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Nonequilibrium wetting transitions with short range forces
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We analyze within mean-field theory as well as numerically a Kardar-Parisi-Zhang equation that describes
nonequilibrium wetting. Both complete and critical wettitng transitions were found and characterized in detail.
For one-dimensional substrates the critical weting temperature is depressed by fluctuations. In addition, we
have investigated a region in the space of parameters~temperature and chemical potential! where the wet and
nonwet phases coexist. Finite-size scaling analysis of the interfacial detaching times indicates that the finite
coexistence region survives in the thermodynamic limit. Within this region we have observed~stable or very
long lived! structures related to spatiotemporal intermittency in other systems. In the interfacial representation
these structures exhibit perfect triangular~pyramidal! patterns in one dimension~two dimensions!, which are
characterized by their slope and size distribution.

DOI: 10.1103/PhysRevE.67.021607 PACS number~s!: 68.08.Bc, 05.10.2a, 64.60.2i
-

s
d
rs
b-
il-
s

t

n

-

ca

a

s

g
the

se

dy

al

sen

um
a

a
ex-

ib-
in

to
I. INTRODUCTION

When a bulk phasea is placed into contact with a sub
strate, a layer of a second, coexisting, phaseb may form if
the substrate preferentially adsorbs it. At awetting transition,
the thickness of theb layer diverges. Equilibrium wetting
has been experimentally observed and theoretically inve
gated using, among many other techniques, interface
placement models@1–3#. Within this approach one conside
the local height of thea-b interface measured from the su
strate, h(x), and constructs an effective interface Ham
tonianH(h) @4#. In equilibrium situations, one typically ha

H~h!5E
0

`

dxF1

2
n~¹h!21V~h!G , ~1!

wheren is the interfacial tension of thea-b interface~or the
interfacial stiffness if the medium is anisotropic! and V(h)
accounts for the interaction between the substrate and
a-b interface.

If all the microscopic interactions are short ranged, o
may take for sufficiently largeh at bulk coexistence@3#

V~h!5b~T!e2h1ce22h, ~2!

where T is the temperature,b(T) vanishes linearly asT
2TW , TW being the wetting temperature, andc.0 @5#. By
minimizing Eq. ~1! one finds@1,3# a critical wetting transi-
tion at b50, i.e. the interface height~or equivalently, the
wetting layer thickness! ^h& diverges continuously asb;T
2TW→bW502. Equilibrium critical wetting has been stud
ied for decades and a rich~nonclassical! behavior predicted
@1,2#.

Wetting transitions may also be driven by the chemi
potential difference between theb anda phases,m. In this
case wetting occurs at any temperature aboveTW ~i.e., for
b.bW) as m50 is approached from thea phase. This is
always a continuous transition and it is known ascomplete
1063-651X/2003/67~2!/021607~8!/$20.00 67 0216
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wetting @1#. A study of complete wetting requires adding
linear termmh to the Hamiltonian~1!.

A dynamic model for the growth of wetting layers ha
been proposed through the Langevin equation@6#

] th~x,t !52
dH
dh

1h5n¹2h2
]V

]h
1h, ~3!

whereh is Gaussian white noise with mean and variance

^h~x,t !&50,

^h~x,t !h~x8,t8!&52Dd~ t2t8!d~x2x8!. ~4!

Equation~3! is an Edwards-Wilkinson~EW! growth equation
@7,8# in the presence of an effective interface potentialV(h).
It describes the relaxation of the interfacial heighth towards
its equilibrium value, i.e., the value ofh that minimizesH.
Within this contextm can be viewed as an external drivin
force acting on the interface. Recall that in the absence of
wall, the corresponding equilibrium states form,0 andm
.0 are thea and b phases, respectively, whereas pha
coexistence occurs atm50.

Equilibrium models, however, are not sufficient to stu
wetting in nature, since in a wide range of phenomena~e.g.,
growth of thin films, spreading of liquids on solids, or cryst
growth! thermal equilibrium may not hold. Nonequilibrium
wetting transitions have been recently studied by Hinrich
et al. @9# in a lattice ~restricted solid-on-solid! model with
dynamics that do not obey detailed balance. The continu
nonequilibrium counterpart of this discrete model is
Kardar-Parisi-Zhang~KPZ! equation in the presence of
bounding potential, whose properties have been analyzed
tensively by one of the authors and collaborators@11,13#.
Clearly, this is the most natural extension of the EW equil
rium growth model to nonequilibrium situations. In fact,
the absence of a substrate the KPZ nonlinearityl(¹h)2 is
generically the most relevant nonequilibrium perturbation
©2003 The American Physical Society07-1
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the equilibrium EW equation@8#. The KPZ nonlinearity is
related to lateral growth, and although this mechanism
unlikely to be relevant in simple fluids, it may determine t
wetting behavior of systems with anisotropic interactions
which the growth of tilted interfaces depends on their orie
tation @14#. For instance, it has been shown that crys
growth from atomic beams is described by the KPZ equa
@15#. From a theoretical point of view a key and ambitio
task is that of developing general criteria to establish whe
the KPZ nonlinear term should be included in a given int
facial model.

Related works published recently by Mu¨ller et al. @16#,
Giada and Marsili@17#, Hinrichsenet al. @18#, and ourselves
@10#, consider similar nonequilibrium models in the presen
of various types of walls.

In this paper, we further study the KPZ interfacial equ
tion in the presence of different types of potentials, attract
and repulsive. We focus on the connection of the associ
phenomenology with nonequilibrium wetting and depinni
transitions. In particular, we will stress that the transitio
called ‘‘first-order nonequilibrium wetting’’ in Ref.@18# are
not wetting transitions but, rather, depinning transitio
Also, we study the two-dimensional version of this mod
and report on hitherto unknown phenomenology.

The remainder of this paper is organized as follows. In
following section we introduce our KPZ-like model. A mea
field picture is provided in Sec. III, and its predictions n
merically tested in Sec. IV. The conclusions are summari
in the final section.

II. THE MODEL

The model under study is defined by the Langevin eq
tion,

] th~x,t !5n¹2h1l~¹h!22
]V~h!

]h
1h, ~5!

where V(h)52(a11)h1be2h1ce22h/2, c.0, h obeys
Eq. ~4!, anda115m is a chemical potential.

In the absence of the exponential terms~the limiting wall!
the interface moves with a nonzero positive~negative! mean
velocity for m larger ~smaller! than a certain critical value
mc . In one dimensionmc can be found analytically sinc
both the KPZ and EW equations have the same Gaus
steady-state height distribution@8#. Thus mc5l^(¹h)2&,
which for discrete lattices can be approximated by@19# mc
52(Dl)/(2nL), L being the lattice cutoff. Note that fo
lÞ0 a nonzero chemical potential is required to balance
force exerted by the nonlinear term on the tilted interfac
regions. Forl50 the model reduces to the equilibrium on
andmc50 as usual. For negative values ofl the interface is
~on average! pushed against the wall, while for positivel it
is pulled away from the wall. Thus the behavior of the sy
tem is determined by the sign ofl @20#. In this paper we will
considerl,0 only ~which corresponds to the case studi
using microscopic models@18#!. Results for positive values
of l will be published elsewhere.
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It is our purpose to study the effects of a substrate t
adsorbs preferentially one of the two phases on the statio
properties of the interface. This is achieved by considerinb
to be negative in Eq.~5!.

This same equation, Eq.~5!, has been recently studied b
Giada et al. @17# as a generic nonequilibrium continuum
model for interfacial growth. However, their choice of co
trol parameters@17# privileges the role of the noise as th
driving force of the nonequilibrium transitions. By contras
motivated by the role of the chemical potential and tempe
ture in equilibrium wetting, we fix the noise intensity an
choosea andb as control parameters that are the fields dr
ing critical and complete wetting transitions.

To establish the analogy with equilibrium, let us stre
that just like in equilibrium complete wetting, nonequilib-
rium complete wettingoccurs when the attractive potenti
V(h) is not capable of binding the interface, at temperatu
above the wetting transition temperature,b.bW , as the
chemical potential approaches that of ‘‘bulk coexistenc
m→mc . At this transition the interface begins to move a
^h& diverges. On the other hand, thenonequilibriumanalog
of critical wetting corresponds to the unbinding of a boun
interface at ‘‘bulk coexistence,’’m5mc , asb→bW

2 .
In order to analyze Eq.~5! it is convenient to perform a

Cole-Hopf change of variableh(x,t)52 ln n(x,t), leading to

] tn5n¹2n2
]V~n!

]n
1nh, ~6!

with V(n)5an2/21bn3/31cn4/4. This describes the inter
face problem as a diffusionlike equation withmultiplicative
noise@11,21#. In this representation, the unbinding from th
wall (^h&→`) corresponds to a transition into anabsorbing
state^n&→0. In the following we will use both languages,h
and n, indistinctly, although the natural description of we
ting is in terms ofh. The caseb.0 was studied in Refs
@9,11#, while b,0 is the case studied in Refs.@10,16–
18,22#.

Note that we have made use of Ito calculus, and thus
~6! should be interpreted in the Ito sense@23#. In general,
potentials of the formbnp12/(p12)1cn2p12/(2p12) with
p.0 result in equivalent effective Hamiltonians since, wh
expressed in terms ofh, p can be eliminated by redefinin
the height scale. The casep52 ~with fixed b,0) has been
studied in Ref.@22# in the context of stochastic spatiotemp
ral intermittency ~STI!. The unsuspected connections b
tween these two problems are illustrated in the followi
sections.

III. MEAN FIELD

In this section we analyze Eq.~6! at the mean-field level.
We begin by discretizing Eq.~6! on a regulard-dimensional
lattice

] tni5
n

2d (
j

~nj2ni !2
]V~ni !

]ni
1nih i , ~7!
7-2
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whereni5n(xi ,t) and the sum overj runs over the neares
neighbors ofi. The Fokker-Planck equation for the one-s
stationary probabilityP(ni) can be easily worked out. In
mean-field approximation~i.e., substituting the values of th
nearest neighbors by the averagen value!, the stationary
Fokker-Planck equation forD51 is

]

]n F]V~n!

]n
1n~n2^n&!Pt~n!G1

]2

]n2 @n2Pt~n!#50 ~8!

and its associated solution

P~n,^n&!5N
1

n2 exp2E
0

n V8~n!1n~n2^n&!

n2
dn, ~9!

where the integration constantN is determined by a normal
ization condition and ^n& is obtained from the self-
consistency requirement

^n&5

E
0

`

dnnP~n,^n&!

E
0

`

dnP~n,^n&!

5F~^n&!. ~10!

Let us consider two limiting cases where analytic solutio
of Eq. ~10! can be worked out. In the zero-dimensional ca
or equivalentlyn50, the solution of Eq.~8! reads

P~n!5N

exp2S b

p
np1

c

2p
n2pD

na12
, ~11!

which, in terms of heights, isP(h);exp@(a11)h2be2h/p
2ce22h/2p# and yields the effective potentialVe f f(h)
52 ln P(h)52(a11)h1be2h/p1ce22h/2p. Clearly, this co-
incides with the potential in Eq.~5!. A complete wettingtran-
sition occurs when approachinga521 with b.0 and criti-
cal wetting is found ata521 with b50.

For spatially extended systems, in then5` limit, a
saddle-point expansion inn yields V8(n)50 @17,24#. Thus,
the dynamical behavior in this limit is that of the determi
istic mean-field version of Eq.~8!: for any p.0, there is a
line of second-order wetting transitions ata50 andb.0,
and a line of first-order transitions ata.0 and b52(p
12)Aac/(p11). These lines meet at a tricritical point at th
origin.

For values ofn other than zero or̀ , the self-consistency
equation̂ n&5F(^n&) has to be solved numerically. Withou
loss of generality, we setp52, c51, and illustrate in Fig. 1
the three different regimes: one stable solution at^n&50
~dash-dotted line!; one unstable solution at̂n&50 and a
stable one at̂n&Þ0 ~solid line!; two stable solutions and a
unstable one~dashed line!. Stable solutions can be identifie
by a negative slope ofF(^n&)2^n& at the intersection poin
@25#. A nonzero solution emerging continuously from̂n&
50 as a function ofa andb, signals a second-order trans
tion. This is the case for the dash-dotted and the solid line
the inset of Fig. 1. By contrast, when the nontrivial soluti
02160
s
,

in

appears discontinuously as a function ofa andb, the transi-
tion is first order~dash-dotted and dashed lines!. The corre-
sponding phase diagram is depicted in Fig. 1. The solid
is a second-order phase boundary from nonwet to wet s
strates. Between the two dotted lines, the wet and non
phases coexist as stationary solutions of the dynamical e
tion. The three lines join at the tricritical point ata5b50.

In order to determine the order parameter critical exp
nent in mean-field approximation, we proceed as in R
@13#. First, we rewrite Eq.~10! as

^n&2152]^n&ln E
0

`

dtta expS 2
b

p
tp2

t2p

2pDe2^n&t. ~12!

Next, we introduce a Gaussian transformation and exp
the resulting integrals for small^n&. We find^n&;uau1/p, and
thusac50 andb51/p.

IV. BEYOND MEAN-FIELD THEORY

In this section we explore whether the mean-field ph
diagram structure survives when the effects of fluctuatio
are taken into account. Mean-field exponents are expecte
hold above the upper critical dimensiondc , which in the
present case, Eq.~6!, is known to bedc52 ~corresponding to
three bulk dimensions and in the weak coupling regime
the KPZ! @11#. For positive values of b andd.2, the second
term n2p12 in the effective potential is irrelevant@11# and
then we are left with

] tn5n¹2n2an2bnp111nh, ~13!

defining the multiplicative-noise ~MN! universality class
@11#.

We have solved Eq.~6! numerically for different system
dimensions. In particular, for a one-dimensional substrate
have considered a system sizeL51000, n5p52, D51,
and c51.5. The time step and the mesh size were se
0.001 and 1, respectively. We started by determining
chemical potential for which the free interface has zero
erage velocity. For the parameters given above we fo
ac'20.064. Then we fixa5ac and calculatê n(t)& for

FIG. 1. Mean-field phase diagram and typical solutions of
equationF(^n&)5^n& ~temperature in units such thatkB51).
7-3
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different values ofb and larget. Length and time units are in
lattice spacings and Monte Carlo steps, respectively.

A. Critical wetting

To study critical wetting we seta5ac and consider smal
values ofb for which an initially pinned interface remain
pinned, and increaseb progressively until the nonwet phas
becomes unstable atbW . The critical point is estimated a
the valuebW that maximizes the linear correlation coefficie
of ln ^n& versus lnub2bWu; the critical exponent is then dete
mined from the corresponding slope~Fig. 2!. It is found that
the critical ‘‘temperature’’ is depressed from its mean-fie
valuebW50 to bW520.7060.01, with an associated criti
cal exponentb51.2060.01~the error in the exponent come
from a least-squares fit!. Below ~above! that value we find
first- ~second-! order depinning transitions, by varyinga.
Therefore, as in mean field, there is a ‘‘tricritical’’ poin
joining a line of second-order transitions (b.bW) with one
of first-order transitions (b,bW). The critical exponents and
universality of this multiplicative-noise tricritical point hav
not been investigated before.

The finite coexistence region allows us to define criti
wetting along a range of different paths, delimited by t
dashed lines in the mean-field diagram of Fig. 1. We h
checked that the value ofb does not change when the critic
point is approached along different paths within this regi
Further numerical and analytical studies of this universa
class will be left for future work.

B. Complete wetting,bÌbW case

We consider a one-dimensional substrate, withb51
.bW , let the system evolve to the stationary state and t
compute the order parameter^n& for different values ofa

FIG. 2. ~Color online! Top: linear correlation coefficient for lnn
as a function of lnub2bWu for different values ofbW . The maximum
gives the best estimate ofbW520.7060.01. Bottom: log-log plot
of ln n as a function of lnub2bWu in the vicinity of the critical point.
The line is a least-squares fit; from its slope the critical wett
exponent is found to be 1.2060.02
02160
l

e

.
y

n

near its critical value. Asa→ac a continuous transition into
an absorbing staten50 is observed; it is the nonequilibrium
counterpart of complete wetting. The associated critical
ponent is found to beb51.6560.05, in good agreemen
with the prediction for the MN class,b51.560.1 @13#.
Other positive values ofb yield similar results. In addition,
we have simulated systems above the upper critical dim
sion, ind53, with L525, b55, and other parameters as
the one-dimensional case. Our best estimate forb is b
50.9660.05, indicating that this transition is governed b
the weak noise fixed point of the MN class@11#. For larger
values of the noise amplitude we find a strong coupling tr
sition, in agreement with the theoretical predictions@11,13#.
Finally, we note that both numerical and renormalizati
group arguments lead tob51 in the weak coupling regime
independently of the value ofp @11#. This is at odds with the
mean-field predictionb51/p. Birner et al. @12# have re-
cently suggested a transition from 1/p to a nonuniversal be-
havior depending on the ratio of the noise to the strength
the spatial coupling. However, this discrepancy appears to
generic since different types of mean-field approaches y
the same~incorrect! result and the origin of the discrepanc
remains unclear@13#.

Since the Cole-Hopf transform of the MN equation is t
same as KPZ with an additional exponential term, the M
exponents are those of KPZ iff the extra term is an irrelev
term of the KPZ renormalization group flow. Note that th
Cole-Hopf transform fixes the value ofl/n and thus thel
50 limit cannot be considered when this transformation
used. In addition, the potentialV(h) is a relevant term of the
EW equation. In this regime adding a nonlinear potential i
relevant perturbation and it does indeed change or determ
the wetting exponents~cf. with the literature on equilibrium
wetting @1#!. ThusEW plus a (nonlinear) wetting potential i
not equivalent to KPZ in the weak coupling regime plus
same wetting potential.

C. Depinning transition at bËbW

As expected, no transition is found asa→ac when Eq.~6!
is solved numerically forb,bW . Of course, the system un
dergoes a pinning or depinning transition when crossing
ac50 boundary line, but this transition is driven by th
chemical potential difference rather than by the substrate
tential and thus it is unrelated to wetting, where phase co
istence of the ‘‘liquid’’ and ‘‘gas’’ phases is required~i.e., a
5ac). A very rich phenomenology associated with the
transitions has been found, however. Forb524 we find that
the nonwet phase becomes unstable ata* '1.3 and that the
wet phase becomes unstable atac'20.064~as before!. Con-
sequently, in the rangeac,a,a* both phases coexist. Thi
means that if the interface is initially close to the wall (n
.1) it remains pinned, while if it is initially far from the
wall (n&1) it detaches and moves away with a const
velocity. Therefore, the system undergoes a first-order tr
sition as a function ofa. In order to establish the phas
boundaries we have used the following criteria. The stabi
of the pinned phase may be characterized by the timet taken
by the interface to depin in the limitL→`. t can be defined
7-4
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as the time taken by the last site of the interface to deta
h(x).0 or n(x),1 ;x. Similarly, we may definet as the
time characterizing the asymptotic exponential decay
^n(t)&, where the angular brackets denote averages of in
pendent runs~typically 1052106 in our simulations!. We
have verified that both definitions yield analogous results.
shown in Fig. 3~a!, for a.a* , t saturates with increasin
system size and thus the interface detaches in a finite t
Within the coexistence region we have found two differe
regimes: close to the stability threshold of the pinned ph
there is a narrow stripe 1.22&a&1.3 where the detaching
time grows approximately as a power law. Forac&a&1.22
t grows exponentially withL. In both casest diverges as
L→`, implying that the pinned phase is stable in the th
modynamic limit. Due to the very large characteristic tim
we cannot discard the possibility that the power laws are a
~asymptotically! exponentials. The study of the asympto
behavior of the detaching times requires longer simulatio
beyond our current computer capabilities. Finally, the n
monotonic behavior of the characteristic times, as well as
step in the curve fora51.28, may be accounted for by th
presence of two different competing mechanisms as
scribed in Ref.@10#: once a site is detached it pulls out i
neighbors that, in turn, pull out their neighbors in a casc
effect until the whole interface is depinned in a time th
grows linearly withL. This is more likely for small systems
but the probability that a site gets detached increases with
system size.

Another way to characterize the power-law regime is
analyze the single-site stationary probability density funct

FIG. 3. ~a! Characteristic depinning times and~b! ss-pdf for
various representative values ofa.

FIG. 4. Configuration in then representation fora51.18 and
b524. Depinned regions (n,1) are colored in dark gray an
pinned ones (n.1) in light gray. 1000 time slices are depicted
intervals of 50 time uints. The system size isL5500.
02160
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~ss-pdf!, defined as the average ofn(t) over pinned states
rather than over all runs. Figure 3 shows the unnormali
ss-pdf for different values ofa. In the exponential regime
(a,1.22) the histogram exhibits a maximum at a pinn
state with ^n&.0. In the power-law regime, however, th
histogram develops a secondary maximum nearn50, indi-
cating that a fraction of the interface depins. Asa increases,
the secondary maximum, at zeron, increases while the maxi
mum, at finiten, decreases. At the stability edge (a* '1.3)
the histogram changes abruptly into a delta function an
50 and the pinned phase becomes unstable.

The differences between the exponential and power-
regimes are also observed in a space-time snapshot of a
merical solution of Eq.~6!. In Fig. 4 we plot the stationary
field n, for a51.28, exhibiting patterns characteristic of S
@22#. The main feature of these patterns is the appearanc
depinned patches~absent for values ofa in the exponential
regime! with a wide range of sizes and lifetimes within th
pinned phase. This regime, overlooked in previous studie
nonequilibrium depinning transitions@17,18#, seems to cor-
respond to the power-law regime described earlier. It
therefore restricted to a narrow range between the expo
tial and the depinned regimes. This finding is at odds w
results of previous work claiming that STI is generic in t
coexistence region@22#.

A typical profile in terms ofh is shown in Fig. 5. The

FIG. 5. Instantaneous configuration of the interface for tim
slice 400~marked with a line in Fig. 4!. Parameters as in Fig. 4.

FIG. 6. Distribution of triangles as a function of the size of t
triangular base, fora52.12, 2.14, 2.15, and 2.16.
7-5
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FIG. 7. ~Color online! Snapshot of an inter-
face configuration for a 1003100 system~not all
the substrate is shown! and parametersa52 and
b524.
av
se

e

f

a-

in

. 6.
po-
depinned interfacial regions form triangles with constant
erage slopes. These triangular droplets are similar to tho
described in the discrete model of Ref.@18#. By taking aver-
ages of Eq.~5!, the typical slopes of the triangular facets is
determined through

ulRus25a11, ~14!

where lR is the renormalized nonlinear coefficient of th
KPZ equation. In order to verify Eq.~14! we have fixedn
5p5D51, l521, anda52.16. Averaging over 250.000
02160
-different triangles, we find an average slopes51.781, while
the value oflR calculated from the tilt-dependent velocity o
the depinned interface@8# yields lR520.9934 from which
s51.784, in excellent agreement with the previously me
sured value.

We also studied the size distribution of triangles with
the power-law regime. Our results correspond ton5p5D
51, l521, L5500, b524, and the following values of
a: 2.12,2.14,2.15, and 2.16, and are summarized in Fig
a'2.10 is the boundary between the power law and ex
nential regimes and the pinned phase is unstable fora*
7-6
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'2.18. The maximum size of the depinned regions increa
as this instability is approached. Our data suggest an e
nential dependence on the size of the triangular base.
indicates that there is a maximum size for the depinned
gions and thus rigorous scale invariance~typical of growth
driven by a coarsening mechanism! of the STI region is ruled
out. More explicitly, the distribution of triangle sizes,l, is
described very well by the function exp@3.44(a22.176)l #,
implying that the exponential slopes in Fig. 6 are prop
tional toa2a* . Clearly, triangles with a base less than;2,3
cannot be visualized due to the discretization of Eq.~6!. A
simple extrapolation indicates that the triangles become
perceptibly small fora'2.05, in good agreement with th
value obtained for the boundary between the power-law
exponential regimes. Therefore, we cannot rule out the p
sibility that the triangles are ubiquitous throughout the co
istence region~although not always visible in a discrete n
merical simulation! in which case the power-law detachin
times should turn into exponentials for large enough tim
and system sizes. In this case the force exerted by the
linear KPZ term on the triangular facets against the direct
of growth, at late times, guarantees the stability of the pin
phase@18# throughout the finite coexistence region.

Finally, we study the phase-coexistence regime in a tw
dimensional system to check whether the triangular patte
survive in higher dimensionalities. In particular, we consid
a system size 1003100 and takea52, b524, well within
the coexistence region. We find structures as those show
Fig. 7: the triangles becoming pyramids. Note that the ed
of the pyramid bases are parallel to the axes of the disc
zation lattice. This suggests that the pyramids are lattice a
facts and that a continuum system may exhibit conical str
tures.

V. CONCLUSIONS

We have investigated a continuum model for nonequi
rium wetting transitions. The model consists of a KPZ eq
tion in the presence of a short-ranged substrate potential,
is the most natural nonequilibrium extension of the interfa
displacement models used in equilibrium wetting. It can
mapped into a multiplicative noise problem, enabling sim
,
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theoretical calculations at the mean-field level. Numeri
simulations reproduce a phase diagram analogous to tha
tained within mean field, including first- as well as secon
order phase transitions. In particular, we have found co
plete wetting and critical wetting transitions, as well as
finite area in the temperature-chemical potential phase
gram where pinned and depinned phases coexist. This fi
coexistence region allows us to define critical wetting alo
a range of paths that are, however, characterized by the s
critical exponents. Within this area we identified two r
gimes. In the first, the lifetime of the pinned phase gro
exponentially with increasing system size and its ss-pd
bell shaped. The second one exhibits STI, lifetimes con
tent with a power law, and a double-peaked ss-pdf. The m
feature of the latter regime is the presence of triangular st
tures that have been characterized by their slopes and
distributions.

An interesting open problem is that of the equilibriu
limit of nonequilibrium wetting. The Cole-Hopf transform
precludes the limitl50 to be studied using this method
Moreover, we have noted how the behavior of the EW eq
tion in the presence of a wetting potential differs from t
weak-noise regime of the MN equation. This leaves
crossover to equilibrium wetting an open challenge. In ad
tion, the effects of long-ranged potentials on the pheno
enology described here remain to be investigated.

Finally, it would be extremely interesting to develop e
periments in order to explore the rich, nonequilibrium ph
nomenology described in the previous sections; liqu
crystals are in our opinion good candidates for this. It is o
hope that this work will stimulate experimental studies
this direction.

ACKNOWLEDGMENTS

We acknowledge financial support from the E.U. throu
Contract Nos. ERBFM-RXCT980171 and ERBFM
RXCT980183, by the Ministerio de Ciencia y Tecnolog´a
~FEDER! under Project No. BFM2001-2841, and from th
Fundac¸ão para a Cieˆncia e a Tecnologia, Contract No. SFRH
BPD/5654/2001.
ote
f an

ra-

er.

v.
@1# S. Dietrich, inPhase Transitions and Critical Phenomena, ed-
ited by C. Domb and J. Lebowitz~Academic Press, New York
1983!, Vol. 12; D.E. Sullivan and M.M. Telo da Gama, i
Fluid Interfacial Phenomena, edited by C.A. Croxton~Wiley,
New York, 1986!.

@2# M.E. Fisher, inJerusalem Winter School for Theoretical Phy
ics: Statistical Mechanics of Membranes and Surfaces, edited
by D. Nelson, T. Piran, and S. Weinbeg~World Scientific, Sin-
gapore, 1989!, Vol. 5.

@3# E. Brézin, B.I. Halperin, and S. Leibler, J. Phys.~Paris! 44,
775 ~1983!.

@4# The derivation of this functional is far from trivial. Ideally on
should constrain the interface, away from its equilibrium fl
position, in the configurationh(x) and, using the microscopic
t

Hamiltonian, take a partial trace over the bulk variables. N
also that the displacement model assumes the existence o
interface and thus is only valid below the bulk critical tempe
ture, where distinct ‘‘liquid’’ and ‘‘gas’’ phases are defined.

@5# If, instead, one considers long-range~van der Waals! interac-
tions, the potential has the general form@1# V(h)5b(T)h2m

1ch2n, n.m.0.
@6# R. Lipowsky, J. Phys. A18, L585 ~1985!.
@7# S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, S

A 381, 17 ~1982!.
@8# A.-L. Barabási and H.E. Stanley,Fractal Concepts in Surface

Growth ~Cambridge University Press, Cambridge, 1995!.
@9# H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Re

Lett. 79, 2710~1997!.
7-7



.

20

,

v.

d

el
der
is
ge

l,

m-

A.

de los SANTOS, TELO da GAMA, AND MUN˜OZ PHYSICAL REVIEW E67, 021607 ~2003!
@10# F. de los Santos, M.M. Telo da Gama, and M.A. Mun˜oz, Eu-
rophys. Lett.57, 803 ~2002!.
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