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Nonequilibrium wetting transitions with short range forces
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We analyze within mean-field theory as well as numerically a Kardar-Parisi-Zhang equation that describes
nonequilibrium wetting. Both complete and critical wettitng transitions were found and characterized in detail.
For one-dimensional substrates the critical weting temperature is depressed by fluctuations. In addition, we
have investigated a region in the space of paramétensperature and chemical potentielhere the wet and
nonwet phases coexist. Finite-size scaling analysis of the interfacial detaching times indicates that the finite
coexistence region survives in the thermodynamic limit. Within this region we have obgstabte or very
long lived) structures related to spatiotemporal intermittency in other systems. In the interfacial representation
these structures exhibit perfect triangulpyramida) patterns in one dimensioiiwo dimensiong which are
characterized by their slope and size distribution.
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I. INTRODUCTION wetting[1]. A study of complete wetting requires adding a
linear termuh to the Hamiltonian(1).
When a bulk phase is placed into contact with a sub- A dynamic model for the growth of wetting layers has
strate, a layer of a second, coexisting, phgsmay form if  been proposed through the Langevin equafi&h
the substrate preferentially adsorbs it. Avatting transition .y v
the thickness of thes layer diverges. Equilibrium wetting _ oo 9
has been experimentally observed and theoretically investi- dh(x) == 5o+ n=vVh=—o+ 9, ©)
gated using, among many other techniques, interface dis-
placement modelgl—3]. Within this approach one considers where » is Gaussian white noise with mean and variance
the local height of thex-8 interface measured from the sub-
strate, h(x), and constructs an effective interface Hamil- (n(x,1))=0,
tonianH(h) [4]. In equilibrium situations, one typically has
(n(xD7(x' t))=2D8(t—t")8(x-x"). (4

= 11
7-[(h)=f0 dx Ev(Vh)z—i-V(h)

' (1) Equation(3) is an Edwards-Wilkinso(EW) growth equation
[7,8] in the presence of an effective interface potentigh).
wherev is the interfacial tension of the-g3 interface(or the It describes the relaxation of the interfacial heightowards
interfacial stiffness if the medium is anisotropiand V(h) its equilibrium value, i.e., the value &f that minimizesH.
accounts for the interaction between the substrate and th4/ithin this contextu can be viewed as an external driving

a- interface. force acting on the interface. Recall that in the absence of the
If all the microscopic interactions are short ranged, onewall, the corresponding equilibrium states fer<0 and u
may take for sufficiently largé at bulk coexistencé3] >0 are thea and g phases, respectively, whereas phase
coexistence occurs at=0.
V(h)=b(T)e "+ce 2", 2) Equilibrium models, however, are not sufficient to study

wetting in nature, since in a wide range of phenomeng.,

where T is the temperatureb(T) vanishes linearly a§  growth of thin films, spreading of liquids on solids, or crystal
—Tw, Tw being the wetting temperature, aod-0 [5]. By ~ growth) thermal equilibrium may not hold. Nonequilibrium
minimizing Eq. (1) one finds[1,3] a critical wetting transi-  wetting transitions have been recently studied by Hinrichsen
tion at b=0, i.e. the interface heighior equivalently, the et al. [9] in a lattice (restricted solid-on-solidmodel with
wetting layer thicknegs(h) diverges continuously as~T  dynamics that do not obey detailed balance. The continuum
—Tw—bw=0". Equilibrium critical wetting has been stud- nonequilibrium counterpart of this discrete model is a
ied for decades and a ridimonclassical behavior predicted Kardar-Parisi-ZhangKPZ) equation in the presence of a
[1,2]. bounding potential, whose properties have been analyzed ex-

Wetting transitions may also be driven by the chemicaltensively by one of the authors and collaboratft,13.
potential difference between thg and a phasesu. In this  Clearly, this is the most natural extension of the EW equilib-
case wetting occurs at any temperature abdyge(i.e., for  rium growth model to nonequilibrium situations. In fact, in
b>b,,) as u=0 is approached from the phase. This is the absence of a substrate the KPZ nonlinearity h)? is
always a continuous transition and it is knownamsnplete generically the most relevant nonequilibrium perturbation to
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the equilibrium EW equatiofi8]. The KPZ nonlinearity is It is our purpose to study the effects of a substrate that
related to lateral growth, and although this mechanism isdsorbs preferentially one of the two phases on the stationary
unlikely to be relevant in simple fluids, it may determine theproperties of the interface. This is achieved by considebing
wetting behavior of systems with anisotropic interactions forto be negative in Eq5).

which the growth of tilted interfaces depends on their orien- This same equation, E¢G), has been recently studied by
tation [14]. For instance, it has been shown that crystalGiada et al. [17] as a generic nonequilibrium continuum
growth from atomic beams is described by the KPZ equationmodel for interfacial growth. However, their choice of con-
[15]. From a theoretical point of view a key and ambitioustrol parameterg17] privileges the role of the noise as the
task is that of developing general criteria to establish whethedriving force of the nonequilibrium transitions. By contrast,
the KPZ nonlinear term should be included in a given inter-motivated by the role of the chemical potential and tempera-
facial model. ture in equilibrium wetting, we fix the noise intensity and

Related works published recently by ‘Nar et al. [16], choosea andb as control parameters that are the fields driv-
Giada and Marsil[17], Hinrichsenet al.[18], and ourselves ing critical and complete wetting transitions.

[10], consider similar nonequilibrium models in the presence To establish the analogy with equilibrium, let us stress
of various types of walls. that just like inequilibrium complete wettingnonequilib-

In this paper, we further study the KPZ interfacial equa-rium complete wettingpccurs when the attractive potential
tion in the presence of different types of potentials, attractivev/(h) is not capable of binding the interface, at temperatures
and repulsive. We focus on the connection of the associateabove the wetting transition temperatute>b,,, as the
phenomenology with nonequilibrium wetting and depinningchemical potential approaches that of “bulk coexistence,”
transitions. In particular, we will stress that the transitionsu— u.. At this transition the interface begins to move and
called “first-order nonequilibrium wetting” in Refl18] are  (h) diverges. On the other hand, thenequilibriumanalog
not wetting transitions but, rather, depinning transitions.of critical wetting corresponds to the unbinding of a bound
Also, we study the two-dimensional version of this model,interface at “bulk coexistence,it= ., asb—by.
and report on hitherto unknown phenomenology. In order to analyze Eq(5) it is convenient to perform a

The remainder of this paper is organized as follows. In thECo|e-Hopf change of variable(x,t) = — In n(x,t), leading to
following section we introduce our KPZ-like model. A mean-

field picture is provided in Sec. Ill, and its predictions nu-

. . . . aVv(n)
merically tested in Sec. IV. The conclusions are summarized an=vV2n— +n7y, (6)
in the final section. an

with V(n)=an?/2+bn%3+cn*4. This describes the inter-
face problem as a diffusionlike equation withultiplicative
The model under study is defined by the Langevin equanoise[11,21]. In this representation, the unbinding from the

Il. THE MODEL

tion, wall ((h)—o°) corresponds to a transition into absorbing
state(n)—0. In the following we will use both languageds,
aV(h) and n, indistinctly, although the natural description of wet-
dh(x,t)=vV2h+\(Vh)?— —n (5)  ting is in terms ofh. The caseb>0 was studied in Refs.
J [9,11], while b<0 is the case studied in Ref§10,16—
18,22
whereV(h)=—(a+1)h+be "+ce "2, c>0, 7 obeys Note that we have made use of Ito calculus, and thus Eq.
Eqg. (4), anda+ 1= u is a chemical potential. (6) should be interpreted in the Ito senf&&8]. In general,

In the absence of the exponential terftie limiting wal)  potentials of the fornbnP™2/(p+2)+cn??™2/(2p+2) with
the interface moves with a nonzero positivegative mean  p>0 result in equivalent effective Hamiltonians since, when
velocity for u larger (smallep than a certain critical value expressed in terms df, p can be eliminated by redefining
ie. In one dimensionu, can be found analytically since the height scale. The cage=2 (with fixed b<<0) has been
both the KPZ and EW equations have the same Gaussiagtudied in Ref[22] in the context of stochastic spatiotempo-
steady-state height distributiof8]. Thus u.=\((Vh)?), ral intermittency (STI). The unsuspected connections be-
which for discrete lattices can be approximated[b9] ».  tween these two problems are illustrated in the following
=—(DMN)/(2vA), A being the lattice cutoff. Note that for sections.
A #0 a nonzero chemical potential is required to balance the
force exerted by the nonlinear term on the tilted interfacial
regions. Forn =0 the model reduces to the equilibrium one

andu.=0 as usual. For negative values)the interface is In this section we analyze E¢p) at the mean-field level.

is pulled away from the wall. Thus the behavior of the sys-|attice

tem is determined by the sign &f[20]. In this paper we will

considerA <0 only (which corresponds to the case studied

using microscopic modelgl8]). Results for positive values P n-=l E (ni—n;)—
. . th 2d 4 J I

of A will be published elsewhere. ]

IIl. MEAN FIELD

aV(n,
(9(—nri])+ni77i- (7)
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wheren;=n(x;,t) and the sum ovej runs over the nearest
neighbors ofi. The Fokker-Planck equation for the one-site
stationary probabilityP(n;) can be easily worked out. In
mean-field approximatiofi.e., substituting the values of the
nearest neighbors by the averagevalue, the stationary
Fokker-Planck equation fdd=1 is

2

a [av(n) P
o +-o[n?P(m]=0 (@)

Jon| dn

+v(n=(Nn))P(n)

and its associated solution

P(n,(n)):Néexp_ fon v (n)+v§n—(n>)dn,

9

n

where the integration constaNtis determined by a normal-
ization condition and({n) is obtained from the self-
consistency requirement

J:dnnP(n,<n>)

(n)= =F((n)). (10

fxan(n,<n>)
0
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FIG. 1. Mean-field phase diagram and typical solutions of the
equationF({n)) =(n) (temperature in units such thiaf=1).

appears discontinuously as a functionaodndb, the transi-
tion is first order(dash-dotted and dashed line$he corre-
sponding phase diagram is depicted in Fig. 1. The solid line
is a second-order phase boundary from nonwet to wet sub-
strates. Between the two dotted lines, the wet and nonwet
phases coexist as stationary solutions of the dynamical equa-
tion. The three lines join at the tricritical point a&=b=0.

In order to determine the order parameter critical expo-

Let us consider two limiting cases where analytic solutiong'®nt in mean-field approximation, we proceed as in Ref.
of Eq. (10) can be worked out. In the zero-dimensional case[13]- First, we rewrite Eq(10) as

or equivalentlyr=0, the solution of Eq(8) reads

b p+c 2p
n an

na+2

exp— (

P(n)=N , (12)

which, in terms of heights, i$(h)~exd(a+1)h—be "/p
—ce /2p] and yields the effective potentiaWq¢¢(h)
= —InP(h)=—(a+1)h+be "p+ce ?/2p. Clearly, this co-
incides with the potential in Ed5). A complete wettingran-
sition occurs when approachireg= — 1 with b>0 and criti-
cal wetting is found ah=—1 with b=0.

For spatially extended systems, in the=« limit, a
saddle-point expansion in yields V'(n)=0 [17,24]. Thus,

the dynamical behavior in this limit is that of the determin-

istic mean-field version of E(8): for any p>0, there is a
line of second-order wetting transitions @a=0 andb>0,
and a line of first-order transitions @>0 and b= —(p

2p

o b t
ny"l=—-9¢ |nf dttaexp(——tp—
<> (n) 0 p

—(mt
7p e . (12

Next, we introduce a Gaussian transformation and expand
the resulting integrals for smalh). We find(n)~|a|'?, and
thusa.=0 andB=1/p.

IV. BEYOND MEAN-FIELD THEORY

In this section we explore whether the mean-field phase
diagram structure survives when the effects of fluctuations
are taken into account. Mean-field exponents are expected to
hold above the upper critical dimensiah, which in the
present case, E¢p), is known to bed.= 2 (corresponding to
three bulk dimensions and in the weak coupling regime of
the KP2) [11]. For positive values of b andl>2, the second
term n?P*2 in the effective potential is irrelevaftl] and

+2)yac/(p+1). These lines meet at a tricritical point at the then we are left with

origin.

For values ofv other than zero or, the self-consistency
equation{n)=F((n)) has to be solved numerically. Without
loss of generality, we sgt=2, c=1, and illustrate in Fig. 1
the three different regimes: one stable solutior(mt=0
(dash-dotted ling one unstable solution gn)=0 and a
stable one afn)# 0 (solid line); two stable solutions and an
unstable onédashed ling Stable solutions can be identified
by a negative slope df({n))—(n) at the intersection point
[25]. A nonzero solution emerging continuously frofn)
=0 as a function ofa andb, signals a second-order transi-

dn=vV2n—an—bnP"l+ny, (13
defining the multiplicative-noise (MN) universality class
[11].

We have solved Eq6) numerically for different system
dimensions. In particular, for a one-dimensional substrate we
have considered a system sike=1000, v=p=2, D=1,
and c=1.5. The time step and the mesh size were set to
0.001 and 1, respectively. We started by determining the
chemical potential for which the free interface has zero av-

tion. This is the case for the dash-dotted and the solid lines ierage velocity. For the parameters given above we found
the inset of Fig. 1. By contrast, when the nontrivial solutiona,~—0.064. Then we fixa=a, and calculate{n(t)) for
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1 s Y near its critical value. A&-—a. a continuous transition into

o e an absorbing state=0 is observed; it is the nonequilibrium

\‘n\ counterpart of complete wetting. The associated critical ex-

P ,‘fﬁ ? ponent is found to bgg=1.65+0.05, in good agreement

with the prediction for the MN classg=1.5+0.1 [13].
Other positive values df yield similar results. In addition,

0.998 L - " —

0.74 -070 -0.66 we have simulated systems above the upper critical dimen
b sion, ind=3, with L=25, b=5, and other parameters as in
0 . . the one-dimensional case. Our best estimate gois 8
L =0.96+0.05, indicating that this transition is governed by
1k _ the weak noise fixed point of the MN clagkl]. For larger
2 L o ] values of the noise amplitude we find a strong coupling tran-
T2F @ e sition, in agreement with the theoretical prediction,13.

g Finally, we note that both numerical and renormalization
- 1 group arguments lead =1 in the weak coupling regime,
25 -1.7 09 -0.1 independently of the value @f[11]. This is at odds with the

In|b-by| mean-field prediction3=1/p. Birner et al. [12] have re-
cently suggested a transition fromplio a nonuniversal be-
havior depending on the ratio of the noise to the strength of
the spatial coupling. However, this discrepancy appears to be
generic since different types of mean-field approaches yield
the samgiincorrec) result and the origin of the discrepancy
remains uncleafl13].

Since the Cole-Hopf transform of the MN equation is the
same as KPZ with an additional exponential term, the MN
exponents are those of KPZ iff the extra term is an irrelevant
term of the KPZ renormalization group flow. Note that the
Cole-Hopf transform fixes the value af v and thus thex
=0 limit cannot be considered when this transformation is

To study critical wetting we sei=a. and consider small used. In addition, the potenti¥l(h) is a relevant term of the
values ofb for which an initially pinned interface remains EW equation. In this regime adding a nonlinear potential is a
pinned, and increade progressively until the nonwet phase relevant perturbation and it does indeed change or determine
becomes unstable &ty . The critical point is estimated as the wetting exponent&f. with the literature on equilibrium
the valueb,y, that maximizes the linear correlation coefficient wetting[1]). ThusEW plus a (nonlinear) wetting potential is
of In(n) versus lfb—by/; the critical exponent is then deter- not equivalent to KPZ in the weak coupling regime plus the
mined from the corresponding slof€ig. 2). It is found that same wetting potential
the critical “temperature” is depressed from its mean-field
valueb,,=0 to by,=—0.70+0.01, with an associated criti- C. Depinning transition at b<byy
cal exponenB=1.20+0.01(the error in the exponent comes
from a least-squares fitBelow (above that value we find
first- (second} order depinning transitions, by varying
Therefore, as in mean field, there is a “tricritical” point,
joining a line of second-order transitions>b,y) with one
of first-order transitionsl{<byy). The critical exponents and
universality of this multiplicative-noise tricritical point have
not been investigated before

FIG. 2. (Color online Top: linear correlation coefficient for im
as a function of Itb—by/ for different values ob,, . The maximum
gives the best estimate bfy=—0.70+0.01. Bottom: log-log plot
of Inn as a function of ltb—by/] in the vicinity of the critical point.
The line is a least-squares fit; from its slope the critical wetting
exponent is found to be 1.200.02

different values ob and larget. Length and time units are in
lattice spacings and Monte Carlo steps, respectively.

A. Critical wetting

As expected, no transition is found as-a. when Eq.(6)
is solved numerically fob<b,,. Of course, the system un-
dergoes a pinning or depinning transition when crossing the
a.=0 boundary line, but this transition is driven by the
chemical potential difference rather than by the substrate po-
tential and thus it is unrelated to wetting, where phase coex-
istence of the “liquid” and “gas” phases is requirgde., a
The finite coexistence region allows us to define critical_aC)' A very rich phenomenology associated with these

wetting along a range of different paths, delimited by thetransitions has been found, however. Ber —4 we find that
dashed lines in the mean-field diagram of Fig. 1. We havéhe nonwet phase becomes unstabla’at-1.3 and that the

checked that the value @ does not change when the critical g:éfg;i/e ﬁ]efﬁ?;?£sia§fa@f Eo?ﬁosrféizsecfc())étisio%is
point is approached along different paths within this region. eans that if the interface is initially close to the wafl (

Further numerical and analytical studies of this universalit)/n . . . R S
class will be left for future work. >1) it remains pinned, while if it is initially far from the

wall (n=<1) it detaches and moves away with a constant
velocity. Therefore, the system undergoes a first-order tran-
sition as a function ofa. In order to establish the phase
We consider a one-dimensional substrate, withk 1 boundaries we have used the following criteria. The stability
>hyy, let the system evolve to the stationary state and thewof the pinned phase may be characterized by the tirtaden
compute the order parametém) for different values ofa by the interface to depin in the limit—c. 7 can be defined

B. Complete wetting,b>hb,y case

021607-4
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FIG. 3. (a) Characteristic depinning times anid) ss-pdf for
various representative values af

. . . FIG. 5. Instantaneous configuration of the interface for time
as the time taken by the last site of the interface to detac@lice 400(marked with a line in Fig. # Parameters as in Fig. 4.

h(x)>0 orn(x)<1 Vx. Similarly, we may definer as the
time characterizing the asymptotic exponential decay o
(n(t)), where the angular brackets denote averages of ind
pendent rungtypically 1—10° in our simulations We

have verified that both definitions yield analogous results. A

g " Jo4 :
shown in Fig. &), for a>a”, 7 saturates with increasing gaie with(n)>0. In the power-law regime, however, the

system size and thus the interface detaches in a finite tim?‘ristogram develops a secondary maximum rea, indi-
Within the coexistence region we have found two d|ﬁ‘erentCating that a fraction of the interface depins. A@creases,

regimes: close to the stability threshold of the pinned phasgqe secondary maximum, at zempincreases while the maxi-
there is a narrow stripe 1.22a<1.3 where the detaching "4 finiten, decreases. At the stability edga*(~1.3)

time grows approx_lmately as a power law. Faqr_sasl.zz the histogram changes abruptly into a delta functiom at

7 grows exponentially with_. In both casesr diverges as  _ 514 the pinned phase becomes unstable.

L—, implying that the pinned phase is stable in the ther- 1y ifferences between the exponential and power-law
modynamic limit. Due to the very large characteristic times'regimes are also observed in a space-time snapshot of a nu-
we cannot discard the possibility that the power laws are alsq Srical solution of Eq(6). In Fig. 4 we plot the stationary
(asymptotically exponentials. The study of the asymptotic ey 1y tor 5=1.28, exhibiting patterns characteristic of STI

behavior of the detaching times feq“.ife.s Ionger simulations[,zz]_ The main feature of these patterns is the appearance of
beyond our current computer capabilities. Finally, the non'depinned patchebsent for values od in the exponential
monotonic behavior of the characteristic times, as well as th

in th foR—1.28 b d for by th ?egime with a wide range of sizes and lifetimes within the
;E(eez;g;eeo?u{v\(/i gﬁfgre.nt 'cgqma);;eti?wgclfn%ucr;wt:nisgs 321; 3 erp:inned phase. This regime, overlooked in previous studies of
; . o ; __~nonequilibrium depinning transitior]47,18, seems to cor-
scribed in Ref[10]: once a site is detached it pulls out its d P g l 8

. ; ) ; . respond to the power-law regime described earlier. It is
nelghbors' that, in trn, pull out thelr nellghbor's ina cascadgyqrefore restricted to a narrow range between the exponen-
effect until the whole interface is depinned in a time thattial and the depinned regimes. This finding is at odds with

grows linearly V\.’ithl" This _is more likely for _small SYStems, requits of previous work claiming that STI is generic in the
but the probability that a site gets detached increases with th@oexistence regiof22].

Ess-pdi, defined as the average oft) over pinned states
Father than over all runs. Figure 3 shows the unnormalized
ss-pdf for different values o&. In the exponential regime
?a<1.22) the histogram exhibits a maximum at a pinned

system size. . . . A typical profile in terms ofh is shown in Fig. 5. The
Another way to characterize the power-law regime is to
analyze the single-site stationary probability density function 1 : : :
=8 =212
60 a=2.14| |
3 > g=215| 3
f a4 g=2.16] ]
10°f .
AAMAAAAA%A!\
S
107*f 1
-6- L 1 L 1 L 1 L ]
107 50 100 150 200

FIG. 4. Configuration in then representation foa=1.18 and
b= —4. Depinned regionsn<1) are colored in dark gray and
pinned onesi{>1) in light gray. 1000 time slices are depicted at  FIG. 6. Distribution of triangles as a function of the size of the
intervals of 50 time uints. The system sizelis 500. triangular base, foa=2.12, 2.14, 2.15, and 2.16.

Base size
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depinned interfacial regions form triangles with constant av-different triangles, we find an average slapel.781, while
erage slopes. These triangular droplets are similar to thosethe value of\ g calculated from the tilt-dependent velocity of
described in the discrete model of REE8]. By taking aver-  the depinned interfacg8] yields A\g= —0.9934 from which

ages of Eq(5), the typical slopes of the triangular facets is s=1.784, in excellent agreement with the previously mea-
determined through sured value.

We also studied the size distribution of triangles within
2
INRIs*=a+1, 149 the power-law regime. Our results correspondvtep=D

=1,A=-1, L=500,b=—4, and the following values of
where A is the renormalized nonlinear coefficient of the a: 2.12,2.14,2.15, and 2.16, and are summarized in Fig. 6.

KPZ equation. In order to verify Eq14) we have fixedv  a=~2.10 is the boundary between the power law and expo-
=p=D=1, A\=-1, anda=2.16. Averaging over 250.000 nential regimes and the pinned phase is unstableafor

021607-6



NONEQUILIBRIUM WETTING TRANSITIONS WITH . .. PHYSICAL REVIEW E67, 021607 (2003

~2.18. The maximum size of the depinned regions increasetheoretical calculations at the mean-field level. Numerical
as this instability is approached. Our data suggest an expsimulations reproduce a phase diagram analogous to that ob-
nential dependence on the size of the triangular base. Thigined within mean field, including first- as well as second-
indicates that there is a maximum size for the depinned reerder phase transitions. In particular, we have found com-
gions and thus rigorous scale invariaritgpical of growth  plete wetting and critical wetting transitions, as well as a
driven by a coarsening mechanisof the STl region is ruled finite area in the temperature-chemical potential phase dia-
out. More explicitly, the distribution of triangle sizek,is  gram where pinned and depinned phases coexist. This finite
described very well by the function e¢44@—2.176)], coexistence region allows us to define critical wetting along
implying that the exponential slopes in Fig. 6 are propor-a range of paths that are, however, characterized by the same
tional toa—a*. Clearly, triangles with a base less tha2,3  critical exponents. Within this area we identified two re-
cannot be visualized due to the discretization of E&}. A  gimes. In the first, the lifetime of the pinned phase grows
simple extrapolation indicates that the triangles become imexponentially with increasing system size and its ss-pdf is
perceptibly small fora~2.05, in good agreement with the bell shaped. The second one exhibits STI, lifetimes consis-
value obtained for the boundary between the power-law antent with a power law, and a double-peaked ss-pdf. The main
exponential regimes. Therefore, we cannot rule out the podeature of the latter regime is the presence of triangular struc-
sibility that the triangles are ubiquitous throughout the coexiures that have been characterized by their slopes and size
istence regior(although not always visible in a discrete nu- distributions.
merical simulation in which case the power-law detaching  An interesting open problem is that of the equilibrium
times should turn into exponentials for large enough timedimit of nonequilibrium wetting. The Cole-Hopf transform
and system sizes. In this case the force exerted by the noprecludes the limin=0 to be studied using this method.
linear KPZ term on the triangular facets against the directiorMoreover, we have noted how the behavior of the EW equa-
of growth, at late times, guarantees the stability of the pinnedion in the presence of a wetting potential differs from the
phas€g 18] throughout the finite coexistence region. weak-noise regime of the MN equation. This leaves the
Finally, we study the phase-coexistence regime in a twoerossover to equilibrium wetting an open challenge. In addi-
dimensional system to check whether the triangular patterngon, the effects of long-ranged potentials on the phenom-
survive in higher dimensionalities. In particular, we considerenology described here remain to be investigated.
a system size 100100 and take=2, b= —4, well within Finally, it would be extremely interesting to develop ex-
the coexistence region. We find structures as those shown @eriments in order to explore the rich, nonequilibrium phe-
Fig. 7: the triangles becoming pyramids. Note that the edgesomenology described in the previous sections; liquid-
of the pyramid bases are parallel to the axes of the discretisrystals are in our opinion good candidates for this. It is our
zation lattice. This suggests that the pyramids are lattice artdiope that this work will stimulate experimental studies in
facts and that a continuum system may exhibit conical structhis direction.
tures.
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