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Competition between the chiral smectic€* and hexatic phases

I. Rychetsky* M. Glogarova and V. Novotna
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague-8, Czech Republic
(Received 2 October 2002; published 26 February 2003

A theory of the phase transition from the smeddit-to the hexatic phase based on the free energy with the
two different Lifshitz terms is presented. Competition between the elastic energies of the tilt angle and of the
hexatic order leads either to the single helicoidal structure, or to the double modulated solitonlike structure, and
the transformation between both can occur. The bond order and the tilt angle suppress each other and at the
transition to the low-temperature hexatic phase a decrease of the tilt angle and an anomaly in the helical pitch
occur. Approaching the hexatic phase transition the dielectric response is contributed mainly by the bond-order
phason ofand the tilt angle phason. While the bond-order phason frequency decreases the tilt angle frequency
increases in the hexatic phase. Both situations are treated being observed in experiment.
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. INTRODUCTION untilted SmB},, phase the orientation of intermolecular
bonds is modulated, and the spatial variation of both the tilt

The smectic phases of liquid crystals are layered strucand the bond orientations exists in the tilted hexatic I3m-
tures, in which the rodlike molecules are lined up within theand SmF* phases. In the chiral tilted phases the macro-
smectic layers. In the smectie{Sm-A) phase the molecular scopic polarization exists, which is proportional to the filt
axes are on average parallel to the address layer normal, tlaagle.
macroscopic polarization is zero, and the symmetry of this A model describing the phase sequence &Sm-
structure isD.., . At lower temperatures in the S@-phase Sm-C—hexatic smectic was developed taking into account a
the molecules are tilted and the symmetry is lowereG1p.  coupling of the tilt and bond orientatiof6,7]. Accounting
Further Coo”ng can result in de\/e|0pment of hexatic Orde[ﬁ'SO for modulation of the tilt and bond orientation within the
that is characterized by a long-range three-dimensional bongmperature independent model, it was shown that an incom-
orientation ordefBOO) and a short-range translational or- Mensurate structure can exist in the hexatic pHageThe
der, which extends a few hundred angsteowithin a smec- ex@ended theory encountering also the coupling with the po-
tic layer but one order less between them. It means that cryd@'ization was worked out and successfully used for explana-
tallographic axes of neighboring smectic layers are paralle‘iIon of d|eleictr|c spec:ra observ*ed_ In ferr_o_el_ectrlc chiral
(point symmetry exists but molecules are not translationally phases SnG. .and Smt* (or S_mF ) In the vicinity of the
correlated(lack of translational symmetyyA hexatic order phase transition to the hexatic pha_[ﬂé)]. Th|s theory de-
was first reported in an untilted SBy,, phase[1-5] and SCfIb?S the softening of.the bond orientation mode under the

. . ex : .__condition that the spatial modulation of the BOO is fully
observeq as a diffuse sixfold pattern In an x-ray d'ﬁraCt'Onimposed by the tilt angle modulation and the pitch of the
[1,2]. In tilted phases the BOO is coupled with the molecular,ojiy and the molecular tilt does not change when passing
tilt and the local tilt points either along the local bond direc-
tions (Sm}), between them (Sr), or nonsymmetrically
(Smi), see Fig. 1. In contrast with the SBy., phase the
sixfold axis is lost in both Snhi-and SmF phases due to the
tilt of molecules and their symmetry beconés,, the same
as that of the Sn@& phase. As the symmetry of both smectic-
C and tilted hexatic phases is the same, there is either a
possibility of the first-order transition with a discontinuous
change of the orientational order, or a continuous evolution
from one phase to the othgs,7].

In the liquid crystals composed of the chiral molecules,
the SmA phase has lower symmetr,. The low-
temperature phases of chiral substances (Sm-SmB}.,,
Smd*, Sm+*) have analogous local structure as their non-
chiral counterparts, but they exhibit helicoidal modulation
along the normal of the smectic layers and they all have the
same symmetnC, [8]. In the SmE* phase the helicoidal
modulation of the molecular orientations occurs, in the chiral  FiG. 1. Structures of hexatic phases; describes the orienta-

tion of the bondsg, is the orientation of the director projection to
the yz plane, 6, is the molecular tilt angle with respect to the
*Email address: rychet@fzu.cz smectic layer normal.
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the transition point to the hexatic phase. Meanwhile novelvhere in the interaction part of the free enefgy; the terms
ferroelectric substances exhibiting the change of both of théigher than linear ifP and inA were omitted 10]. The free
tilt [11] and the pitch at the transition point to the hexaticenergy in polar coordinates is

phase have been reported showing also peculiar temperature

dependence of the dielectric spectra. Here we present a  F,=%a63+ :boi+(Ndy+ixdp?) 03+ 2 k63, (4a)
theory that generalizes the approach used previously in Ref.

[10] encountering also for elastic energy of the BOO modu- Fp=1 Xflpg, (4b)
lation. Besides ferroelectric S@* phase and hexatic Sii-
and SmF* phases it allows to obtain also incommensurate

Fa=1aAZ4 L BAL+ L yAS+ (BA pp+ 236K p2)A2
and untilted SnB},, phase. a=2 aAGt 3 BRots YAg T (BAdat 238K AR AG

+ IKAZ, (40)
IIl. THEORY
- 6
A. Order parameters and free energy Fint=CPo00C0g ¢pp— ¢y~ /2] + f 65ACO4 6( Py~ P
There are three quantities playing an essential role in de- + 77/2)]+g0(5)P0Aocos{5(¢9+ m2)—6dpt dp].
scription of the phase transitiofPT) sequence SmM{D..) (4d)
—Sm-C*(C,)—Sm4*(C,) or SmF*(C,):
0= Opexdi( s+ m/2)], 'I[ir;)rghii equilibrium the phase and the amplitude of polariza-
A=Ayexd i6¢al, dp=y* 72,
P Poexili el W Po=*{~XClo~ XGOFACOS B( by~ dat T2}, (5)

The tilt angle # describes the inclination of the molecular
axis from the smectic layer normak (axis and becomes
nonzero in the SnE* phase, the bond-ordérdescribes the

where the “+” sign corresponds te<0, and the “=" sign
to c>0. The polarization is always perpendicular to the tilt
andc determines its sense. Further usually we shall consider

t<o. According to Eq.(5) the polarization can exhibit a

without appearance of any translation symmetry insid_e th%hange at the transition to the hexatic phil. In any case
layer. The bond order becomes essentially nonzero in thﬁ1e reduced free energy reads

hexatic phase, but since the symmetry of the Gtand
hexatic is equal, a weak nonzero BOO appears also in the
Sm-C* phase. Consequently the Spf-—Smdi* (or
Sm+*) phase transition should be smeared or of the first
order. The polarizatioR is induced by the spontaneous order
parametersOP) or by the external electric field. All three
guantities possess an amplitude and a phase, the latter de-
scribes rotation around smectic layer normalis. The free
energy expansion reads

Fo=3(a—xC?) 65+ iblg+(Ny+ 3k 5) O+ 5 k0,
(6a)

Fa=3 aAS+ T BAG+ § YAS+(BA pa+ 336K p2)A
+1KAZ, (6b)

Fint=1i00A0C0§ 6( by da+ m/2)], (60)
F:F0+FP+FA+FH’]I! (2) ) ) .
where the interaction constafi=f — ycg. The relation be-
where tween the tilt angle phas¢, and BOO phase, determines
the type of the hexatic phase, and it will be calculated in the

1 o1 g S S next step. For that the interaction constdptis the most
Fg=§a(00 )+ Zb(@ﬁ ) +§)\(00 — 00 )+ EK(HG ), important parameter_

(3a

Fp=3x 'PP*, (3b)

B. Determination of possible structures
1. Noninteracting helices of tilt and bond orientation

1 1 1 For future references we display here the equilibrium state
Fa=5aAA"+ Zﬁ(AA*)ZJFgV(AA*)Z for the system, in which the tilt and BOO do not interact,
f;=0. It consists of two independent helices, the helix of the

tilt and of the BOO, respectively,

+|§)A(AA*—AA*)+%K(AA*), 30

B=ag(Tc—T)/b, Tc=Ti+(xc?+«q3)/ay,

Fint=3 C(PO* +P* 0)+ 3f(0°A* + 6*°A) o
bo=—qx+C,, =— =Nk, T<T 7

+ %9(05PA*+0*5P*A), (3d) ¢0 °p) 6 oy Py C ( a)
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~ 2aq Let us first considef;>0. There are two possible solu-
Ao=3|Bll4y+ W(T' =T, tions. The first one represents the $mphase and reads

bo=da= —0 X+ Py, (11

where ¢, is arbitrary andq should be determinefdve chose
~ T ~ n=0 in Eqg. (8)]. It means that the structure has a single
$a=—0ax+Ca, Ga=pr =6A/36K, T<T, sinusoidal modulation. The second solution represents an in-
(7b) commensurate structufé3]
k r
2

T,=T,+36Kqi/ ag+ ag 382116y,

where the tilde denotes the equilibrium values for this non- o’

interacting casel ¢, p, are the phase transition temperature T (1+0%)
and pitch of helix for the Sn&* phase, and likewise for the

1 n{\/(l-i- a?)lp
a T(X_

i§ XO)

hexatic phase. The tilt angle and BOO helices should have —ax+ o, (129
the same chirality sengé&2], and therefore.>0, A>0 are 5
considered in the following. In accordance with our prelimi- ba= 1 Ilan{ V(1+o )/p(x—x )k T
nary experimental finding we assume further thpat g, and A (1+e?)| 73 k 0 2

« ;
that SmEC* phase appears at higher temperature than the —qx+ o, (12b)

hexatic order, i.e.T,<Tc. In the SmA phase both the tilt
and the BOO are zero. In the S8t phase tilt is determined \yjth dimensionless quatities

by Eq. (7a and BOO is still exactly zero. In the hexatic

phase there are two independent helic@swith the pitchp, 36A2K AoK

2 =

andp,, and their phases are not related. In such a case the o=
Sm{* structure defined asee Fig. 1

(13

- and it only exists when modulus<1. For k=1 solutions
dpa=d,tn=, n=0,...,5, (8)  (11) and(12) coincide. The quantitieg, d, Xo, andk are
3 integration constants that should be determined. For that pur-
) pose solution(12) is inserted to Eq(6) and integrating over
the SnF* structure defined as all the space the total free ener@yer unit volume is ob-
tained:

T o
Pp=dy+ =+n—=, n=0,...,5 (9)

6 3 1 1 1 1 1
FtotZE(a—XCZ) 03-?- Zbﬁg'i‘ EaA(z)'f‘ ZﬂAg+g’yAg
and the structure Srh-of the lowest symmetr,, in which
the bond orientationb, and the orientation of the tilp, do
not fulfill relations (8) or (9), are energetically degenerated.
The hexatic phases Shi- or Sm+* become stable when

1
+§(K9§+36KAg)q2—(>\03+6AA§)q

the interaction between the tilt and BOO is switched on. In +Ag08 142 %( ELk] 1]+ izi v ]
each of the hexatic phaseSm4* (8) and SmF* (9)] there oo k=\ K[k] ke K[KIK] ]’
are six equivalent configurations. (143

2. Sinusoidal and solitonlike structures

20
Let us encounter the interaction between the tilt and BOO, v=3m\p/(1+0%)|qs—dal =0\ 1ro2 (14D
i.e., f;#0. For simplicity, in the following the amplitudes,
and A, are assumed being constant and they will be deteryherey is a dimensionless parameter,
mined later. This assumption is exact when the phases are

linear functions of the space coordinaewhile it is a con- 92Kk
stant amplitude approximation for more complicated spatial yg:—s(qA—qg)2
variation. The equilibrium phases follow from the free en- 12f; 65
ergy minimization and the corresponding Lagrange-Euler
equations read is independent ofA;, and o linearly depends omi\,. The
phase¢, and the positiorx, are arbitrary and the values of
021 ch )+ 36AK dha=0, 10 g andk should be found from the free energy minimum. Note
ox b oK Pa (103 thatq andk are explicitly decoupled. For the equilibriug)
BAGKK (dy— dpa) = — ;05(36ATK + 63K) NG2+BAA2 s
0= — 2 amc a2z 9oSOs0a.
X S 6(by— da+/2)]. (10D K05+ 36KAG 8
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FIG. 2. Spatial dependence of tilt and BOO phade$i bold
line). The hexatic Sm* phase withg,= ¢pp= —q x (full lines); the
phases¢, and ¢, according to Eq(12) for 1—k=10° (dotted
lines); for 1—k=10"2 (dashed bold linesindependent helices for
k=0. The parameters used ajg/q,=3 ando=1.

The equilibrium value of modulukis independent of] vec-

PHYSICAL REVIEW E 67, 021704 (2003

w w
<
| 3 57
<
©
3™ g7
0 0
o 1 2 3 4 5
~qow

FIG. 3. Spatial dependence of the differendg— ¢, in the
incommensurate structure for the same parameters as in Fig. 2 and
for 1—k=10"°.

are two Goldstone modes in the incommensurate ptie
while there is only one Goldstone mode in the sinusoidal
structure(11).

In Fig. 4 the control parameter is plotted versusr ac-
cording to Eq.(14b). SinceoxA,, andA, increases when
crossing the phase transition from the &h-to the hexatic

hase, the figure also qualitatively shows the temperature

tor and can be obtained by setting to zero the derivation OEehavior ofv. The incommensurate structure can appear if

the free energyl4a with respect tdk (it can be shown that
the sign “—" corresponds to the minimujn The modulusk

v>2, which could happen in a finite temperature interval
near the hexatic phase transition. The nature of the control

cannot be expressed explicitly, but it is a solution of theparametery can be elucidated writting it in the form

equation
2E[k]—vk=0
for v>2[incommensurate structyre?), k<1],
(163
k=1 for w»<2 [Smd{*structur¢ll)]. (16b

Let us discuss the structures described by solutidris,
(12), (15), and(16). They depend on the parameter

The strong interaction regime occurs fex=2. Then the
Smd* phase(11) with q vector(15) is a stable structure, the
cosine in the interaction part of the free enef§g) being
exactly —1 (see Fig. 2.

For v>2 (the weak interaction regimeincommensurate
structure(12) occurs. It is represented by the array of soli-
tons forv=2 (thenk=<1). Then the Sm* domains(8) of
the sized=2K[k]~2 In[4/\J1—k?] are separated by kinks
(discommensurationsEach kink produces/3 phase differ-
ence and the full rotation of the tilt with respect to BOO is
accomplished by six kinkésee Figs. 2 and)3

In the limit »>2, the moduluk~ 7/v<1, and the struc-

ture consists of two weakly interacting sinusoidal modula-

tions, of the tilt angle withy,= —q, and of the bond order
with ¢a=—q,. Whenk=0, the spatial average of the in-
teraction part of free energ¥c) is zero. Then two indepen-
dent helices described by E{/) are obtained, which can
slide independently.
Finally, the arbitrary phaseé, in Eq. (12) describes the
position of the underlying helix witly vector[see also Eq.
(8)], and the arbitrary coordinatg in Eq. (12) describes the

2
, T W)
vi=— : (17)
2 Wint
where Wo'=W, '+ W, ", W,=3x63(dy—0n)> Wa

=%36KA§(q9—qA)2. W, is an energy increase when the
modulation of the tilt angle is shrunk fromzq, to 27/q,
[calculated from Eq(6a)], and likewiseW, represents en-
ergy increase when the modulation of BOO is stretched from
2m/ga to 27/q, [calculated from Eq(6b)]. When matching
both helicedN,, represents a characteristic increase of elastic
energy andV, ;= fieng is an energy gain coming from the
interaction between the tilt and BOO. The sinusoidal struc-
ture (Smt*) appears when the interaction energy is larger
than the elastic one, while for much higher elastic energy as

4
hexatic

Sm-C*

FIG. 4. Dependence of parameteron ¢ according to Eq.
(14b). Since o is proportional to BOO amplitudd,, which in-
creases when crossing the transition point to the hexatic phase, the
incommensurate structure could exist in a finite temperature range

position of a periodic kink superstructure. Henceforth, theravhen»>2.
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compared with the interaction energy, the solitonlike struc-hand the interaction term is linear i, and therefore it

ture or two nearly independent helices exist. should be preserved when finding the BOO equilibrium
value. The extremes of the free energy are solutions of the
C. Equilibrium values of the tilt angle and BOO amplitudes equations

The control parameter and the structural parameteys Y4
vector and the modulus depend on the amplitude, and X((— 1+X?)+ WAZ)
6o, which are still not determined. For the sake of simplicity
and also due to the fact that the incommensurate regime
could, if ever, exist within a finite temperature interval, fur- =X
ther we consider the sinusoidal structure only (Bnphase.
The corresponding free energy

(—1+X))+ —(q—q,)2| =0, (223
bd q—0y
0

~ ~ ~ x4
_F yb 04 v2 N A2
Fro=3 (a— xc2— kQ2) 03+ 1 bO3+ & (a— 36K ) A2 R v i )
+ % BAGH § YAS— iAo 05, (18) ~ ~ ~ K
= —TiX®+Y| (a°+ Y3 B+ —=(q—0a)?| =0,
where the equilibrium valu€l5) of g is a function of two b6y

variablesf, andA,. It is convenient to introduce dimension- (22b)
less normalized quantities:

, wherea®=a/B. Two variations of the left sides are shown
_ 36KAg for convenience.

o , (193

X==, Yi=—rs
00 Kao

1. Relation of the tilt and the bond order

K _ K The equilibrium state is a solution of Eq22). Inspecting
A’=——(ga— Qg% a=(a—36Kga)—=— dependence of the tilt on the BOO, absolute and local

beg b6§36K minima (with respect toX and at fixedY) should be deter-
_ mined using Eqs(22a and (21). It leads to the phase dia-

_ Br? ~ 793K3 gram in the @, Y) plane, exhibiting the tilted hexatic Shi-
ﬂ_b(gsK)Z’ Y= b(36K)3’ phase(region with X>0, Y>0) and the untilted hexatic
SmB}., phase X=0, Y>0), see Fig. 5. The line of the

73 p phase transitions between the both phaBgare) consists of

F=1, FO\ /36K’ (19  two parts: the first-order PT line in the\(Y) plane
N , (2+Y?)? ) )
where'd, is defined in Eq(7a). The normalized BOCQY is A =—gyz » 0=Y'<2 (A°>1) (23

similar to the quantityo [defined in Eq.(13)] and they are
related as' = o X. When there is no coupling between the tilt that ends at the critical poit?=1, Y?>=2, and the straight
and BOO, then the til),=6, does not dependent @k, and  line of the second-order PT’s

X=1 [see Eqs(19a and(7a)]. Deviation of X from 1 can A2=1 Y2592 o4
appear only for nonzero interactiof)#0. The wave vector =L Y= (24)

(15) can be rewritten as The metastability line of the tilted hexatic Sii-phase is

X2q,+ Y20, 2\3
_ 4(1+Y?)
= 2 > y (20) 2_ 2
Xe+Y A ToNE 0<Y“<2,
and the normalized free energy,, is and the metastability region of the S, is
= FtOt 1 2 1 4 a 2 E 4 ‘;’ 6 (2+Y2)2
== — — — — = 2 2
A% X2y2 ¥ Note that theY? axis is directed to the left in Fig. 5. It is
2 X2+ VY2 —fYX. (21 convenient to show schematically also the temperature axis.

For that purpose we assume Landau-like temperature behav-
The interaction term is negative and the stability conditionior of the BOO:Y2=0, for T>T,, Y2 (T,—T) for T<T,
requires positive tilt angle expansion terms up to the 12thThe exact behavior off(T) can be obtained from Egs.
order. Considering the free energy up to the fourth power of22)], in reality it exhibits a jump af,, see below For T
the tilt only, the interaction term has to be neglected while>T, the SmEC* phase exists, in whicKk>0 andY=0. The
searching for the equilibrium value of the tilt. On the othercooling process of the sample is represented by a horizontal
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T-Ti
-1 0 1
2
X?>0 0
(Sm-I* or Sm-F*) :
- « 0.
« b K be
ﬂ 1 ~ X% =1, 0.
- N YZ2=0
a (Sm-C*) 0.
, \
X2 =0 (Sm-BL,) \
3 2 1 0
Y? FIG. 6. Dependence of the normalized Klon the BOOY. The

FIG. 5. The phase diagram in tha (¥) plane; the PT points of tilt de_c_reases when BOO |ncieases beDw The first-order phase
transition from Sm-* to SmB},, occurs whem\>1 (curvesa and

the first order(line a), the PT points of the second ordéne b), the b Th inal behavior fos — 1 For A<1 the il
critical pointK. The dashed line denotes metastability of the hexatic ). The marginal behavior faf =1 (curvec). For < t e ult
tited phase. FoT>T,, Y=0. The arrow shows a path when cool- saturates at a nonzero value and the system remains in tH& Sm-

ing the sample. Depending on the valuefothe tilted or untilted phase at low temperatures. The temperature @xisitrary unit3 is

hexatic phase can occur beldly. The schematically shown tem- shown schematically.
perature axis is in arbitrary units.

2. The bond-order temperature behavior
path in the phase diagram and the arrow in Fig. 5 is an The dependence of the BOO on the temperature follows
example. It means that on cooling the sequence,C3m- from Eq.(22b). The transition to the hexatic phase is of the
—.SM4* or SMC* —Smd* —SmBY., can appear dépend first order and the nonzero, even if very small, BOO exists
hex -

ing on the value ofA. One should realize that continuous &S© in the SME* phase. Since in the S@* is 6= o,

variation of BOO parameteY is assumed above, but due to Y<1 andg~gq,, the BOO can be expressed as

the first-order PT the jump up of occurs atT,. Therefore 5 .~

the SmC* — SmB:,, transition can also occur. v [36KAG  fi05v36K/«
On the basis of Eq(223 the tilt X as a function of the K02 ag(T—T))

bond-orderY can be calculated. The results are shown for

several values oA in.Fig. 6. In ord_er to see the tempgrature where T2=T2+a5136K[q§—(qA—qg)2]. The hexatic

dependence of.th.e t'IF angle, we Iptroduce schematically th hase transition temperatufe can be obtained in the form

temperature axis in Fig. 6. There is always a decrease of the

tilt caused by the appearance of the BOO. In the hexatic _ -1 2 4 2 —1n 2

phase the tilt, depending on the valueof can remain non- Ti=Tort ap "36K(GA— (a= ) + g "357/16y, 27

zero(path does not cross the lirrein Fig. 5) or it can drop

down to zero valudthe path crosses lin@). The latter case \yhereq depends on the BOO amplitudg [see Eq(15) or

corresponds to the first-order phase transition fromI8m- Eq. (20)], andA, is determined by the implicit expression
phase to the untilted S, phase. Fon2<1 the equation

<1, T>T,, (26

for the tilt can be written a¥?=1—A%Y*/(X?+Y?)?, or , — B+ B 4y(a—36K[d5— (da— D7)
Aoz , T<T| .
2y
(28)
X2=1- —(q-q,)? (29
bo o Not far belowT, the BOO can be expressed as

0

2a
2 50T
Equation(25) is implicit since theq vector itself depends on Ao=3|l/ay+ |8 (M=T), T<T. 29

X, see EQ.{(20). In the SmE* phaseY~0 and theng~q,

and X~1. In the hexatic phas¥ >0, theng>q, and X Expressiong27)—(29) were obtained under the assumption
<1. For largeA, the g vector approacheg, and the tilt  that;X® term in Eq.(22b) can be neglected beloW, . The
saturates at the value of?=1—(x/bfy)(ga—0q,)2. Sum- PT temperaturd, as such depends on temperatiirfvia
marizing, when crossing the PT to the hexatic phase the inand Ay, see Eqs(15), (27), (28)], which can modify linear
crease of BOO causes variation of th&ector(its deviation temperature dependencg9). In a particular case of non-
from q,) and consequently it results in the decrease of the tilcompeting helices, i.e., wheq,=qy, the temperaturd
angle. =T,+a, '36Kqa+ ay 138%/16y is in agreement with Eq.
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(7b). The same value of the PT temperature is obtained fowhere we puff =0 for simplicity, and also we omitted terms
the large values of\,, whenY>X (note that it impliesqy  5g65Aq(91p1— 92P,), 5g05P(I1€1+ 9,€,), i.e., among
~(a)- the g terms only bilinear coupling between the polarization
and the bond-order fluctuations, and the local potential terms
1. DYNAMICS proportional toﬁi and 19% are kept. These simplifications do

- . . not change the results qualitatively. Thesign corresponds
For the dynamic dielectric response we shall proceed iy f.=— ycg<0 and appearance of the S#i- phase, the
I )

the usual way[10]. First we need the variation of the free sign is for f.= — vca>0 and the Smi* phase. In the
energyF caused by small fluctuations around an equilibriumfonovging we wliII tre);tgonly the casd. >0 [\E)vith c.<0 g
— — — I ’
state,P=Pst+p, 0= 05+ 3, A=Agte, where >0, see Eq(5)] corresponding to the Si- phase. On the
p=S8(Poexplip))=(SPy+iddpPo)exfidp] basis of the Landau-Khalatnikov relaxation equations the dy-
_ _ namical equations can be derived as
=(pytipexdidp],
~Egsin(q2)=(x " +iwyp)Pa—cdr—gbger,
O= (9 +id)exdi(p,+ 7/2)],
0=—kd,—2kA ,;9,+(a+ 3b0(2)—)\2/1<+ KA%

e=(e tiey)exdi6 ¢al, (30 — 10y/c|g6%Ag) 91— cpy,
p; is the fluctuation of the amplitud@mplitudon, andp, is
the fluctuation of the phaséhason of the polarization. 0= —36Ké1—12KAAé2+(a+ 3,8A(2)+ 57A3—A2/K
Likewise we have amplitudoi}; and phasony, of the tilt
and amplitudore; and phasor, of the bond orientation. In +36KAZ+iwyer) €~ 90301,
case ofv>2 the incommensurate equilibrium structure ex-
ists in a finite temperature interval. We restrict further analy- —Eqco8qz)=(x 1+i ®Yp2)Pa—COp— gagez,

sis for the simple case<2 when a single helical structure
with wave vector(15) exists in the whole temperature range.

_ ' 2 2 2
Then the(second variation of free energy?2) reads 0=~ K+ 2kA 01+ (atbly— Nkt KAy

1 5 ) toian 1 ) ) +1OX|C|993A0)1(}2_CP27
SF = 5(a+3b63+ 2N+ kD) 95+ 5 (a+boZ+ 2N,

+K<.J52)192+K(1'92+1'92)+()\+K¢ V(919 919,) 0=—36Ke,+12KA e, + (a+ BAZ+ yAG— A2IK+36KAZ
¢/ V2T V1 2 o)\ U1V 1U2 +iwyez)ez—gﬁgp2, (32)
! - . 1

2 29,42 2

tola+3BAGH2(6A)pat 36K PleT+ slatBAT  where A,=q,—q, Ax=qa—7, SiX viscosities yp1, ¥p2.,
36K Y91, Yo2, Yei» Yer Of CcOrresponding quantities were intro-
+2(6A) pat 36K pxles+—— (el +e3) duced, andw is a frequency of homogeneous electric field

E=Egexp(wt). The solution can be found in the form

. . . 1
+(A+6K¢A)(ele2_ele2)+ ?X_l(pi"' pg) p1= plosinq Z, {}1: ﬁlosinq Z, elzelosinq Z,

= (D11t 02P2) 109 05PoA( 93~ 02) P2=PaC0SAZ, D= 20SA 2 €= €084 2,

+g05(p1€1+Poey)]— %(DJFD*)EX’ (3D and Eqs(32) reduce to
Xpi —c —g85 0 0 0 P10 —Ey
—c b 0 0 Ay 0 P10 0
—g83 0 :,xgg--[x,p: 0 0 ew| |0 33
0 0 1As xz! 0 —g63||ex 0
0 Ay O 0 Xz -—¢ Y20 0
0 0 0 —g6 —c X;2l P20 —Ey
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where ,,=12KqA ,=12K(da—a)d, X ,=2xqA,=2x(d, ) ’inﬂ(cz, T>T,
— , and the bare inverse susceptibilities and relaxation Yo2T92 =
tin?gg are g 7292 | g3+ xc?+10x|clgbgAy, T<T,,

(35b

71_ — . _
Xpr =X HOTp0). T = P, ao(T-Tp) +36K(aa=ap%  T>T,

YeTer = [ 3B%4y+8ag(T/—T)+36Kq2, T<T,,
X;21=X71(1+ [ prZ)v Tp2= Vp2X: (350

ag(T—Ty)+36K(ga—qy? T>T,

71 71 .
Xet =Xerd1+i1@7e1),  Te1™ YerXe10r —1_
Ye2Te2 =\ 36k g2, T<T,.

(35d)

Assuming saturatiofor only small temperature variatipof
0, far below T bare phasori35b) and amplitudon35g of
Xez = Xead 1+10Te2),  Tes= YeaXe20: the tilt are temperature independent in the Si-phase.
Below T,, a decrease of the amplitudon frequency and an
. ) 4 5 increase of the phason frequency take place. The latter can
Xez,0= a+ BAGT YA+ 36KAL, be understood realizing that d the hexatic order con-
denses and creates a local hexagonal potential, which in-
creases the restoring force for the molecular rotafibf.

Xero= -+ 3BAZ+5yAS+36KAZ,

-1__-1 H —
Xo1=Xord1+HioT1),  T91=¥a1X910, This effect is one of the candidates for explanation of ob-
served data as will be discussed in the following section.
. . 71 71 .
XBll,o: a+3b62+ kA2— 10y|c|gblA,, The bare relaxation frequencies; and 7., are equal in

the SmC* phase and they soften approachihg, while
splitting occurs belovl, , see Eqs(350 and(35d). At T, the
X521=X521,o(1+iw702): T92= V92X 92,00 BOO amplitudon exhibits a jump of

982116y~ 36K[(da—0y) >~ (da—a)°];

for noncompeting helices whegq=q,=q,, the jump is
A. Relaxation frequencies 92%/16y. The BOO phason decreases of

Xpa0=a+bO5+ kA5+10x|c|gbgA,. (34)

There are six modes: Three coupled amplitudppsd, > 2 5
e, and three coupled phasops, 9¥,, e,. There is no cou- — 38716y —36K[(da—0p)"~(9a=a)7]<0
pling between phasons and amplitudons of different quanti;

ties, but there is a coupling between the phason and amplmcreases from 0 in the SIB* to 384y in the hexatic

tudon of the same guantiiesd{, ¥, and e;, &) phase independently of the changeqofThe tilt and BOO

represented byA, and A, respectively. Dispersion of the phasons described above should mainly contribute to the di-
bare polarization modes connected with the rotational motiok|ectric spectra.

of molecules along their long axis can be neglected, since Tpe coupling constants, g, f cause bindings between
they exhibit high frequencies as compare with the tilt andgifferent amplitudons and, separately, between phasons and
BOO modes(and frequﬁelncyiv;/mdow of experimenti.e.,  the eigenmodes are actually hybrids of polarization, tilt, and
wTp~0,1=1, 2, andy,;"=x "~ The amplitudon and pha- BOO. Due to the coupling of the fast polarization modes
son of the tilt are related to the fluctuations of the tilt angleyith the slower tilt modes the positive tergc? disappears
and the rotation of the molecules on the cone, respectivelyn Egs.(35g and(35b), and the lower relaxation frequencies
These motions are of diffusive nature keeping the moleculagf the smc* phase are obtained. Due to the Couplgimj of

mass center immobile. The amp!itudon and phason of boanarizaﬁOH’ tilt, and BOO, corrections of relaxation fre-
order are the slowest modes, since they are related to the,ancies controlled bgzb.(l)o arise[10], so thatre, and 7e
) e e

difusive mgtion of the whqle moleculle(snolecular. Mass — gjightly differ even in the SnG* phase. Since these correc-
centers. Using Eqs.(22), which determine the equilibrium ions 46 not influence the basic temperature behavior, we
amplitudesf, andA,, the bare relaxation frequencies of the neglect them in the following. The remaining coupling pa-

tiit and BOO above and belo, can be expressed as rametersA, andA , in Eq. (33) are nonzero if the equilib-
5 ) ) rium q vector differs fromg, andq,, respectively. Then the
_, | 2bbotkaytxet, T, helix of the tilt and the helix of BOO are deformed, and the
Yo1To1 = 2062+ ko2 + yc2— 10x|c|gfiA,, T<T,, coupling of amplitudore; with phasone,, and~c0upling of
(359 ¥, with 9, appear. The interaction parametérg and A 4

for q=q,=0q, itis —3B%/16y). The gap betweee, ande,

021704-8
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can influence temperature behavior of the relaxation frequen- I PR 15 13
cies. The interaction of amplituda® with phasore, via the Ter =5 (Te + 72 * X Ter — Tez ) T4Vl Ye2 AR,
couplingA , results in additional shifts of relaxation frequen- (36)
cies. The qualitative behavior can be obtained considering

2X 2 matrix inside the dotted frame of E(B3). The shifted and above and below, they can be expressed éer sim-
relaxation frequencies 44, and 1f._ are plicity we put ye1= ve2= ¥e)

1 ao(T—=T,)+36K(ga—qg)>+Aa(Ad=0y), T>T,
YeTe+ = 2 = (37

3B%8y+dag(T,—T) +36Kq2 + V(3848y+4ao(T,—T))2+Aa(q=q,)% T<T,
o ag(T—T) +36K(da—0qp)°~Aa(G=0y), T>T, 8

VeTo = ~
© | 3828y +dag(T,— T)+36Ka2— \(3B%8y+4ay(T,—T)2+AA(q=q,% T<T,.
[
Above T, (whereA, is small and thereforg~q,), the gap Similar analysis can be done considering the coupling

between e-mode phason and amplitudon frequencies in-of the tilt angle phason and amplitudon, the schematic plot is
creases to EA(qwqe):ZM(qA—qa)qe, due to their cou- shown in Fig. 8. Abovel, whenqg~q, the phason and am-
pling [compare Eqs(35¢), (35d) and(37), (38)], see Fig. 7.  plitudon do not interact sinc ,~0. They are described by
Below T,, whereq,<q<qa, there is an increase of the Egs. (353 and (35b). Below T,, whereq>q, and Za(Q)

1/7e, frequency and decrease ofrd/ with respect to the >0, the gap between these modes increases with respect to
noninteracting case. The most important feature is the temggs. (3539 and (35b). It means that the magnitude of the
perature dependence of the BOO phasorn, 1/hear below increase of phason frequency in the hexatic pliesesed by

T, that hardens on cooling and finally saturates at lower temthe hexagonal potentjais partially reduced.

peraturegsee Fig. 7. At the same time the temperature de-
pendence of the BOO amplitudon7l/ exhibits a smaller
slope as compare with 44;. The temperature dependence of
the phason results from the nonzero valueAof(q=q,), The susceptibility is given by the equation

and thereforeq should be smaller thang, in the hexatic

phase. In Fi;q 7, a schematic plot is s[:{z)wn keeqmRgo A X(@) =Py}l Eo=(Px)/Eo, (39
constant in the hexatic phase. Cooling beldwthe q can

evolve increasing its value towarg, which causes the de- Where P,=3(p+ p*) = — p1cSinfgz—p,cosqz is the polar-

crease ofi, and thus makes hardening of the modes ever#ation induced by the homogeneous electric field, and its
spatial average across the sample dimenkioeads

B. Susceptibility

steeper.
-1
T91 —----mm - =1, -1
—1 T19+NT‘!91
To+ —
&
& oL
— Kkg2yyt
987w [P T s el
L 99 9—~Ty2
KqA’Ye
0
T-Tr

T E Ty
FIG. 8. Temperature dependence of the tilt relaxation frequen-
FIG. 7. Temperature dependence of the BOO relaxation frecies(schematic plgt Dotted lines represent the case of the nonin-
quenciegschematic plgt Dotted lines represent the case of nonin- teracting amplitudon and phaso {=0). The interaction that be-
teracting amplitudon and phasod {=0). The interaction causes comes nonzero belowl, causes displacements of relaxation
displacements of relaxation frequencies, increase of the gap arfdequencies, a decrease of the gap, but otherwise the relaxation
hardening of the phason beldly (full lines). frequencies remain temperature independtuit lines).
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0)

Sm-7* Sm-C* Sm-7* Sm-C*

x(0)
X2 (g =

7

<
™~
|
e
x(0)

(a) T-Tr (b} T-Tr

FIG. 9. Temperature dependence of the static susceptiligithematic plgt (@) BOO contribution. The dotted line describes the
noninteracting case wheﬂnA=0. The dashed horizontal line is a temperature independent backggg(ae 0). The interaction between
the BOO amplitudon and phason results in temperature dependent susceptibility in the hexatitbpfdsangle contribution. The dashed

horizontal line represents the case when the interaction between tilt and BOO is weak. In case of strong coupling of tilt and BOO, a
susceptibility decrease in the hexatic phase is expected.

L 1 ¢?X 261K
(P)= [fo P dz=— E(pm+ P20)- (40) 1= ~02X1‘}1X1?2 n g o ZAXelXeZI (46)
1-Afx91xo2 1—AxXe1Xe2
The general expression for the susceptibility can be obtained -~ o~ )
solving Egs.(33), (39), and(40) When Ay,=A,=0 (and thusq=q,=0,) then there is no
interaction between amplitudons and phasons and the sus-
X(@)=%1+ X2 (41) ceptibility consists of the pure amplitudon contributign

and the pure phason pé,%tz. Each of these terms can be
expressed as a sum of two relaxators, BOO and tilt angle

_ Pao 1— x1oX1 amplitudons and phasons, respectively, the eigenfrequencies
Xe= g TXe| 7T o | (42)  of which are, up to terms proportional @?63°, given by
0 X12X1X2 Egs. (35a—(35d). This case was discussed in REF0], but
without taking into account the elasticity of the BOO modu-
1— lation (i.e., A=K =0 was consideredThe presence of elas-
X1=— @:Xl T XX (43) ticity of BOO results in a shift ofeemode frequencies on
Eo 1—x2,x1x2 Kga in the hexatic phase.
When q,#qs, A,, A are nonzero, and the coupling
o2 G210 - between amplitudons and phasons exists. Consequgntly,
X22<szl— NZX‘?Z — ~2° Xe2 ) . (44 X yet cannot be treated as pure amplitudon and phason
1-Afxsixo2 1—AxXeiXe2 parts. We still assume, as usual, that the main contribution
comes from the phasonlike pan(w)~yx,. For simplicity
2 210 -1 we further assume that H—XlZXl)/(l_X?_ZXlXZ)%]-- The
Xl_(Xpll_ Cxor 9% Xer ) (45  contribution of the tilt phason x,(g=0)""=x,;
~ 2 ~ 2 1 ~
1-Abxo1xs2 1—AxXerXe2 —C?x92/(1—A%x 91x92) can be expressed as
3 T ' 1500
« 200 o Ae
g = oooo B
8 & 4 ooooo
g s £ 0% {400
[ = o©
160} = o®
2 goo I:\‘:‘IZIE|
o~ =
fd "o, 1300
120f , 125 wa,’mooO. [h ooy
110 120 130 100 110
@ T(C) (b) T(C)

FIG. 10. Phase transition S@* —Sm4* in (a) CBOCOOCH 15] and(b) CBOCOOCH 10]. (a) The tilt does not exhibit any anomaly
atT, (i.e., no competition between the tilt and BO@olarization increases &} due to the increase of BOO according to ). (b) The

softening of the BOO phason and decrease of its frequendy istin accord with 1f., temperature behavior. The permittivity increases
belowT, .
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l(a) j _—l—.-’_ I ' ' I ' ] 4
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FIG. 11. Phase transition S@* —Smd* in ZLL7/6 [16]. (a) Due to the appearance of BOO the tilt decreases on cooling in the hexatic
phaseg(consequence of competition between the tilt and BO®e same behavior shows polarizatid). The relaxation frequency increases
in the hexatic phasésimilar to the behavior of ¥/;_). The permittivity decreases in the hexatic phase.

Xz(9=0)7l=X(1—Z§XmXﬁz) relaxa_tlon frequency at th(_a transition to the hexatic phase,
see Figs. 9 and 8, respectively.

X1 1+

(Adx o1+ CHxVpaTo-
T+iory. 2. Tilt phason contribution
5 1 Here we consider the situation when the contribution of
*X(lJF XC V2 702) (477  the BOO phason discussed above is negligfile., x()
1tiwTyy ) =x»(g=0)] and the frequency window of experiment cover
the tilt angle phason dispersion. This situation can arise when
where 73t =733—A2y41xyys, the last term being valid the viscosity of the rotation of bond orientation, realized via
for Z%%O. diffusive motion of the whole molecules, is very higie.,
ver—0). It is expected especially for highly developed
hexatic orderA,. Then also the local potential in E35h)
proportional toA, becomes important and the main contri-

Then expanding with respect g?a(l)o the phasonlike part
of susceptibility can be written as

92980)(2(9 -0) ygleef bution comes from th_e tilt angle pha_ls_gg(g =0). The static
x(w)=~xo~x2(g=0)| 1+ 1T , susceptibility proportional tey, exhibits a drop at the tran-
tloTe sition to the hexatic phase and the relaxation frequeney,1/
(48) increases.

Finally, let us mention the phase transition €m-
—SmB},, that is also described by the model. It is charac-
terized by upright orientation of molecules in smectic layers
in the hexatic phasef,=0, polarization is no longer
coupled with BOO. The tilt angle phason in the By,
phase disappears, and the mode of the tilt angle fluctuations
~ (similar to the soft mode in the Sw-phase is the only
Egs. (37) and (38), and for A,~0 they become ¥.  gjglectrically active one. This case is characterized by the
=1/7e12. The relaxation frequencies of themodes are gisappearance of the observed relaxation process attributed

assumed being lower than those of the(ttlis reasonable in (g the phasons and the decrease of permittivity when entering
the vicinity of T, and in the hexatic phaseFurther we dis-  he yntilted hexatic phase from the SBA- phase.
tinguish two cases that could explain dielectric spectra in the

where

Tor (ltiwTer)

Te1 (LtioTey) =

is assumed and the relaxation frequencieg.lare given by

experiment.
IV. SUMMARY AND COMPARISON WITH
1. Bond-order phason contribution EXPERIMENTAL RESULTS
Let us neglect the local potential di&|x65Ao, which The theory describing static and dynamic properties in the

would cause a jump of,(g=0) [see Eqs(47) and(35b)].  vicinity of the phase transition to the hexatic phase is pre-
This assumption means that the condensed hexatic ordeented. Due to the competition between modulations of the
does not hinder rotation of the tilt. It could occur when, for molecular tilt and BOO, the incommensurate structure can
instance, the amplituda, of BOO remains relatively small appear in the finite temperature range arolipdand in the

in the hexatic phase. In the dispersion region of the BOhexatic phase the pitch of helix can char{gerease or de-
phason, the susceptibility of the tilt phasga(g=0) is as-  creasg resulting in decrease of the molecular tilt angle. The
sumed frequency independent and the temperature depeemperature dependence of the tilt is in very good agreement
dence of the dielectric strength proportionagﬁﬂéO is given  with observations on several compounds, in which the tilt
by 7e, oOr 7._, depending on whether the interaction be-angle exhibits either no change or decrease, see Figs. 10
tween phason and amplitudon is important. The main featurand 11. The phase diagram of the model also predicts so
here is an increase of the permittivity and a decrease of thiar not observed phase transition sequence GSm-
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—Smd* (SmF*)—SmBf,,, or a direct transition from the Situations are suggested being observed in experiment, the

Sm_C* phase to the unt”ted Chira' hexatic Sﬁﬁéx phase first one in the SubStance.S C80CO0C6 and C80COO0C5

due to the discontinuous character of the hexatic order ag-10.15, and the latter one in compound ZLL7/86].

pearance. However, the phase sequencesCSasm+ In the experiment single relaxation was observed and fit-

—SmB,ex and SME— Sm-B,,., Were observed in nonchiral ted with the cole-cole expression with the exponent1

compound$17,18. To explain such sequences, the existencdtypically ~0.8), and the existence of two close processes

of an additional mechanism should be considered. could not be excluded. However, more probably the relax-
Dynamics is contributed by three amplitudons and threedtion due to the tilt angle phason only can be expected, since

phasons of the fast p0|arizati0n modes and slower tilt ang|§1e bond orientation variation connected with diffusive mo-

and BOO modes. The main contribution to the dielectric redion of the whole molecules is very slow, and the relaxation

sponse is proposed to come from the tilt angle phason antiequency of the BOO phason should occur in the frequency

(or) the BOO phason_ When the BOO phason is Strongang_e! where it is overwhelmed by the Iow-frequency con-

enough, the softening of the relaxation frequency in theductivity.

Sm-C* phase occurs when approachifig, and the permit-

tivity i_ncreases and the reIaxation. frequency decrgases in the ACKNOWLEDGMENT
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