the instru-
scattering and explicitly incorporates effects of the instru-ment. This leads to an apparent dynamical transition origi-
mental energy resolution. In doing so a practical analysigiating in the variation ok Ar2)ges With the instrumental
method is proposed that should be of widespread applicabiknergy resolution. It is demonstrated here that this alternative
ity. The method consists of two separate steps. In the firsflescription can reproduce experimental data for a protein
step the measured elastic scattering spectra is fitted to Egolution, obtained in Ref24]. However, in many systems,
(18). This function incorporates non-Gaussian behaviorincluding protein solutions, the complexity of the energy
Non-Gaussian elastic scattering arises either from nonlandscape may lead to both kinds of transitions occurring.
Gaussian single-atom dynamics of the system or by heterdrherefore, in these cases the relevant problem would not be
geneity of the mean-square displacements. Both effects ledtle determination of which of the two alternative descrip-
to corrections of the orde®*. tions of the dynamical transition is present, but rather sepa-

In a second step the obtained parameters are further angtion of the contributions of both. This separation requires
lyzed. Equation(31) describes the experimentally deter- extraction of the EISF from incoherent scattering measure-
mined mean-square displaceme{”mrZ)EX,[,t in terms of a ments. For this it is necessary to accurately determine the
converged displacementAr?)c,,, that would be obtained temperature dependence of both the quasielastic and elastic
with an instrument of perfect energy resolution, and a con<ontributions and to characterize the relaxation processes in
tribution due to unresolved motions present in the systenmore detail by analyzin®(Q,w) and1(Q,t).
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