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Shear viscosity for a heated granular binary mixture at low density
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The shear viscosity for a heated granular binary mixture of smooth hard spheres at low density is analyzed.
The mixture is heated by the action of an external driving force~Gaussian thermostat! that exactly compensates
for cooling effects associated with the dissipation of collisions. The study is made from the Boltzmann kinetic
theory, which is solved by using two complementary approaches. First, a normal solution of the Boltzmann
equation via the Chapman-Enskog method is obtained up to first order in the spatial gradients. The mass, heat,
and momentum fluxes are determined and the corresponding transport coefficients identified. As in the free
cooling case@V. Garzóand J. W. Dufty, Phys. Fluids14, 1476~2002!#, practical evaluation requires a Sonine
polynomial approximation, and here it is mainly illustrated in the case of the shear viscosity. Second, to check
the accuracy of the Chapman-Enskog results, the Boltzmann equation is numerically solved by means of the
direct simulation Monte Carlo method. The simulation is performed for a system under uniform shear flow,
using the Gaussian thermostat to control inelastic cooling. The comparison shows an excellent agreement
between theory and simulation over a wide range of values of the restitution coefficients and the parameters of
the mixture~masses, concentrations, and sizes!.
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I. INTRODUCTION

The macroscopic behavior of rapid granular flows can
described through hydrodynamic equations accounting
dissipation among the interacting particles. A basis for
derivation of the hydrodynamic equations and explicit e
pressions for the transport coefficients appearing in them
provided by the corresponding Boltzmann kinetic theory
the low-density regime. In the simplest model, the grains
taken to be smooth hard spheres with inelastic collisio
Assuming the existence of a normal solution for sufficien
long space and time scales, the Chapman-Enskog metho@1#
can be applied to get the velocity distribution function
terms of the hydrodynamic fields and their spatial gradie
This method must be conveniently adapted to inelastic co
sions due to the new time dependence of temperature re
ing from collisional energy loss. In the case of a monoco
ponent gas, the Navier-Stokes transport coefficients h
been obtained in terms of the restitution coefficient witho
limitation on the degree of inelasticity@2–4#. This analysis
for a monocomponent system has been also extende
dense gases in the context of the Enskog equation@5#.

Similar studies for multicomponent granular gases
more scarce and most of them limited to the asymptotic
weak dissipation limit@6#. Although these studies permit, i
principle, different temperatures for each species, they u
ally assume energy equipartition and so the partial temp
turesTi are made equal to the mixture temperatureT. How-
ever, some recent results obtained in molecular dynam
simulations@7# as well as in real experiments of vibrate
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mixtures in three@8# and two @9# dimensions clearly show
the breakdown of energy equipartition. A more recent kine
theory calculation which takes into account temperature
ferences has been carried out by Garzo´ and Dufty@10#. They
solved the set of Boltzmann coupled equations of the bin
mixture by means of the Chapman-Enskog expansion
states near the local homogeneous cooling state. The m
heat, and momentum fluxes were determined to first orde
the gradients of the hydrodynamic fields and the associa
transport coefficients were explicitly identified. As in th
case of elastic collisions@1#, these transport coefficient
verify a set of coupled linear integral equations that a
solved approximately by using the leading terms in a Son
polynomial expansion. The results derived by Garzo´ and
Dufty @10# provide a description of hydrodynamics in bina
granular mixtures valida priori over the broadest paramete
range and not limited to the quasielastic regime. In particu
the consequences of the temperature differences on the t
port coefficients were shown to be quite significant.

In the case of molecular fluid mixtures, it is known th
the leading order truncation is quite accurate, except for
treme mass ratios~e.g., electron-proton systems!. Much less
is known in the case of inelastic collisions, although so
comparisons with computer simulations for homogene
states indicate that the accuracy is similar to that for ela
collisions @11,12#. The objective here is to compare the k
netic theory predictions for the shear viscosity with tho
obtained from a numerical solution of the Boltzmann equ
tion by means of the direct simulation Monte Carlo~DSMC!
method@13#. Specifically, the simulations are performed f
a granular mixture undergoing uniform shear flow~USF!,
namely, a macroscopic state characterized by constant pa
densitiesni ( i 51,2), uniform temperatureT and a linear
flow velocity profile ui ,x5ux5ay, a being the constan
©2003 The American Physical Society08-1
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shear rate. In a molecular fluid under USF, the tempera
increases in time due to viscous heating. As a conseque
the average collision frequencyn ~which is proportional to
T1/2 for hard spheres! increases with time and the reduce
shear ratea* 5a/n ~which is the relevant nonequilibrium
parameter of the problem! tends to zero in the long time
limit. This implies that for sufficiently long times the syste
reaches a regime described by linear hydrodynamics and
Navier-Stokes shear viscosity can be identified@14,15#. For
granular fluids, the inelasticity of collisions introduces
energy sink in the balance equation for the temperat
Thus, the relationship between the temperature and the s
viscosity is not as simple as for molecular fluids since th
is a competition between viscous heating and collisio
cooling. However, if the granular fluid is externally excite
by an external energy source that exactly compensates
the collisional energy loss, the viscous heating effect is s
able to heat the system~as in the elastic case! and one can
identify the shear viscosity in the limit of small shear ra
relative to the collision frequencyn ~i.e., a* →0). Although
there are several choices for the external driving force, h
we consider an external thermostat proportional to the pe
liar velocity. This thermostat has been frequently used
nonequilibrium molecular dynamics simulations of molec
lar fluids @16# and has the advantage that, in the absenc
shear, it does not affect the dynamics of the system a
since it is formally equivalent to a rescaling of the velociti
@7# .

The motivation of our study is twofold. First, in light o
some doubts about the validity of a hydrodynamic desc
tion for granular flow, the comparison with simulation allow
us to test the Chapman-Enskog solution obtained by ass
ing the existence of anormalor hydrodynamic regime. Sinc
the parameter space here is quite large, the tests of the th
and concepts are quite stringent. Second, as said above
can also assess the degree of reliability of the approxim
solution ~first Sonine polynomial approximation! to the re-
sulting integral equation over a wide range of the param
space. With respect to the driving external force used in
analysis, we do not claim that it is the most suited one
model any real experiment. However, it has the advant
that it can be incorporated into kinetic theory and compu
simulations very easily and it allows to check the assum
tions of the Chapman-Enskog method.

The plan of the paper is as follows. In Sec. II, we revie
the Boltzmann equation and associated macroscopic con
vation laws in the presence of the Gaussian thermostat.
Chapman-Enskog method is applied in Sec. III to get all
transport coefficients of the mixture, with special empha
in the shear viscosity coefficient. The details of the deri
tion are displayed in Appendix A. Section IV deals with th
application of the DSMC method of the Boltzmann equat
to USF with thermostat. The Chapman-Enskog and sim
tion results are compared in Sec. V at the level of the sh
viscosity showing a good agreement. We close the pape
Sec. VI with a discussion of the results presented.

II. THE BOLTZMANN EQUATION
AND TRANSPORT COEFFICIENTS

We consider a binary mixture of smooth hard spheres
massesm1 andm2, and diameterss1 ands2. The inelastic-
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ity of collisions among all pairs is characterized by thr
independent constant coefficients of normal restitutiona11,
a22, and a125a21, wherea i j is the restitution coefficient
for collisions between particles of speciesi and j. Due to the
intrinsic dissipative character of collisions, an energy sup
is requested to fluidize a granular gas. For simplicity, h
the fluidization is driven by the action of a nonconservat
external force, frequently referred to as the Gaussian ther
stat. In this case, the mixture is heated by an ‘‘antidra
force, linear in the peculiar velocityV and chosen to exactly
compensate for collisional cooling. As said in the Introdu
tion, this deterministic thermostat has been widely used
computer simulations of molecular fluids@16#. Under these
conditions and in the low-density regime, the distributi
functions f i(r ,v;t) ( i 51,2) for the two species are dete
mined from the set of nonlinear Boltzmann equations

~] t1v1•“ ! f i1
1

2
j

]

]v1
•~V1f i !5(

j
Ji j @v1u f i~ t !, f j~ t !#,

~1!

where the constantj is taken to be the same for each spec
@7,12,17#. Here,V1[v12u, u being the flow velocity. The
Boltzmann collision operatorJi j @v1u f i , f j # describing the
scattering of pairs of particles is

Ji j @v1u f i , f j #5s i j
2 E dv2E dŝQ~ŝ•g12!~ŝ•g12!

3@a i j
22f i~r ,v18 ,t ! f j~r ,v28 ,t !

2 f i~r ,v1 ,t ! f j~r ,v2 ,t !#, ~2!

wheres i j 5(s i1s j )/2, ŝ is a unit vector along their line o
centers,Q is the Heaviside step function, andg125v12v2.
The primes on the velocities denote the initial values$v18 ,v28%
that lead to$v1 ,v2% following a binary collision:

v185v12m j i ~11a i j
21!~ŝ•g12!ŝ, v285v21m i j ~11a i j

21!

3~ŝ•g12!ŝ, ~3!

wherem i j 5mi /(mi1mj ).
The relevant hydrodynamic fields are the number den

ties ni , the flow velocityu, and the ‘‘granular’’ temperature
T. They are defined in terms of moments of the distributio
f i as

ni5E dvf i~v!, ru5(
i
E dvmivf i~v!, ~4!

nT5p5(
i
E dv

mi

3
V2f i~v!, ~5!

where n5n11n2 is the total number density,r5m1n1
1m2n2 is the total mass density, andp is the hydrostatic
pressure. At a kinetic level, it is convenient to introduce t
kinetic temperaturesTi for each species defined as
8-2
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3

2
niTi5E dv

mi

2
V2f i . ~6!

The collision operators conserve the particle number
each species and the total momentum but the total energ
not conserved:

E dvJi j @vu f i , f j #50, (
i , j

E dvmivJi j @vu f i , f j #50,

~7!

(
i , j

E dv1
2 miv

2Ji j @vu f i , f j #52 3
2 nTz, ~8!

where z is identified as thecooling rate due to inelastic
collisions among all species. The macroscopic balance e
tions follow from the Boltzmann equation~1! and Eqs.~7!
and ~8!. They are given by

Dtni1ni“•u1
“• j i

mi
50, ~9!

Dtu1r21
“P50, ~10!

DtT2
T

n (
i

“• j i

mi
1

2

3n
~“•q1P:“u!52~z2j!T.

~11!

In the above equations,Dt5] t1u•“ is the material deriva-
tive,

j i5miE dvV f i~v! ~12!

is the mass flux for speciesi relative to the local flow,

P5(
i
E dvmiVV f i~v! ~13!

is the total pressure tensor, and

q5(
i
E dv1

2 miV
2V f i~v! ~14!

is the total heat flux.
The energy balance equation~11! shows that the existenc

of a driving force with the choicej5z compensates for the
cooling effect due to the inelasticity of collisions. In th
case, the macroscopic balance equations look like those
conventional mixture with elastic collisions. Neverthele
the transport coefficients entering in constitutive equati
are in general different from those of a gas of elastic p
ticles. Furthermore, for systems with elastic collisions,
specific set of gradients contributing to each flux is restric
by fluid symmetry, time reversal invariance~Onsager rela-
tions!, and the form of the entropy porduction@18#. In the
case of inelastic collisions only fluid symmetry applies a
so there is more flexibility in representing the fluxes a
identifying the corresponding transport coefficients. It fo
02130
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lows from fluid symmetry that the pressure tensor has
same form to first order in the gradients as for the monoco
ponent gas. In the case of heat and mass fluxes, severa
ferent~but equivalent! choices of hydrodynamic fields can b
used and some care is required in comparing transport c
ficients in the different representations. Here, as done in
unforced case@10#, we take the gradients of the mole fractio
x15n1 /n, the pressurep, the temperatureT, and the flow
velocity u as the relevant ones. Thus, in this representat
the phenomenological constitutive relations for the fluxes
the low-density regime have the forms@19#

j152
m1m2n

r
D¹x12

r

p
Dp“p2

r

T
D8“T, j252 j1 ,

~15!

q52T2D9“x12L“p2l“T, ~16!

Pab5pdab2hS“bua1“aub2
2

3
dab“•uD . ~17!

The transport coefficients are the diffusion coefficientD, the
thermal diffusion coefficientD8, the pressure diffusion coef
ficient Dp , the Dufour coefficientD9, the thermal conduc-
tivity l, the pressure energy coefficientL, and the shear
viscosityh. The Chapman-Enskog method@1# generalized to
inelastic collisions allows one to get explicit expressions
these transport coefficients as functions of the restitution
efficients and the parameters of the mixture.

III. SHEAR VISCOSITY OF A HEATED
GRANULAR MIXTURE

The Chapman-Enskog method assumes the existence
normal solution in which all space and time dependence
the distribution function occurs through a functional depe
dence on the hydrodynamic fields,

f i~r ,v1 ,t !5 f i@v1ux1~r ,t !,p~r ,t !,T~r ,t !,u~r ,t !#. ~18!

This functional dependence can be made local in space
time by means of an expansion in gradients of the fiel
Thus, we writef i as a series expansion in a formal parame
e measuring the nonuniformity of the system,

f i5 f i
(0)1e f i

(1)1e2f i
(2)1•••, ~19!

where each factor ofe means an implicit gradient of a hy
drodynamic field. The local reference statef i

(0) is chosen to
give the same first moments as the exact distributionf i . The
time derivatives of the fields are also expanded as] t5] t

(0)

1e] t
(1)1••• . The coefficients of the time derivative expa

sion are identified from the balance equations~9!–~11! after
expanding the fluxes, and the cooling ratez in a similar
series as Eq.~19!. More details on the Chapman-Ensko
method adapted to inelastic collisions can be found in R
@10#. Now, the main difference with respect to the free co
ing case@10# is that the sink term in the energy equation
zero ~when one takesj5z), so that the terms coming from
the time derivative] t

(0) vanish.
8-3
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In the zeroth order,f i
(0) obeys the kinetic equation

1

2
z (0)

]

]V
•~V f i

(0)!5(
j

Ji j @ f i
(0) , f j

(0)#, ~20!

where use has been made of the choicej (0)5z (0). Here,z (0)

is determined by Eq.~8! to the zeroth order. With this choice
Eq. ~20! is identical to the the one obtained in the unforce
case@20#, and there is an exact correspondence between
homogeneous cooling state and this type of driven ste
state. This is one of the advantages of the Gaussian the
stat. Dimensional analysis requires thatf i

(0)(V) must be of
the form

f i
(0)~V!5niv0

23F i~V/v0!, ~21!

where

v05A2T
m11m2

m1m2
~22!

is a thermal velocity defined in terms of the temperatureT of
the mixture. So far, the exact form ofF i has not been found
although a good approximation for thermal velocities can
obtained from an expansion in Sonine polynomials@20#. In
the leading order,F i is given by

F i~V* !→S u i

p D 3/2

e2u iV* 2F11
ci

4 S u iV* 425u iV* 21
15

4 D G ,
~23!

whereV* 5V/v0 , u i5(m j i g i)
21, andg i5Ti /T. The coef-

ficientsci ~which measure the deviation ofF i from the ref-
erence Maxwellian! are determined consistently from th
Boltzmann equation. The approximation~23! provides de-
tailed predictions for the cooling ratez (0), the temperature
ratio T1 /T2 and the cumulantsci as functions of the mas
02130
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ratio, size ratio, composition, and restitution coefficients. R
cently, the accuracy of this approximate solution has b
confirmed by Monte Carlo simulation of the Boltzman
equation over a wide range of the parameter space@11#.

The analysis to first order ine is similar to the one
worked out in Ref.@10# for the free cooling case. Some de
tails of the derivation of the transport coefficients as well
their final expressions are given in Appendix A. Here, giv
that the theoretical predictions for the shear viscosity coe
cient h will be compared with those obtained from Mon
Carlo simulations, we focus our attention on the explicit fin
expression forh. According to Eq.~A25!, the shear viscosity
can be written as

h5
nT

n
h* , ~24!

where

n5Apns12
2 v0 , ~25!

is an effective collision frequency and the reduced shear
cosity coefficienth* is

h* 5x1g1
2d1,1* 1x2g2

2d2,1* ~26!

with

d1,1* 5
g2~t22* 2z* !2g1t12*

D
, d2,1* 5

g1~t11* 2z* !2g2t21*

D
.

~27!

Here,z* 5z (0)/n,

D5g1g2@z* 22z* ~t11* 1t22* !1t11* t22* 2t12* t21* #, ~28!

and the dimensionless quantitiest i j* are given by@10#
t11* 5
16

5A2
x1S s1

s12
D 2

u1
21/2F12

1

4
~12a11!

2G S 12
c1

64D1
8

15
x2m21~11a12!u1

3/2u2
21/2F6u1

22~m12u22m21u1!~u11u2!21/2

1
3

2
m21u1

22~u11u2!1/2~32a12!15u1
21~u11u2!21/21

c2

16

3
2u2~12m2119m12210!2u1~526m21!2 3

2 m21~32a12!~u11u2!

~u11u2!5/2 G , ~29!

t12* 5
8

15
x2

m21
2

m12
~11a12!u1

3/2u2
21/2F6u2

22~m12u22m21u1!~u11u2!21/21
3

2
m21u2

22~u11u2!1/2~32a12!25u2
21~u11u2!21/2

1
c1

16

2u1~10212m1229m21!1u2~526m12!2 3
2 m21~32a12!~u11u2!

~u11u2!5/2 G . ~30!
8-4
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The corresponding expressions fort22* and t21* can be in-
ferred from Eqs.~29! and ~30! by interchanging 1↔2.

Equations~24!–~30! provide the explicit expression fo
the shear viscosityh of a heated granular binary mixture i
the first Sonine approximation. It is apparent that the redu
viscosity h* presents a complex nonlinear dependence
the restitution coefficientsa11, a22, anda12 and the param-
eters of the mixturem1 /m2 , s1 /s2, andn1 /n2. The quality
of the expression forh* will be later assessed by compariso
with Monte Carlo simulations in the USF problem with
thermostat. Before studying the general dependence ofh*
on the parameter space, it is instructive to consider so
special limit cases. In the elastic limit,a115a225a1251,
z* 50, g i51, andc15c250, so that the expression~26!
becomes

h* 5
x1

2R11x2
2R21x1x2R12

x1
2S11x2

2S21x1x2S12

, ~31!

where

R15
2

3
1

2m

5
, R25

2

3
1

2

5m
, ~32!

R125
8

15
1

A2

5 F S s1

s12
D 2

m21
21/2m12

211S s2

s12
D 2

m12
21/2m21

21G ,
~33!

S15
16

5A2
R1S s1

s12
D 2

m21
1/2, S25

16

5A2
R2S s2

s12
D 2

m12
1/2,

~34!

S125
32

15
1

16

25S s1

s12
D 2S s2

s12
D 2

~m12m21!
21/2. ~35!

Here,m5m12/m215m1 /m2 is the mass ratio. Equation~31!
agrees with the results obtained in the first Sonine appr
mation to the coefficient of viscosity of a molecular gas m
ture of hard spheres@21#. In the case of mechanically equiva
lent particles (m15m2 , a115a225a12[a, s15s2[s),
g i51, z* 5(2/3)(12a2)(113c/32), and

c15c25c5
32~12a!~122a2!

81217a130a2~12a!
. ~36!

In this case, one gets

h* 5
15

4 S ~11a!F ~21a!1
c

128
~33a239!G D 21

. ~37!

This expression coincides with the one recently obtained
a heated granular monocomponent gas@4#. All this shows the
self-consistency of the present description.
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IV. MONTE CARLO SIMULATION FOR UNIFORM
SHEAR FLOW WITH THERMOSTAT

The USF is a nonequilibrium state characterized by c
stant partial densitiesni , a linear velocity profileu5ui5a
•r , where the elements of the tensora areak,5adkxd,y , a
being the constant shear rate. In addition, the granular t
peratureT and the pressure tensorP are uniform, while the
mass and heat fluxes vanish by symmetry reasons. This
cial state is generated by Lees-Edwards boundary condit
@22# which are simple periodic boundary conditions in t
local Lagrangian frameR[r2a•r t and V[v2a•r . In
terms of these variables, the velocity distribution functio
are uniform@23#,

f i~r ,v;t !5 f i~V;t !. ~38!

In the case of elastic collisions (z50) and in the absence
of a thermostatting force, the energy balance equation~11!
yields the heating equation

] tT52
2

3n
aPxy . ~39!

Since the granular temperatureT increases in time, so doe
the collision frequencyn(t) according to Eq.~25!. As a con-
sequence, the reduced shear ratea* (t)5a/n(t) ~which is the
relevant uniformity parameter! monotonically decreases wit
increasing time and the system asymptotically tends towa
that of ~local! equilibrium. This implies that for sufficiently
long times~which means herea* !1), the system reaches
regime described by linear hydrodynamics and the Nav
Stokes shear viscosityh can be identified as@14,15#

n

nT
h52 lim

t→`

Pxy*

a*
, ~40!

wherePxy* 5Pxy /nT. This route has been shown to be qu
efficient to measure the Navier-Stokes shear viscosity c
ficient for dilute @24# and dense@15# gases.

For a granular mixture, unless a thermostat is introduc
the energy balance equation~11! leads to a steady state whe
the viscous heating effect is exactly balanced by the co
sional cooling@25#. However, if the granular mixture is ex
cited by the Gaussian thermostat

Fi
th5

1

2
mizV, ~41!

which exactly compensates for the collisional energy lo
the viscous heating still heats the system and Eq.~39! re-
mains valid. Consequently, the linear relationship~40! allows
one to determine the shear viscosity coefficient in the lo
time limit. Recently, this idea has been used to measure
shear viscosity of a heated granular monocomponent gas@4#.
The comparison with kinetic theory shows an excelle
agreement over a wide range of values of the restitution
efficient. It must be noted that hereh represents the shea
viscosity of anexcitedgranular mixture and thus it does no
necessarily coincide with the Navier-Stokes shear visco
8-5
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obtained in the unforced case@10#. As a matter of fact, the
results obtained in Sec. III indicate that the transport prop
ties are affected by the Gaussian thermostat and the ex
sion ~26! for the ~reduced! shear viscosity differs from the
one derived in the free cooling case@10#. The use of thermo-
stats to control collisional cooling in undriven systems
quite common@12,26#. Usually, the motivation is to produc
a steady state while here it is to remove the steady stat
favor of one whose dynamics determines the viscosity.

The Boltzmann equation for a mixture of inelastic ha
spheres under the USF and subject to the external Gau
force ~41! reads

] t f i2aVy

]

]Vx
f i1

1

2
z

]

]V
•~V f i !5(

j
Ji j @Vu f i~ t !, f j~ t !#.

~42!

The second term on the left-hand side represents an ine
force of the formFi

in52mia•V, while the third term repre-
sents the thermostat forceFi

th given by Eq.~41!. Thus, in this
frame, the system is in a homogenous state subjected to
action of the~total! force Fi

in1Fi
th . We have numerically

solved Eq.~42! by means of the DSMC method@13#. This
method was devised to mimic the processes involved in
Boltzmann collision term and its extension to deal with
elastic collisions is straightforward. In addition, since t
USF is spatially homogeneous in the Lagrangian frame,
simulation method is easy to carry out and only the~pecu-
liar! velocities of the particles need to be stored. The rest
tion to this homogeneous state prevents us from studying
possible formation of particle clusters~microstructure!.

Technical details of the DSMC method and its applicat
to the USF state can be found in Refs.@11,25#. In our simu-
lations we have typically taken a total number of partic
N5105, a number of replicasN55, and a time stepDt
5331023,11/v01, where,115(A2pn1s1

2)21 is the mean
free path for collisions 1-1 andv015A2T/m1.

At given values of the shear ratea, the restitution coeffi-
cientsa i j , and the parameters of the mixture, the system
initially prepared in a local equilibrium state with a temper
tureT(0)5T0 such that the initial value of the reduced she
rate isa0* 5a/n(T0). As the system evolves, we monitor th
time evolution of the reduced shear ratea* (t)5a/n@T(t)#
and the reducedxy element of the pressure tensor,Pxy* (t)
5Pxy(t)/nT(t). We observe that in all the cases, after
transient period, the ratioh* [2Pxy* /a* reaches a constan
value that is independent of the shear rate and time. T
allows us to measure the corresponding shear viscosity c
ficient h as

h~ t !5
nT~ t !

n~ t !
h* , ~43!

where the dimensionless shear viscosityh* is independent
of time but depends on dissipation and the parameters o
mixture ~masses, sizes, and concentrations!.

The theoretical prediction forh* can be obtained from
the Chapman-Enskog solution to Eq.~42! up to first order in
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the shear ratea. In Appendix B, it is easily proved that th
first-order solution to Eq.~42! leads to the same expressio
for the shear viscosity as the one obtained in Sec. III fr
the general Chapman-Enskog method specialized to the U
Thus, in the first Sonine approximation, the theoretical p
diction of h* is given by Eqs.~26!–~30!.

Before analyzing the dependence of the dimension
shear viscosity coefficienth* on the parameters of the prob
lem, it is instructive to test the consistency of the simulati
method in the limita* →0 ~which corresponds here totn
@1) . For long times and for given values ofa, m1 /m2 ,
s1 /s2 , andn1 /n2, the reduced viscosityh* must reach a
value independent of the inital preparation of the system
Fig. 1, we plot the shear-rate dependent viscositiesh* (a* )
measured in the simulation, relative to its Navier-Stok
value hB* given by the Boltzmann theory@Eqs. ~26!–~30!#
for three different choices of the initial shear ratea0* : 0.2,
0.3, and 0.4. Here, the restitution coefficient isa50.9, the
mass ratio ism1 /m254, the concentration ratio isn1 /n2
51, and the size ratio iss1 /s253. After a transient regime
of a few mean free times, we observe that the curves co
sponding to the three different initial conditions practica
coincide. This means that a hydrodynamic regime indep
dent of the inital conditions has been achieved. In additi
for very small values ofa* 2, the ratioh* (a* )/hB* fluctuates
around 1 showing that in this regime the viscosity coefficie
measured in the simulation is consistent with the value
tained from the Boltzmann kinetic theory. The same behav
has been found for other values of the restitution coeffici
as well as of the parameters of the mixture. Notice that
limit a* →0 is strictly unattainable in the USF because
requires an infinite amount of time. Also, the signal-to-no
ratio decreases in that limit so that the fluctuations increa

V. COMPARISON BETWEEN THEORY AND SIMULATION

Once the consistency of the simulation method has b
tested, we focus our attention on the study of transport pr

FIG. 1. Plot of the ratioh* (a* )/hB* as a function ofa* for a
50.9 in the casem1 /m254, n1 /n251, ands1 /s253 for three
different values of the initial shear ratea0* : a0* 50.2,0.3, and 0.4.
Here,hB* refers to the Navier-Stokes shear viscosity value given
the first Sonine approximation to the Boltzmann equation.
8-6



m
th
e
a

wi
l,
u

er
ur
n

er
fe

ic
he
-
o

an

po
t

ti

re
s
fe
-
io

e
the
lts

ine
of

e
the
first

eral
sly

-
ro

s
e

s
MC

f

l
the

SHEAR VISCOSITY FOR A HEATED GRANULAR . . . PHYSICAL REVIEW E 67, 021308 ~2003!
erties in the Navier-Stokes regime. In this section, we co
pare the predictions of the Sonine approximation with
results obtained from the DSMC method. A complete pres
tation of the results is complex due to the high dimension
ity of the parameter space:$a11,a22,a12,m1 /m2 ,s1 /s2 ,
n1 /n2%. For the sake of concreteness, henceforth we
assume that the spheres are made of the same materia
a115a225a12[a. This reduces the parameter space to fo
quantities.

Apart from the shear viscosity coefficient, another int
esting quantity at this level of description is the temperat
ratio T1 /T2. This ratio measures the breakdown of the e
ergy equipartition. The analysis of the temperature diff
ences has been a subject of growing interest in the past
years among both theorists@7,11,12,20# and experimentalists
@8,9#. As was previously found from the Boltzmann kinet
theory@20#, except for mechanically equivalent particles, t
partial temperaturesTi are different. For the sake of illustra
tion, Fig. 2 shows the dependence of the temperature rati
the size ratios1 /s2 for an equimolar mixture (n1 /n251)
and three different values of the restitution coefficienta
50.9, 0.8, and 0.7. We consider a binary mixture of const
density and so,m1 /m25(s1 /s2)3. We observe that for
large size ratios the temperature differences are quite im
tant, even for moderate dissipation. It is also apparent tha
excellent agreement between the theory~given by the first
Sonine correction! and Monte Carlo simulations~symbols! is
found over the entire range of values of size and mass ra
considered.

Next, we explore the influence of dissipation on the
duced shear viscosityh* (a) for different values of the mas
ratio, the size ratio, and the concentration ratio. Three dif
ent values of the~common! restitution coefficient are consid
ered: a50.9, 0.8, and 0.7. In Fig. 3, we plot the rat
h* (a)/h* (1) versus the mass ratiom1 /m2 for s1 /s2

FIG. 2. Plot of the temperature ratioT1 /T2 as a function of the
size ratios1 /s25(m1 /m2)1/3 for n1 /n251 and three different val-
ues of the restitution coefficienta: ~a! a50.9 ~circles!, ~b! a
50.8 ~squares!, and ~c! a50.7 ~triangles!. The lines are the theo
retical predictions and the symbols refer to the results obtained f
the DSMC method.
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5n1 /n251. Here,h* (1) refers to the elastic value for th
shear viscosity coefficient. Again, the symbols represent
simulation data while the lines refer to the theoretical resu
obtained from the Boltzmann equation in the first Son
approximation. We see that in general the deviation
h* (a) from its functional form for elastic collisions is quit
important. This tendency becomes more significant as
mass disparity increases. The agreement between the
Sonine approximation and simulation is seen to be in gen
excellent. This agreement is similar to the one previou
found in the monocomponent case@4#. At a quantitative

m

FIG. 3. Plot of the ratioh* (a)/h* (1) as a function of the mas
ratio m1 /m2 for s1 /s25n1 /n251 and three different values of th
restitution coefficienta: ~a! a50.9 ~circles!, ~b! a50.8 ~squares!,
and ~c! a50.7 ~triangles!. The lines are the theoretical prediction
and the symbols refer to the results obtained from the DS
method.

FIG. 4. Plot of the ratioh* (a)/h* (1) as a function of the size
ratio s1 /s2 for m1 /m254, n1 /n251 and three different values o
the restitution coefficienta: ~a! a50.9 ~circles!, ~b! a50.8
~squares!, and ~c! a50.7 ~triangles!. The lines are the theoretica
predictions and the symbols refer to the results obtained from
DSMC method.
8-7
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level, the discrepancies between theory and simulation t
to increase as the restitution coefficient decreases, altho
these differences are quite small~say, for instance, aroun
2% ata50.7 in the disparate mass casem1 /m2510).

The influence of the size ratio on the shear viscosity
shown in Fig. 4 form1 /m254 andn1 /n251. We observe
again a strong dependence of the shear viscosity on dis
tion. However, for a given value ofa, the influence of
s1 /s2 on h* is weaker than the one found before in Fig.
for the mass ratio. The agreement for botha50.9 anda
50.8 is quite good, except for the largest size ratio ata
50.8. These discrepancies become more significant as
dissipation increases~saya50.7), especially for mixtures o
particles of very different sizes. Finally, Fig. 5 shows t
dependence ofh* (a)/h* (1) on the concentration ratio fo
m1 /m254 ands1 /s251. We observe that both the theo
and simulation predict a very weak influence of composit
on the shear viscosity. With respect to the influence of di
pation, the trends are similar to those of Figs. 3 and 4:
main effect of inelasticity in collisions is to enhance the m
mentum transport with respect to the case of elastic co
sions. The agreement now between theory and simulatio
very good, even for disparate values of the concentra
ratio and/or strong dissipation. Therefore, according to
comparison carried out in Figs. 3, 4, and 5, we can concl
that the agreement extends over a wide range of values o
restitution coefficient, indicating the reliability of the firs
Sonine approximation for describing granular flows beyo
the quasielastic limit.

VI. DISCUSSION

Although the utility of a hydrodynamic description fo
granular media under rapid flow conditions has been rec
nized for many years, its domain of validity as well as t
forms of the transport coefficients remain a topic of inter

FIG. 5. Plot of the ratioh* (a)/h* (1) as a function of the
concentration ration1 /n2 for m1 /m254, s1 /s251 and three dif-
ferent values of the restitution coefficienta: ~a! a50.9 ~circles!,
~b! a50.8 ~squares!, and ~c! a50.7 ~triangles!. The lines are the
theoretical predictions and the symbols refer to the results obta
from the DSMC method.
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and controversy. In this context, there are some doubts a
the possibility of going from a kinetic theory to a hydrod
namic level of description by using a Chapman-Enskog
pansion around the homogenous cooling state. Given tha
search for exact solutions of the Boltzmann equation is
beyond the present perspectives, an alternative to get s
insight into the above question is to numerically solve t
kinetic equation and compare these results with the co
sponding solution obtained by assuming the validity of
hydrodynamic description. In this paper, we have perform
such a comparison at the level of the shear viscosity coe
cient of a heated granular mixture. The system is heated
the action of a thermostatting external force that exac
compensates for cooling effects associated with the inela
ity of collisions. Although some previous works@4,27,28#
have compared kinetic theory predictions for transport co
ficients with computer simulations in the case of a mon
component gas, studies for multicomponent granular ga
are more scarce. Very recently, a seemingly similar anal
for the shear viscosityh of a dense mixture has been give
in Ref. @29#. Nevertheless, the above kinetic theory on
holds for nearly elastic particles and the expression ofh in
the first Sonine approximation coincides with the one o
tained in the elastic case.

As a first step in our issue, in Sec. III we have derived
general hydrodynamic equations of aheatedbinary mixture
of smooth inelastic spheres from the Boltzmann kine
equation by using the Chapman-Enskog method. The co
sponding transport coefficients have been expressed in te
of the solution to integral equations, which are then solv
approximately~first Sonine polynomial approximation! just
as in the case of elastic collisions. The explicit expressi
for the set of relevant transport coefficien
$D,Dp ,D8,D9,L,l,h% are displayed in Appendix A. In con
trast to previous works@6,29#, our results are not limiteda
priori to weak inelasticity and they take into account t
effect of the temperature differences on the transport coe
cients. On the other hand, the results obtained here for
transport coefficients slightly differ from those obtained
the free cooling case@10#, showing that in general the intro
duction of a thermostat affects the transport properties of
gas@23#. The Chapman-Enskog results obtained for the m
ture have been then specialized to the hydrodynamic sta
transverse shear. In this state, the shear viscosity coeffic
h is the relevant transport coefficient of the problem. T
explicit form of h is given by Eqs.~26!–~30! in terms of the
restitution coefficientsa i j and the parameters of the mixtur
~masses, diameters, and concentrations!.

To test the assumptions of the Chapman-Enskog met
and the approximate Sonine solution to the resulting integ
equation, the DSMC method has been used to solve the B
zmann equation in the uniform shear flow state. In the
sence of a thermostat, in a granular fluid there is a comp
tion between two opposite effects: viscous heating a
collisional cooling. In that case, when both effects exac
cancel each other, a steady state is reached after a tran
period. In this steady state, due to the coupling between
sipation and the shear rate, the system is far away from
Navier-Stokes regime, except whena→1 @25#. However, if

ed
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the external thermostat is adjusted to compensate for the
ergy lost in collisions, the shearing work still heats the s
tem. As a consequence, as the system evolves, the red
shear ratea* (t) goes to zero and the system achieves
regime described by linear hydrodynamics. In this regim
the Navier-Stokes shear viscosity coefficient can be m
sured from simulations. In this paper, the thermostat is u
to remove the steady state in favor of a time-dependent s
whose dynamics allows one to get the Navier-Stokes sh
viscosity just as for the case of elastic collisions@15,24#.

The dependence of the viscosityh on the full parameter
space has been explored. Specifically, the parameter s
over which our solution has been verified is the mass r
m1 /m2, the concentration ration1 /n2, the ratio of diameters
s1 /s2, and the ~common! restitution coefficienta[a11
5a115a225a12. The theory and simulation clearly sho
how in general, the influence of dissipation on moment
transport is quite important since there is a relevant dep
dence of the viscosityh(a) on the restitution coefficienta.
At a given value of the restitution coefficient, the depe
dence ofh(a)/h(1) on the mass ratio is more significa
than the one found on the composition and diameters. T
feature has been also found for the temperature ratio in
experiments recently carried out in vibrated mixtures@8,9#,
although experimental confirmation of the trends obser
here for the viscosity is still lacking. With respect to th
accuracy of the theory predictions we see that, in general
Chapman-Enskog results in the first Sonine approxima
exhibit an excellent agreement with the simulation data. T
supports the idea that the Sonine polynomial approxima
for granular fluids has an accuracy comparable to that
elastic collisions. Exceptions to this agreement are extre
mass ratios and strong dissipation. These discrepancie
basically due to the approximations introduced in apply
the Chapman-Enskog method, and more specifically in us
the first Sonine approximation.

One of the main limitations of the results obtained he
from the Boltzmann equation is its restriction to the lo
density regime. In this regime, the collisional transfer con
butions to the fluxes are negligible and only their kine
contributions are taken into account. Possible extension
both aspects, theory and simulation, of the present sim
hydrodynamic state to higher densities can be carried ou
the context of the revised Enskog theory. In this case, m
of the phenomena appearing in dense granular fluids~such as
spontaneous formation of dense clusters surrounded by
gions of low density@30#! could be studied. On the othe
hand, although the comparison performed here has b
made undergoinguniform shear flow without paying atten
tion to the possible formation of particle clusters@31#, our
Chapman-Enskog results apply for generalinhomogeneous
situations. The only restriction is that they provide the ir
versible parts of the mass, heat, and momentum fluxe
leading order in the spatial gradients of the hydrodynam
fields. In this context, the results derived in this paper can
used to analyze the behavior of granular mixtures in a lo
physical situations. Thus, for instance, the knowledge of
complete hydrodynamic equations for a binary mixture
lows one to say whether the mixture hydrodynamics is m
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or less unstable to long-wavelength perturbations than tha
the one-component case, and what are the mechanism
volved in phenomena very often observed in nature and
periments such as phase separation orsegregation. We hope
that the present results give some insight into the underst
ing of these interesting and complex problems.
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APPENDIX A: CHAPMAN-ENSKOG EXPANSION

In this appendix, the expressions of the transport coe
cients for a heated granular mixture are obtained. The d
vation follows similar steps as those made in Ref.@10# in the
free cooling case. Here, we will use the same notation a
Ref. @10#. In the first order, the distribution functionf i

(1)

verifies the kinetic equation

S Li1
1

2
z (0)

]

]V
•VD f i

(1)1Mi f j
(1)52~Dt

(1)1V•“ ! f i
(1) ,

~A1!

whereDt
(1)5] t

(1)1u•“, and

Li f i
(1)52~Jii @ f i

(0) , f i
(1)#1Jii @ f i

(1) , f i
(0)#1Ji j @ f i

(1) , f j
(0)# !,

~A2!

Mi f j
(1)52Ji j @ f i

(0) , f j
(1)#. ~A3!

In these equations, it is understood thatiÞ j and use has bee
made of the fact that] t

(0)T50 and the resultsj i
(0)5q(0)

5z (1)50. The last equality follows from the fact that th
cooling rate is a scalar, and soz (1) should be proportional to
“•u. However, as shown later, there is no contribution
f i

(1) proportional to the divergence of the flow field so th
z (1)50 by symmetry. This property is special to the low
density Boltzmann kinetic theory and such terms occur
higher densities@5#. The macroscopic balance equations
first order are

Dt
(1)x150,

3

5
Dt

(1)ln p5
3

2
Dt

(1)ln T52“•u,

Dt
(1)u52r21

“p. ~A4!

Use of these in Eq.~A1! yields

S Li1
1

2
z (0)

]

]V
•VD f i

(1)1Mi f j
(1)5A i•“x11Bi•“p

1Ci•“T1Di ,ab“aub , ~A5!

where

A i~V!52S ]

]x1
f i

(0)D
p,T

V, ~A6!
8-9
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Bi~V!52
1

p F f i
(0)V1

nT

r S ]

]V
f i

(0)D G , ~A7!

Ci~V!5
1

T F f i
(0)1

1

2

]

]V
•~V f i

(0)!GV, ~A8!

Di ,ab~V!5Va

]

]Vb
f i

(0)2
1

3
dabV•

]

]V
f i

(0) . ~A9!

The solutions to Eqs.~A5! are of the form

f i
(1)5Ai•“x11Bi•“p1Ci•“T1Di ,ab“aub .

~A10!

The coefficientsAi ,Bi ,Ci , andDi ,ab are functions of the
peculiar velocityV and the hydrodynamic fields. The coolin
rate depends on space through its dependence onx1 , p, and
T. The integral equations for the unknowns are easily id
tified as coefficients of the independent gradients in
~A10!. The result is

S Li1
1

2
z (0)

]

]V
•VD S Ai

Bi

Ci

Di ,ab

D 1MiS Aj

Bj

Cj

D j ,ab

D 5S A i

Bi

Ci

Di ,ab

D .

~A11!

Note that, in contrast to what happens in the free cool
case@10#, here each one of the quantitiesAi , Bi , Ci , and
Di ,ab obey closed integral equations. The solution to E
~A11! provides the expression for the transport coefficien
In the case of the mass fluxj1, these coefficients are ident
fied as

D52
r

3m2nE dv V•A1 , ~A12!

Dp52
m1p

3r E dv V •B1 , ~A13!

D852
m1T

3r E dv V •C1 . ~A14!

The transport coefficients for the heat flux are

D952
1

3T2 (
i 51

2 E dv
1

2
miV

2V •Ai , ~A15!

L52
1

3 (
i 51

2 E dv
1

2
miV

2V• Bi , ~A16!

l52
1

3 (
i 51

2 E dv
1

2
miV

2V •Ci . ~A17!

Finally, the shear viscosity is given by
02130
-
.

g
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.

h52
1

10 (
i 51

2 E dv miVaVbDi ,ab . ~A18!

Accurate approximations to the solutions to the integ
equations for (Ai ,Bi ,Ci ,Di ,ab) may be obtained using
low-order truncation of expansions in a series of Son
polynomials. In the case of the mass flux, we consider
leading Sonine approximation~lowest degree polynomial!

$Ai ,Bi ,Ci%→ f i ,MV$ai ,1 ,bi ,1 ,ci ,1%,

f i ,M~V!5ni~mi /2pTi !
3/2exp~2miV

2/2Ti !, ~A19!

whereai ,152(m1m2n/rniTi)D, bi ,152(r/pniTi)Dp , and
ci ,152(r/TniTi)D8. The coefficientsai ,1 , bi ,1 , andci ,1 are
determined by multiplying the three first equations of E
~A11! by miV and integrating over the velocity. The result

a1,152S nD2
1

2
z (0)D 21S ]

]x1
ln n1T1D

p,T

, ~A20!

b1,152S nD2
1

2
z (0)D 21 n1T1

p S 12
m1nT

rT1
D , ~A21!

c1,150. ~A22!

Here, the collision frequencynD is given by Eq.~73! of Ref.
@10#.

In the case of the pressure tensor, the leading Sonine
proximation for the functionDi ,ab is

Di ,ab→ f i ,Mdi ,1Ri ,ab , Ri ,ab5mi~VaVb2 1
3 V2dab!.

~A23!

The shear viscosity coefficient is given by

h52nT2~x1g1
2d1,11x2g2

2d2,1!. ~A24!

The coefficientsdi ,1 can be determined by multiplying th
fourth equation of Eq.~A11! by Ri ,ab and integrating over
the velocity to get the coupled set of equations

S t112z (0) t12

t21 t222z (0)D S d1,1

d2,1
D 52S T1

21

T2
21D . ~A25!

The collision frequenciest i j 5t i j* n, wheret i j* are given by
Eqs.~29! and ~30!. From Eq.~A25!, one easily gets the ex
pression~24! for the shear viscosity given in the main tex

The calculations for the heat flux are similar to those p
viously made for the other fluxes. As in the unforced ca
this requires going to the second Sonine approximation
this case, the transport coefficients defining the heat flux~16!
are given by

D952
5

2
TS n1g1

3

m1
a1,21

n2g2
3

m2
a2,2D 1

5

2

nm1m2

rT S g1

m1
2

g2

m2
DD,

~A26!
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L52
5

2
T3S n1g1

3

m1
b1,21

n2g2
3

m2
b2,2D 1

5

2

r

n S g1

m1
2

g2

m2
DDp ,

~A27!

l52
5

2
T3S n1g1

3

m1
c1,21

n2g2
3

m2
c2,2D 1

5

2
rS g1

m1
2

g2

m2
DD8.

~A28!

The coefficientsai ,2 , bi ,2 , andci ,2 obey the equations

S n112
3

2
z (0) n12

n21 n222
3

2
z (0)
D S a1,2

a2,2
D 5S X1

X2
D , ~A29!

S n112
3

2
z (0) n12

n21 n222
3

2
z (0)
D S b1,2

b2,2
D 5S Y1

Y2
D , ~A30!

S n112
3

2
z (0) n12

n21 n222
3

2
z (0)
D S c1,2

c2,2
D 5S Z1

Z2
D , ~A31!

where

X152
z (0)m1m2nD

rn1T1
2

2
1

2

T2

n1T1
3

]

]x1
~n1g1

2c1!

1
2

15

m1
2m2nD

rn1
2T1

4 F E dv1S1•L1~ f 1,MV1!

2dgE dv1S1•M1~ f 2,MV2!G , ~A32!

Y152
z (0)rDp

pn1T1
2

2
1

2

c1

pT1

1
2

15

m1rDp

pn1
2T1

4 F E dv1S1•L1~ f 1,MV1!

2dgE dv1S1•M1~ f 2,MV2!G , ~A33!

Z152
z (0)rD8

Tn1T1
2

2
21c1

2TT1

1
2

15

m1rD8

Tn1
2T1

4 F E dv1S1•L1~ f 1,MV1!

2dgE dv1S1•M1~ f 2,MV2!G , ~A34!
02130
and

ci5
8

15F mi
2

4niTi
2E dv1V1

4f i
(0)2

15

4 G . ~A35!

The corresponding expressions of the elementsX2 , Y2, and
Z2 can be deduced from Eqs.~A32!, ~A33!, and ~A34!, re-
spectively, by interchanging 1↔2 and settingD→D, Dp
→2Dp , andD8→2D8. The frequenciesn i j and the colli-
sion integrals appearing in Eqs.~A31!, ~A32!, ~A33!, and
~A34! were explicitly evaluated in Appendix D of Ref.@10#.
Thus, the transport coefficientsD9, L, andl are completely
determined.

APPENDIX B: FIRST-ORDER SOLUTION TO THE USF

In this appendix, we get the solution to Eq.~42! in the first
order in the shear ratea. The normal solution to Eq.~42! is
provided by the Chapman-Enskog method, i.e., a solu
given as a power series ina:

f i5 f i
(0)1 f i

(1)1•••. ~B1!

The zeroth-order solutionf i
(0) verifies Eq.~20! and it corre-

sponds to the homogeneous cooling state distribution in
local Lagrangian frame. Its first Sonine approximation
given by Eq.~23!. Inserting the expansion~B1! into Eq.~20!
leads to the following integral equation forf i

(1) :

] t f i
(1)2aVy

]

]Vx
f i

(0)1
1

2
z (0)

]

]V
•~V f i

(1)!

1
1

2
z (1)

]

]V
•~V f i

(0)!52Li f i
(1)2Mi f j

(1) , ~B2!

where the operatorsLi andMi are defined by Eqs.~A2! and
~A3!, respectively. Sincef i

(1) depends on time only throug
the temperature, Eq.~39! implies that] t f i

(1)5O(a2) and so
the first term on the left-hand side of Eq.~B1! vanishes in the
first order. Further,z (1)50 by symmetry because“•u50 in
the USF. Taking into acount the above properties, Eq.~B2!
reduces to

S Li1
1

2
z (0)

]

]V
•VD f i

(1)1Mi f j
(1)5aVy

]

]Vx
f i

(0) . ~B3!

This integral equation is identical to Eq.~A5! when one par-
ticularizes the latter one to the USF. Therefore, the exp
sion for the shear viscosity obtained from Eq.~B3! is given
by Eqs.~24!–~30!.
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