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Binary mixtures of magnetic fluids
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We study a binary mixture of a van der Waals fluid and a ferromagnetic fluid at zero magnetic field on the
basis of the mean field Ising fluid model and the van der Waals theory with quadratic mixing rules. Depending
on three reduced parameters, the phase diagram shows a surface of magnetic phase transitions and lines of
tricritical points, critical end points, and magnetic consolute points. First-order phase transition surfaces and
critical lines are calculated numerically. For the line of tricritical points, which can occur in two different
topologies, an analytic expression is derived. All higher-order lines and coexistence surfaces are visualized in
three-dimensionat, T, p and ¢, T, p diagrams, where& is a mapping ofA, the conjugated field of the mole
fraction x, on the unit interval.
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. INTRODUCTION nonmagnetic interaction parametexrs and a, it can have

) o ) ) three topologically different types of phase diagrams, two of

_The investigation of the global phase behavior of binary,yhich show a tricritical point. We would like to mention that
mixtures began with the work of van Konynenburg and Scotigjng fluids may be mapped to symmetrical binary mixtures
in 1980 [1], in which they calculated phase equilibria and17]"n this way our mixture of an Ising fluid and a van der
critical lines of van der Waals mixtures, and classified five\yqais fluid may also be applicable to ternary mixtures.
distinct types(denoted as I-Yof phase diagrams, each cor-  The questions we wanted to address were if and for which
responding to a certain region in the space of the two mixture,arameters the mixture of an Ising and a van der Waals fluid
parameters. Later, more types were discovered by usingyhinits a line of tricritical points, and what is the minimal
other theories such as the Ree equation of sfafethe e fraction of the Ising fluid component necessary for the
simplified-perturbed-hard-chain theofPHCT [3,4], the  mixiure to show tricriticality. Another topic of interest was
lattice gas modefl5—8], the Redlich-Kwong equation of state \ynhether critical lines with finite magnetization can occur,
[9], and the Carnahan-Starling-Redlich-Kwong equation ofyhich would be tantamount to the coexistence of two mag-
state[10]. Only systems that lie on the boundaries between,qfic phases in the mixture. In pure magnetic fluids, such
the regions of the global phase diagram can exhibit multix ger-order critical points have been found in mean field and
critical points, e.g., symmetrical tricritical poin$1,12 ora  mqgified mean field calculations of Heisenberg fluids, but
van Laar poin{13]. o _ only for negative values dR,, [16,17]. We also restrict our-

In this paper, we deal with mixtures with one componentse|yes to fluid phases since otherwise the phase diagrams
being a magnetic fluid. This enlarges the thermodynamicyqyiq be rather complicated. Solid phases within mean field

space, and contrary to nonmagnetic binary mixtures multisheory have been considered for classical Heisenberg fluids
critical phase transitions become a common phenomenon Uk Ref. [18], extending the approach Bf5].

der qe_rtainthe_r_modynamic gonditio_r,lsnot only under very The paper is organized as follows: After defining the
specific conditions for the interaction parametersgiobal  ,5del free energy and the condition of phase equilibria, we
space derive the equations to be solved for critical points, magnetic

,fs an example for such a system one might considegyisical points, and tricritical points. Combining the results of
He’-He" mixtures at low temperatures. This quantum liquid ) these we are able to present the topology of the overall
becomes superfluid along the concentration and pressure dﬁhase diagram for different sets of model parameters. Con-
pendent\ line of second-order phase transitions. This phaseyging with a short discussion we comment in Appendix A
transition can be represented by tH& model for planar o the representation of the phase diagrams and in the fol-
magnets. At a certain concentration a tricritical point existyowing appendixes we explain in more detail the calculation
and demixing sets in into a superfluiet magnetis He® rich  of critical and tricritical lines and phase equilibria.
phase and a normal liquid Fleich phase[14]. At higher
temperature a concentration dependent line of plait points is
present.

Following Hemmer and Imbrdl5], we use as a simple
one-dimensional model for a magnetic fluid the van der Let us consider a binary mixture in the molar voluie
Waals equation with an additional term including the squareconsisting of a van der Waals fluifluid 1) and an Ising fluid
of the magnetizatiom and the strength of the magnetic in- (fluid 2). The mole fraction of the second component shall be
teractiona,,, together with the mean field equation of statedenoted asx and its magnetization per particle as The
of an Ising system. Such an Ising fluid undergoes liquid-total magnetization per particle is accordingty,;=xm. We
vapor as well as paramagnetic-ferromagnetic phase transilescribe our system with a van der Waals like equation of
tions, and depending on the ratigy, of the magnetic and state,

Il. MODEL
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RT a(x,m) rameters of component @ormalizing the critical tempera-
p(T,V,x,m)= Vb T (1)  ture and pressure in absence of the magnetic interaction to
B 1)1
where_the attraction parametarcontains the nonmagnetic 27bRT 27 bRT
attraction according to the quadratic mixing rule and the =8 an 2 Rmg 9
magnetic interaction of one component 2 m
1 _2M%p
a(x,m)=ap(1—x)?+2a;xX(1—x)+| ag+ Eamm2 X2, b=, (10
2
2 v
and the size parametbris assumed constant. In EQ), a;; Vr_E' (D

and a,, denote the nonmagnetic interactions between par-
ticles of the same kinda,, the nonmagnetic interaction be-
tween unlike particles, argl,, the magnetic interaction in the
Ising fluid. The factor 1/2 was chosen in order to be consis- As a condition for the coexistence of two phaaeand 3,
tent with Ref.[15] for the case of the pure ideal Ising fluid. characterized by, X,, m, andVg, Xz, mg, at a tem-
For the magnetization, the equation of state at zero magnetjgerature T, and pressurg, we take the equality of the

Ill. PHASE EQUILIBRIA

field reads chemical potentials of the two componenis and u, in
both phases:
B amXm
m‘ta”*( VRT)' ® 11TV, o) = 13(To Vg Xg), 12
The corresponding molar Helmholtz free energy of the sys- #2(To, Ve Xe My) = uo(To, Vg, Xg,Mg), (13

tem described by Eqgl) and (3) with respect to the refer-

ence state of an ideal unmixed gas with molar voluvife where the chemical potentials are derived from the Helm-

holtz free energy4) as

=b is given by
2[a4(1—x)+ 1- \%
ATV, x,m)=A(T,V,x,m)— A%T,V%) =xA{(T,m) whe'=— [22:( V) alZX]+RTIn(bVTE)+RTm,
+RT(1—x)IN(L—x)+xInx] (14)
V—Db\ a(x,m) 1
—RTIn| ——| - —— 4 2 a22+§amm2 X+a(1—x)
rel
My =— +A(T,m)
where ? v °
bx \%
1-m 1-m 1+m 1+m - _
AS(T,m)zRT( I+ ——In— (5) FRTING 5 *RTG g (15

In addition to conditiong12) and(13), the two phases must
obey the thermodynamic and magnetic equations of ¢iate
and(3) at T and py,

is the entropy part of the free energy of the Ising fluid com-
ponent. Following van Konynenburg and Sddf}, we define
the reduced parametefsand A describing the nonmagnetic

interactions in the mixture as P(To.Vi X , M) = Po, (16)
Az an
= , (6) _ AmXim;
4 a8 m; =tan VR, (17

_ap—2aptay 7 wherei = a, 8. By solving the six equationd 2), (13), (16),
C aptay, @ and (17) for the six variables characterizing the coexisting
phases, one can find the first-order phase transition surfaces
In our case, however, a third parameter is needed to fullyn x, T, p space.
characterize the system, which is

IV. CRITICAL LINES
1a,

Rm:i ' ® In order to locate the critical points, plait points as well as
consolute points, in the magnetic mixture, we consider the
denominating the ratio of magnetic and nonmagnetic intermagnetic degrees of freedom as eliminated by the magnetic
action in the magnetic fluid component. For convenience, wequation of state. Thus we can follow the procedure used in
introduce reduced variables by scaling the variables by paa nonmagnetic binary fluid mixture. There the critical point
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is characterized by the onset of concavity in the Gibbs fregoints where a second-order phase transition from ferromag-
energy per molG as a function of the mole fractiox netic to paramagnetic state occurs in mean field order. From
Eqg. (3) one can see that this happens for

S 0 (18)
o2 =Y Xa 27 xR,
ax? = 2%m _!
T,p,m \ RT' s o (25
3
E -0 (19 Equation (25) defines a surface ix, T, V space. Via the
a3 o ' equation of statd1), it transforms to a surface ir, T, p

space whose shape depends on the three mixture parameters:
Expressing these conditions in terms of the Helmholtz free
energy yields 1 1 a(x0

— 2 _
PT X010 2R =4, 27Rex? aas

AvA,,—AZ =0, 20
2VIN\2x VX ( ) (26)

2 2 _
AsvAox— 3Aavshvibax t SAvaAux AshavAvy= O’(21) There is for each concentration and pressure a magnetic
phase transition witil. going to zero in the limiting case
2 _ 2 _ _ when the concentration of the magnetic liquid goes to zero
Aoy 3RaxvAviav SAcaAu Asvhaxx 0&22) sinceV stays finite {/>b). Contrary to what is known from
the solid magnetic solutions there is no percolation limit at
where finite concentration$24], so that this feature is not an arti-
fact of the mean field approximation.
Equation(26) defines the surface of second-order mag-
23 netic phase transitions, but it might be unstable for certain
T.m values. There are two possibilitie§) the surface becomes

Note that Eq(22) is not independent of the others. For zero unstable in a line of tricritical points, and/€r) it intersects
' another first-order phase transition surface in a line of critical

magnetization tion$20)—(22 ri th ritical . ) . N S
agnetization, equationg20)~(22) describe the critica end points. In the first case the line of tricritical points is the

points in a conventional binary mixture. In that case, it is rder line to th of f first-order maanetic or liauid
possible to eliminate the temperature and combine the thre%ﬁ € € o the surtace of lirst-order magnetc or iqu
phase transitions. Examples for both scenarios are presented

Zgga\llnflr}s to a single equation involving only powersxof in the following sections.

A=\ Gvax

In order to find critical points with nonzero magnetiza-
tion, according to our philosophy, one has to take into ac- VI TRICRITICAL LINE
count that the magnetic equation of sté8 induces an ad-
ditional implicit dependency of the Helmholtz free energy on
volume and concentration,

The pure Ising fluid shows a tricritical point for values of
Rn,=0.211. In order to find a tricritical point in the van der
Waals-Ising fluid mixture one would, in principle, have to

A=AV, x,m(V,x)], (24) solve the equation
making the derivatives in Eq$20)—(22) a lot more compli- I*G
cated. In the resulting equationscannot be eliminated any- ﬁ =0 (27)
more and thus a system with four unknown variafle¥, x, T.p.m

andm consisting of Eqs(20), (21) and the equations of state together with Eqs(18) and (19). One can, however, make

(1) and(3) has to be solved to locate a magnetic critical point D . .
at a certain pressure. The full equations are given in AppenL-jse of the fact that at the tricritical point the density and
dix B. We checked the location of the critical lines by com- concentration differences go to zero and the phase transition

paring with the results when calculating the phase equilibrig)ecomes Sec‘?f‘d ord(_ar. 'Hence_ a tricritical point can .be re-
for different pressures. In this way we avoided the calcula—garded as a critical point in the limit of zero magnetization in

tion of the next higher order of free energy derivatives. the ferromggnetlc phase,_ orasa critical point on the .su.rface
of magnetic phase transitions. In order to take the limit

—0 in Eq.(20) it is necessary to replaga? with the expan-

V. SURFACE OF MAGNETIC PHASE TRANSITIONS sion of Eq.(3) for smallm,

In zero magnetic field a liquid and also a binary mixture

may order magnetically like a solid even for short range m2~3( 4V, T,

- :3< T 2%R,

o , : . 2
magnetic interaction. This has been demonstrated recently in ' (28)

the liquid alloy C@Pd,,[19,20; however, this fluid is rep-

resented by a Heisenberg fluid rather than an Ising fluidand let the volumé&/ approach the critical value given in Eq.
Evidence of a magnetic transition has been given also by25). Since the only variables left in E§R0) are thenx and
computer simulation§16,21—-23. We consider the locus of T, one can find the tricritical temperatuf@ for arbitrary
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concentrations without making use of Eq9421) and (22). SOPr
The explicit expression fof! as a function ok is -:
a0} |}
Ty = 2TRm x° - '
r(X) - 4 X BZ(X) ’ ( ) 30 \‘
AX) = 1 20
C——— .
X 10 S
- = o
/
where x
0.2 0.4 0.6 0.8 1
A(X):za(X,O) + §X2 (30) FIG. 1. Projection of the tricritical line on the p, plane for
am 27 systems withy=0.5; R,,=0.5; andA=—0.15 (x},=0.091; long-
dashed ling A=-0.1875 &.,=0; solid line, and A=—-0.21
1 dA(X) (x',=—0.064; short-dashed lije
B(X):E dx o AAN+R,(1+0)
Xt = = (35
dB(x) 4A+3Ry,(1+9)
C= ax (32

and T}, is given by Eq.(34) insertingx’,. Thus if 0<x’,

Equation (29) inserted into the equation of the magnetic <1 We have casé), and the tricritical line escapes to infin-
phase transition surfa¢g6) defines a line of tricritical points 1ty at these finite values for temperature and concentration.
inx, T,, p, space. This behavior is quite similar to the behavior of a demixing

Physical conditions define the range of existence of thid"€ In & nonmagnetic mixture in the corresponding classes
line, namely, a real and positive value for the temperaturél,25,28. For 0<x<x., there will be no tricritical point
and a positive value for the pressure for concentration valuesince the square root in ER9) will become complexsee
between zero and one. Moreover, the tricritical line mightFig. 1, long-dashed line
cross other phase transition surfaces ending in a tricritical If X.=<0 or x.,>1, however, the tricritical pressure will
end point. remain finite forx €[0,1], and we have to consider ca§e

Formally the tricritical line starts in the phase diagram ator (ii ). Now atx=0 one always finds a tricritical pressure of
x=1 (apart from values oR,, where instead of a tricritical

point a critical end point is preserat a temperaturgl5] tiy— ) — lim nMrTt - 1-¢
PH(x=0)=im p{{T;(x)X]=~277, (36
PTERI L. I R 33
(D)= 4 2 R_m ' (33 which is negative sincée]—1,1. This means that the tri-

critical pressure changes its sign at somexg<<1l and the
the tricritical temperature of the pure Ising fluid. On the othertricritical line becomes unstablease(iii ), see Fig. 1, short-

side atx=0, which corresponds to the pure van der Waalsdashed ling

fluid, there is no tricritical point. Therefore the line of tric-  The only exception to Eq:36) occurs for parameter val-
ritical points must go into a direction perpendicular to theyes wherex', is exactly zero, in which case
concentration at some nonzero valuexadr at least become

unstable somewhere betweers 1 andx=0. Let us have a . 1-3¢+2A
look at the behavior of the tricritical line in the limW p,(x=0)=—27—1+§ : (37)
—Db. Then there are three possibilitiés): for a finite tricriti-

cal temperature and finite concentration the pressure goes fthe value of this pressure can be positive for a suitable
infinity according to Egs(1) and(25), (i) for x=0 andT;  choice of the parameters and{. Still, however, according
=0 the pressure reaches a finite positive valugjiorfor a  to Eq. (29), the tricritical temperature fox=0 is zero, and
finite concentration and finite tricritical temperature the presthus there is also in this case no tricritical point with finite

sure goes to zero. temperature in the pure van der Waals fl{i@se(ii), see
Equation(25) tells us that ifV—b, the surface of mag- Fig. 1, solid lind. In the last two cases the tricritical line

netic phase transitions approaches the plane defined by becomes unstable and ends irtriritical end pointon a
first-order coexistence surfadeee one example of such a
case below

The set of parameters, ¢, R, for whichx!, is zero, form

a boundary in the three-dimensional global phase space that
Comparing this with Eq(29), we see that the tricritical point separates two distinct types of phase diagrams, one with a

lies on that plane if the expression in the square root vanline of tricritical consolute points and one with a line of
ishes. This happens for= 0 if x takes on the value tricritical plait points. This surface, defined by the equation

bRT 4T,
X=——, X

an ' 2Ry

(34
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FIG. 3. x, T, diagram of a mixture withy=—-1, A=1, R,
=, andr=0.5 at p,=0.05. CP, critical point; TCP, tricritical
FIG. 2. Plot of the boundary surface §n A, R, space separat- Point; full lines, first-order phase transitions; dashed line, magnetic
ing the two types of behavior of the tricritical line. For parameter Phase transitions.
values above the surface, the tricritical line has the character of a
consolute line. and approaches infinite pressurexatx’, andT=T:,.. The
character of the tricritical line crosses over from a gas liquid
Rm critical point for the pure ideal Ising fluid to a demixing
A=- T(1+§)* 38 critical point in the mixture. Below the tricritical tempera-
ture, the mixture forms two phases, a paramagnetic phase
is shown in Fig. 2. with a low concentration and a ferromagnetic phase with a
higher concentration of the ideal Ising fluid. Note, however,
VIl. DIFFERENT TOPOLOGIES OF PHASE DIAGRAMS that in the whole crossover regime the densities of the two
phases below the tricritical temperature are also different.
We now present phase diagrams for special values of therom the critical point in the pure van der Waals fluid a
model parameters. The idea behind the three-dimensiongtitical line originates, which also takes on the character of a
figures is explained in Appendix A. We selected out of theconsolute line in the mixture but ends on the coexistence
rich Variety cases where different typeS of tricritical lines surface of paramagnetic and ferromagnetic phases in a criti-
appear. cal end point. From there, a three-phase ljliee of triple
pointg continues to zero pressure and temperature.
A. Mixture with ideal Ising fluid Figures 3 and 4 arg, T, diagrams of a mixture with
First we consider a mixture of a van der Waals fluid and:0-5_v X..=T;.=0.6 at Q|_ﬁerent pressures sh_owmg the pha_\se
an ideal Ising fluid with pure magnetic interaction, i.@,, Ccoexistence curves, critical and tricritical points, and the line
=0 anda;,=0, respectively{=—-1, A=1, andR,,=». In
this case only the ratio=a,;/a,, can vary. Of course, the
reduced variable$9) and (10) cannot be used for such a
system, instead we take for the reduced temperature and the

T

reduced pressure 0.25
bRT b%p 0.2

Tr—a—m, Pr=7 (39
) o _ 0.15

For these parameters, the magnetic surface is simply given

by V,=x/T, and the limiting value of the concentration and o1
temperature on the tricritical line in E¢B5) becomes ’
. 1+4r . 1+4r 0.05

X5, = T (40

3+4r’ ™ 3t4r’

X
which lies between 1/3 and 1, corresponding to the limiting 02 04 06 08 !
cases of vanishing attractive interaction in the van der Waals FIG. 4. x, T, diagram of a mixture withy=—1, A=1, Ry,

fluid and the ideal Ising fluid, respectively. Hence, the tric-=«, andr=0.5 atp,=0.15. TCP, tricritical point; full lines, first-

ritical line starts at the tricritical point of the ideal Ising fluid order phase transitions; dashed line, magnetic phase transitions.
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1
f=——— (41)

1+e—A/RT’

which lies between 0 and 1 fax between—o and +o. ¢

=0 corresponds to the pure componentx2=(), é£&=1 to

the pure component IxE0). In aé, T,, p, diagram, the
phase coexistence surfaces, which enclose the two-phase vol-
ume in thex, T,, p, diagram, form interfaces between the
coexisting phases, singels continuous at a first-order phase
transition. The two coexistence surfac@&kark gray, one

with a jump in magnetization and one separating two non-
magnetic phases, are bounded by the liquid-vapor curves, the
critical line, and the tricritical line and meet along a line of
triple points. At the tricritical line the paramagnetic-
ferromagnetic phase transition becomes second order, and
1 ) x the coexistence surface passes into the surface of magnetic
phase transitiondlight gray).

FIG. 5. x, T,, p, diagram of a mixture witht=-1, A=1,
Ry=%, andr=0.5. Thick lines, liquid-vapor curves of the pure
substances; thin lines, isobaric curves on the first-order surface; B. General case

dotted line, tricritical line; dashed lines, critical lines. T .
In the general case there are many possibilities for differ-

of magnetic phase transitions. At=0.05 one can see two €nt topologies of the phase diagram depending on the
consolute points, a critical and a tricritical one, whilepat str_ength of t'he magnetic interaction parameter. For the Ising
=0.15, well above the pressure of the critical end point, onlyfluid three different types of phase diagrams have been found
the tricritical consolute point is left. These diagrams are cros15] for increasingRp,: (i) without a tricritical point but a
sections of the whole phase diagrésee Fig. 5in x, T,, p; critical end point and a gas liquid critical pointj) with a
space including the surface of magnetic phase transitiongitical end point, a tricritical point, and a gas liquid critical
(light gray) and the phase coexistence surfatdark gray.  POING a_nd (iii) with a tr|cr|t_|cal point only (like the ideal
The liquid phase coexistence surfaces penetrate each otiéind fluid. The nonmagnetic parameters, on the other hand,
defining coexistence of three phases. In Fig. 6, we have rélefine five different classes found by van Konynenburg and
placed the variablex by its conjugated field variablea ~ Scott[1]. We consider a van der Vaals mixture of type I in
— 11— jo. SinceA takes on all values from-= to +, as their classification. This class constitutes the most simple

x varies between 0 and 1, we did not usetself as a coor- t0Pology and is characterized by a line of plait poifgss

dinate in the phase diagram, but rather liquid critical pointg connecting the pure fluids, no demixing
transition appears. In the following we discuss three different
T. topologies showing tricritical lines and the appearance of a
0.1 g2 P critical line in the magnetic phase.

We are interested in the effect of adding a magnetic inter-
action to one component of the mixture. At saturatiom,
=1, we recover a binary mixture with changed parameters
A and{, shifting the mixture to type ll[(containing a line of
consolute points Thus we expect interesting effects in zero
magnetic field induced by the magnetic interaction and the
existence of a ferromagnetic phase.

1. Tricritical consolute point line and plait point line

We choose the parametefs- 0.5 andA = —0.05 and add
a weak magnetic interaction to the second component with
the ratioR,,=0.2. Although there is no tricritical point in the
pure Ising fluid for this value oR,,, the phase diagram
shows a tricritical line starting at a certain concentration in a
i 0.8 : ’ tricritical end pointon the first-order surface of liquid-vapor
£ phase transitions. Ap, goes to infinity, the tricritical line
FIG. 6. ¢, T,, p, diagram of a mixture wity=—1, A=1,  reaches the limiting concentratiod), = 0.1429 and the tric-
R,=%, andr=0.5. Thick lines, liquid-vapor curves of the pure ritical temperatureT;..=0.1929. Such a topology is quite
substances: thin lines, isobaric curves on the first-order surfac&imilar to HE-He* mixtures, with differences for low con-
dotted line, tricritical line; dashed lines, critical lines. centrations.
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T; T;
1 1

0.8

02 04 06 038 1" 02 04 06 038 1"

FIG. 7. x, T, diagram of a mixture witif=0.5, A=—0.05, and FIG. 9. x, T, diagram of a mixture witif=0.5, A=—0.05, and
Ry,=0.2 atp,=0.5. CP, critical point; CEP, critical end point; full R,,=0.2 atp,=2. TCP, tricritical point; full lines, first-order phase
lines, first-order phase transitions; dashed line, magnetic phase tratransitions; dashed line, magnetic phase transitions.
sitions.
rated by the tricritical line. These surfaces intersect along a
triple line (the dark onesand along a line of critical end

pressures. Starting from the situation where only one criticaP©iNts (the light gray and the dark one in froniThese two
point and a triple point are present, Fig. 7, a tricritical point!N€S and the tricritical line meet in the tricritical end point
appears in addition to the critical point and the triple point(in the figure this is occluded by the gas-liquid surface in
disappearecFig. 8. Increasing the pressure further one finds{NnY-
a situation where a tricritical point and two different critical
points exist (not shown and finally for pressures large
enough only the tricritical point remair(see Fig. 9. These

cross sections should be compared with Fig. 10 where the In order to present an example where the tricritical line
whole phase diagram ixy T,, p, space is shown. Again the remains below a finite value of pressure we choose the pa-
phase diagram in field spacg&, T, , p,, (see Fig. 11shows rameter valueg=0.5, A =—0.25, andR,,=0.5. In this case
two transition surfaces: the first-order gas-liquid phase tranthe value ofx’, is negative, namely', = —0.2. From thex,
sition surface(dark gray in front ending in a line of plait T, p, diagram(Fig. 12 we can see that there is no tricritical
points and the surface of magnetic phase transitions consissoint at high pressures, but instead a line of consolute points
ing of a second-order paflight gray) and a first-order part within the magnetically ordered phaése call such a point
corresponding to liquid-liquid transition@ark gray sepa-

Figures 7—9 are examples xfT, diagrams at increasing

2. Consolute point line within the magnetic phase
and tricritical plait point line

T;
1

0.8

0.6

0.4

0.2

02 04 06 0.8 1"
FIG. 8. x, T, diagram of a mixture with=0.5, A=—0.05, and FIG. 10. x, T,, p, diagram of a mixture with{=0.5,
R,=0.2 atp,=0.8. CP, critical point; TCP, tricritical point; full A= —0.05, andr,,=0.2. Thick line, liquid-vapor curve of the pure
lines, first-order phase transitions; dashed line, magnetic phase tratsing fluid; thin lines, isobaric curves on the first-order surface;
sitions. dotted line, tricritical line; dashed lines, critical lines.
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0.25

02 04 06 08 1*

FIG. 13. x, T, diagram of a mixture withy=0.5, A=—0.25,
andR,,=0.5 atp,=2.5. Full lines, first-order phase transitions.

FIG. 11. & T,, p, diagram of a mixture with{=0.5,
A=-0.05, andR,,;=0.2. Thick lines, liquid-vapor curves of the faces present in this topology. The first-order gas liquid sur-
pure substances; thin lines, isobaric curves on the first-order suface (in front) ending in aline of tricritical plait points con-
face; dotted line, tricritical line; dashed lines, critical lines. tinues as a first-order demixing surface, bounded hgeaof

magnetic consolute pointat higher pressures. The magnetic

magnetic consolute pointontinues till infinite pressure, ap- phase transition surface intersects this demixing surface
proachingx..=0.499 andr,..=0.2814. Thus demixing is in- along a line of critical end points at values &hear 1. This
duced by the magnetic interaction and the finite magnetizaline meets the tricritical line in a tricritical end point, which
tion of the mixture. Both phases in which the decompositionis connected by a short line of triple points to the magnetic
takes place are magnetically ordered. critical end point, where the line of magnetic consolute

Thex, T, diagram again shows immiscibility at low tem- points hits the surface of first-order phase transitions. These
peraturegFig. 13, a tricritical point(Fig. 14), and in a nar- features are not visible in Fig. 16 but in Fig. 17 they are
row pressure range two tricritical points and a magnetic conillustrated schematically.
solute point(Fig. 15. Above a maximum tricritical pressure
p}naxz 6.9847, only the magnetic consolute point remains. 3. Consolute point line within the magnetic phase, a tricritical
The magnetic phase transition line ends on the coexistence plait point line with two tricritical end points,
curve in a critical end point. and a plait point line
~ The¢, Ty, p-phase diagranFig. 16 summarizes again Even more critical points may exist at the same pressure.
in & compact way the whole variety of phase lines and surtpjs happens for the case of mixing a van der Waals fluid
with a slightly different(smaller strength of magnetic inter-
action lIsing fluid. For the parameters=0.5, A=-0.12,
andR,,=0.2, it is even possible to have two tricritical plait

T
2

1.75

_ATcp

1.25

0.75

0.5

0.25

FIG. 12. x, T,, p, diagram of a mixture with{=0.5, 0.2 04 0.6 0.8 1"
A=-0.25, andR,,=0.5. Thick lines, liquid-vapor curves of the FIG. 14. x, T, diagram of a mixture withy=0.5, A=—-0.25,
pure substances; thin lines, isobaric curves on the first-order suendR,,=0.5 atp,=5.5. TCP, tricritical point; full lines, first-order
face; dotted line, tricritical line; dashed lines, critical lines. phase transitions; dashed line, magnetic phase transitions.
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1.25

~TCP

0.75 /
05| TCP,

/ MCP

s

/ .
025| ,CEP \

/

02 04 06 08 1"

FIG. 15. x, T, diagram of a mixture with/=0.5, A=—0.25,
and R,,=0.5 atp,=6.75. TCP, tricritical point; MCP, magnetic
consolute point; CEP, critical end point; full lines, first-order phase
transitions; dashed line, magnetic phase transitions.

points, a plait point, and a consolute point in the magnetic
phase at the same press(see Fig. 18

The corresponding three-dimensional phase diagfg
19) shows a tricritical line that separates the surface of
second-order magnetic phase transitions from first-order lig-
uid phase transitions. No tricritical point is presentxatl
and x=0; instead, the tricritical line bends over from one
tricritical end point to another one at lower concentration. 0
One of these tricritical end points lies on the gas liquid first- FIG. 17. Schematic, T,, p, diagram of a mixture with/
order phase transition surface, the other one on the first-ordet0.5, A= —0.25, andR,=0.5, the region neag=1 is magnified.
demixing phase transition surface. Demixing takes place ifhick lines, liquid-vapor curves of the pure substances; thin lines,

the ferromagnetic phase as in the examp|e mentioned befor@]es of triple pOintS; thick dotted Iine, tricritical Iine; thin dotted
line, line of critical end points; dashed lines, lines of critical points;

TCP, ftricritical point; MCEP, magnetic critical end point; TCEP,
tricritical end point; CP, critical point; CEP, critical end point.
We have investigated mixtures of a van der Waals fluid

and an Ising fluid and have found that besides the usualitical lines and coexistence surfaces such systems exhibit
magnetic critical lines and tricritical lines, whose existence
and shape depend on the three mixture paraméteks and

Ry,. The tricritical line can either have the character of a
consolute line and continue until infinite pressure, or it stays
at finite pressure and ends on a coexistence surface. In this
case it has the character of a plait point line. Moreover, there
is still immiscibility at higher pressures, and a line of mag-
netic consolute points extends to infinite pressure.

These findings within the mean field theory will be cor-
roborated by further investigations using Gibbs ensemble
Monte Carlo simulation$27,28. Fluctuation effects are ex-
pected to change shape and location of transition lines and
surfaces. Both magnetic and liquid phase transitions show
critical exponents different from mean field exponents. This
has also been proven for the magnetic liglad].

VIIl. DISCUSSION

T;
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FIG. 16. & T,, p, diagram of a mixture with{=0.5,

A=-0.25, andR,=0.5. Thick lines, liquid-vapor curves of the ~ We acknowledge support by the Fonds _zijrdémung der
pure substances; thin lines, isobaric curves on the first-order suwissenschaftlichen Forschung under Project No. P15247-
face; dotted line, tricritical line; dashed lines, critical lines. TPH.
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FIG. 20. Plot of the curvdIn\i(V,),In\5(V,)] for {=0.5,
A=-0.05 R,=0.2, p,=0.9, T,=0.8. Along the dashed part of
the curve the magnetization is finite. The self-intersection points are

indicated with dots.

0.2

X

02 04 0.6 0.3 1 o _ .
opinion, the overall picture of the different phases more

FIG. 18. x, T, diagram of a mixture withf=0.5, A=-0.12,  ¢learly and seems to be appropriate for theoretical consider-
and R,=0.2 atp,=0.6. CP, critical point; TCP, tricritical point; ations in the sense of Griffith and Wheel[&0]. These sur-
MCP, magnetic COﬂSO|l.Jt.e point; CEP, (?ritical end p.oint; full Iines,f.aces join together in Special lines, which mlght be lines of
first-order phase transitions; dashed line, magnetic phase rangfis|e noints in the case first-order transition surfaces meet. In
tions. the case where a first-order transition surface meets a surface
of second-order transitions we find either lines of critical end
points or lines of tricritical points if it happens that the sur-
face of second-order phase transitions meets the coexistence

We present the phase diagrams of the magnetic liquidurface in the border line of critical points.
mixtures in two ways. First we show the phase diagram in
the space of the usual physical thermodynamic variables, APPENDIX B: MAGNETIC CRITICAL LINES
which are pressure, temperature, and concentration. Since the
concentration is a density and not a field, the character of the In the following equations we make use of the dimension-
demixing transitions is seen as a multivalued surface of théess quantities:
two fields. These diagrams are accompanied with the usual
two-dimensional constant pressure sections. In fact, the stack
of these sections builds up the three-dimensional diagrams.

If we choose all three thermodynamic fields as variables
the different phases are separated by single valued surfaces y=(1-m?) 1, (B2)
in the thermodynamic field space. This illustrates, in our

APPENDIX A: REPRESENTATION
OF THE PHASE DIAGRAMS

4
27R,

T, (B1)

—1+22+2_ 1 +11_1 2
a=| g APt g g X R (1%
(B3)
1da
=3 X’ (B4)
dg
Y= ax (B5)
T 2Xm
n==[In(1+m)—In(1—m)]— , (B6)
2 V;
e=V,T—x(1-m?), (B7)
u=(2—6m?+4m*e—2x(1—m?)>?m?, (B8)
FIG. 19. x, T,, p, diagram of a mixture with{=0.5,
A=-0.12, andR,=0.2. Thick lines, liquid-vapor curves of the z=x(1-x), (B9)
pure substances; thin lines, isobaric curves on the first-order sur-
face; dotted line, tricritical line; dashed lines, critical lines. w=1-2x. (B10)
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The derivatives of the magnetization with respect to the conNow Eq. (20) with finite magnetization yields
centration are then given by

Fu(T,V, x,m=[(V,—1)%(a+x*mm) - V7T]

1
_ —m2 _
M= (I=mom, (B1Y) X[ y2=V,T—2V, ]~ (B~XV, nmy)?z
mu X(V,—1)%=0, (B13)
Moy=—% (B12) .
g3 and from Eq.(21) we obtain

Fo(T,V, x,m=[{3a+x3[6mm+x(mZ+mmy) 1V, — 1)3= 2TV [ z(y—V, 7m,) — TV, 12— 3z{2 8+ X2
X[5mm,+x(MZ+mmy,) 11 B— Vi xgm[ z(y—V, nmy) — TV, 1(V, — 1)3+ 322{ y+x[ 4mm,— (TV,y — 2x)
XM=V, My ] = Ve gy (B—=V xpmy) 2(V, — 1)~ {TV,w—Z2[V, My — Amm,+ (TV,y — 2x)mZ]}

X[(a+x3mm) (V, = 1)2=TV](B—V,xygmy)(V,~ 1)=0. (B14)

At a particular pressurg,, a critical point in the ferro-  Substitutingm? with the expansion of the magnetic equation
magnetic phase can be found by solving the four equationsf state,

T, = Vv, T
F1(T.V, ,x,m)=0, (B15) . 3( L Q, 3
Fa(T,V, ,x,m)=0, (B16)
we get as a result
t r( all (B17) 3
m=tanh ——/, i =
v, T lim mme=ox: (€4
B T-T,
T,V ,X,m)=pg, B18 o .
Pe(T Vs )=Po (B18 Similarly, we obtain forpm,,
for the variabled, V., X, m. Only the thermodynamic equa- T 5
tion of state(B18) can be solved analytically fot, the other lim »m,= lim (—[In(1+m)—|n(1—m)]— xm m,
equations have to be solved numerically, which requires ap- m—.o m—0 2 Ve
propriate starting values foF, V,, andm to be known. T=Te T=Te
The numerical function that was applied to solve Egs. 5 3T
(B15—(B17) uses a modification of the Powell hybrid = (?c_ _X) lim mm=—=—". (C5)
method for nonlinear algebraic equatididd]. Vi) mo 2X
T—-T,

APPENDIX C: TRICRITICAL LINE Substituting Egs(C4) and(C5) into Eq.(B13) and replacing

The equation for the tricritical line is obtained from Eq. the volume with the critical volume from E@25) leads to
(B13) when the magnetization tends to zero afdap- EQ.(29) for the tricritical temperature.
proaches the critical temperature of the magnetic phase tran-

sition given by Eq.(25), which is APPENDIX D: PHASE EQUILIBRIA
X Phase equilibria were calculated from E¢E2) and (13),
Te= (C1)  where the dimensionless relative activity , defined as
r
rel
in reduced quantities. For the tenmm,, we have I\ :ﬁ' i=1,2, (D1)
2
lim mm= lim _L (C2)  Wwas used instead of the relative chemical potentials. This was
m—0 m_,_oVrT—x(l—mZ) done by solving Eq(16), which is quadratic irx, and sub-

T=Te T=Te stituting the solutiorx;(V,;,m;) into Egs.(12) and(13) and
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Eq. (17). Finding the solution to Eqg12) and(13) is then  an example of such a curve with two self-intersections cor-
equivalent to finding a self-intersection point of a curve inresponding to a nonmagnetic gas-liquid and a paramagnetic-
the In\T, In\5 plane, parametrized by the volumé, . ferromagnetic liquid-liquid phase transition. Equatidi®)
Along this curve, the magnetization varies as a function ofand (13) were again solved via the Powell hybrid method
V, according to Eq(17) between 0 and 1. Figure 20 shows [31].
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