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Shear viscosity for a heated granular binary mixture at low density
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The shear viscosity for a heated granular binary mixture of smooth hard spheres at low density is analyzed.
The mixture is heated by the action of an external driving f@ggaussian thermospahat exactly compensates
for cooling effects associated with the dissipation of collisions. The study is made from the Boltzmann kinetic
theory, which is solved by using two complementary approaches. First, a normal solution of the Boltzmann
equation via the Chapman-Enskog method is obtained up to first order in the spatial gradients. The mass, heat,
and momentum fluxes are determined and the corresponding transport coefficients identified. As in the free
cooling casdV. Garzoand J. W. Dufty, Phys. Fluid$4, 1476(2002], practical evaluation requires a Sonine
polynomial approximation, and here it is mainly illustrated in the case of the shear viscosity. Second, to check
the accuracy of the Chapman-Enskog results, the Boltzmann equation is numerically solved by means of the
direct simulation Monte Carlo method. The simulation is performed for a system under uniform shear flow,
using the Gaussian thermostat to control inelastic cooling. The comparison shows an excellent agreement
between theory and simulation over a wide range of values of the restitution coefficients and the parameters of
the mixture(masses, concentrations, and sjzes
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I. INTRODUCTION mixtures in thred 8] and two[9] dimensions clearly show
the breakdown of energy equipartition. A more recent kinetic

The macroscopic behavior of rapid granular flows can beheory calculation which takes into account temperature dif-
described through hydrodynamic equations accounting foferences has been carried out by Gaamd Dufty[10]. They
dissipation among the interacting particles. A basis for thesolved the set of Boltzmann coupled equations of the binary
derivation of the hydrodynamic equations and explicit ex-mixture by means of the Chapman-Enskog expansion for
pressions for the transport coefficients appearing in them istates near the local homogeneous cooling state. The mass,
provided by the corresponding Boltzmann kinetic theory inheat, and momentum fluxes were determined to first order in
the low-density regime. In the simplest model, the grains arg¢he gradients of the hydrodynamic fields and the associated
taken to be smooth hard spheres with inelastic collisionstransport coefficients were explicitly identified. As in the
Assuming the existence of a normal solution for sufficientlycase of elastic collision$1], these transport coefficients
long space and time scales, the Chapman-Enskog mgtfod verify a set of coupled linear integral equations that are
can be applied to get the velocity distribution function in solved approximately by using the leading terms in a Sonine
terms of the hydrodynamic fields and their spatial gradientspolynomial expansion. The results derived by Gamul
This method must be conveniently adapted to inelastic colliDufty [10] provide a description of hydrodynamics in binary
sions due to the new time dependence of temperature resuljranular mixtures valic priori over the broadest parameter
ing from collisional energy loss. In the case of a monocom+ange and not limited to the quasielastic regime. In particular,
ponent gas, the Navier-Stokes transport coefficients havéhe consequences of the temperature differences on the trans-
been obtained in terms of the restitution coefficient withoutport coefficients were shown to be quite significant.

limitation on the degree of inelasticif{2—4]. This analysis In the case of molecular fluid mixtures, it is known that
for a monocomponent system has been also extended the leading order truncation is quite accurate, except for ex-
dense gases in the context of the Enskog equgfign treme mass ratioge.g., electron-proton systeim$/uch less

Similar studies for multicomponent granular gases ards known in the case of inelastic collisions, although some
more scarce and most of them limited to the asymptoticalllcomparisons with computer simulations for homogeneous
weak dissipation limi{6]. Although these studies permit, in states indicate that the accuracy is similar to that for elastic
principle, different temperatures for each species, they usteollisions[11,12. The objective here is to compare the ki-
ally assume energy equipartition and so the partial temperasetic theory predictions for the shear viscosity with those
turesT; are made equal to the mixture temperatlirédow-  obtained from a numerical solution of the Boltzmann equa-
ever, some recent results obtained in molecular dynamicton by means of the direct simulation Monte Caf@SMC)
simulations[7] as well as in real experiments of vibrated method[13]. Specifically, the simulations are performed for

a granular mixture undergoing uniform shear fl¢WSH),

namely, a macroscopic state characterized by constant partial
*Electronic address: jmm@unex.es densitiesn; (i=1,2), uniform temperaturd and a linear
"Electronic address: vicenteg@unex.es flow velocity profile u; »=uy,=ay, a being the constant
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shear rate. In a molecular fluid under USF, the temperaturggy of collisions among all pairs is characterized by three
increases in time due to viscous heating. As a consequenc@dependent constant coefficients of normal restitutignp,

the average collision frequenay (which is proportional to  «,,, and a;,= a,;, where a;; is the restitution coefficient
T2 for hard sphergsincreases with time and the reduced for collisions between particles of speciesndj. Due to the
shear ratea* =a/v (which is the relevant nonequilibrium intrinsic dissipative character of collisions, an energy supply
parameter of the problentends to zero in the long time s requested to fluidize a granular gas. For simplicity, here
limit. This implies that for sufficiently long times the system tne fluidization is driven by the action of a nonconservative
reaches a regime described by linear hydrodynamics and thgernal force, frequently referred to as the Gaussian thermo-
Navier-Stokes shear viscosity can be identifi¢d,15. For  giat 1n this case, the mixture is heated by an “antidrag”

granular fluids, the inelasticity of collisions introduces an¢, ..« jinear in the peculiar velocity and chosen to exactly
e timonen oo e omacrcs e pgmpensate for collional coolng. A5 said n the nroduc
viscosity is not as simple as for molecular fluids since theretl n, this deterministic thermostat has been widely used in

is a competition between viscous heating and coIIissionaFomdptl?ter S|mglgt|otr;]s Olf mtzjleculltar fluu_ﬂ$6]. tlrJ]nds_r :hgsf.
cooling. However, if the granular fluid is externally excited ONAIoNS and In i€ low-density regime, the distribution

by an external energy source that exactly compensates fé¢nctionsfi(r,v;it) (i=1,2) for the two species are deter-
the collisional energy loss, the viscous heating effect is stilfmined from the set of nonlinear Boltzmann equations
able to heat the systefas in the elastic cag@nd one can L
identify the shear viscosity in the limit of small shear rate _

relative to the collision frequency (i.e., a* —0). Although (Grtve- V)Tt 55(9_\/1 ' (Vlfi)_zj: Jilval fi (0 f(01,

there are several choices for the external driving force, here (1)

we consider an external thermostat proportional to the pecu-

liar velocity. This thermostat has been frequently used inyhere the constantis taken to be the same for each species
nonequilibrium molecular dynamics simulations of molecu-[7 12 17. Here,V,=v;—u, u being the flow velocity. The
lar fluids [16] and has the advantage that, in the absence 9§g|tzmann collision operatod;;[v4f;,f;] describing the
s_hear,_ it does not affe_ct the dynamics .of the system at agcattering of pairs of particles is
since it is formally equivalent to a rescaling of the velocities

]

[7].
The motivation of our study is twofold. First, in light of Ji[valf, ,fj]zgizjf def doO® (o gy, (0 gy
some doubts about the validity of a hydrodynamic descrip-
tion for granular flow, the comparison with simulation allows YT a=2f:(r V! 1)f. x
us to test the Chapman-Enskog solution obtained by assum- Ly “filr. vy, O (rv2 1)
ing the existence of aormalor hydrodynamic regime. Since —fi(r,ve, O f(r, v, 0], 2

the parameter space here is quite large, the tests of the theory
and concepts are quite stringent. Second, as said above, _ - : -
can also assess the degree of reliability of the approxima;%’%ere(rij =(o+0)/2, o'is a unit vector along tEelr line of
solution (first Sonine polynomial approximatipno the re- centerg, is the HeaV|S|'d'e step funct|0|j1,.e.1rgg2— Vl,_v,z'
sulting integral equation over a wide range of the parametef "€ Primes on the velocities denote the initial val{ies v}
space. With respect to the driving external force used in outhat lead tofvy,v,} following a binary collision:
analysis, we do not claim that it is the most suited one to
model any real experiment. However, it has the advantagev;=v;—u;i(1+a; ) (0 gD o,  Vh=Vo+ uij(1+aj ")
that it can be incorporated into kinetic theory and computer . .
simulations very easily and it allows to check the assump- X(0o-0y)) o, ()
tions of the Chapman-Enskog method.

The plan of the paper is as follows. In Sec. Il, we feViethere,uij =m;/(m;+m;).
the Boltzmann equation and associated macroscopic conser- The relevant hydrodynamic fields are the number densi-
vation laws in the presence of the Gaussian thermostat. Thgssn. | the flow velocityu, and the “granular” temperature

Chapman-Enskog method is applied in Sec. Ill to get all ther Tpey are defined in terms of moments of the distributions
transport coefficients of the mixture, with special emphasis

in the shear viscosity coefficient. The details of the deriva-'

tion are displayed in Appendix A. Section IV deals with the

application of the DSMC method of the Boltzmann equation ni:J dvf,(v), pu=>. f dvm;vf,(v), (4
to USF with thermostat. The Chapman-Enskog and simula- i

tion results are compared in Sec. V at the level of the shear

viscosity showing a good agreement. We close the paper in m

Sec. VI with a discussion of the results presented. nT= p:Z j dv5-Vori(v), ®

Il. THE BOLTZMANN EQUATION

AND TRANSPORT COEFEICIENTS where n=n;+n, is the total number densityp=min,

+m,n, is the total mass density, amqulis the hydrostatic
We consider a binary mixture of smooth hard spheres opressure. At a kinetic level, it is convenient to introduce the
massesn; andm,, and diameters, ando,. The inelastic-  kinetic temperature$; for each species defined as
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3 mo, lows from fluid symmetry that the pressure tensor has the
EniTi:J dv—-V7f;. (6)  same form to first order in the gradients as for the monocom-
ponent gas. In the case of heat and mass fluxes, several dif-

The collision operators conserve the particle number oférent(but equivalentchoices of hydrodynamic fields can be

each species and the total momentum but the total energy #$€d and some care is required in comparing transport coef-
not conserved: ficients in the different representations. Here, as done in the

unforced casg10], we take the gradients of the mole fraction
X1=n./n, the pressurg, the temperaturd, and the flow
f dvd;[vlfi. f;]=0, IEJ J dvmvd; [vlf; . f;]1=0, velocity u as the relevant ones. Thus, in this representation,
' 7 the phenomenological constitutive relations for the fluxes in
the low-density regime have the formk9]

dvimyv2J;,[vlfi,f.]1=—3nT¢, 8 , m;mn . .
IEJ: J 2V IV ] znte ® Ji== — DVXl_%Dpr—gD’VT, J2=~ )1,
where ¢ is identified as thecooling rate due to inelastic (15
collisions among all species. The macroscopic balance equa- q=—T2D"Vx;~LVp—\VT, (16)

tions follow from the Boltzmann equatiofl) and Egs.(7)
and(8). They are given by 2
Paﬁ:paaﬁ_n Vﬁua_l—vauﬁ_gaaﬁV'U . (17)

Vi
Dtni+niV-u+—J'=0, C)
m The transport coefficients are the diffusion coefficiBpthe
_ thermal diffusion coefficienD’, the pressure diffusion coef-
1 — 1
Duu+p "VP=0, (10 ficient D, the Dufour coefficienD”, the thermal conduc-

. tivity N\, the pressure energy coefficiehf and the shear
T Vi, 2 VU= iscosity. The Ch “Enskog meth lized t
D,T—— > —+—(V-q+P:Vu)=—({—&T. viscosity 7. The Chapman-Enskog methi] generalized to
ns m 3n inelastic collisions allows one to get explicit expressions for
(11) these transport coefficients as functions of the restitution co-

. . . . efficients and the parameters of the mixture.
In the above equationf) ;= d;+u-V is the material deriva- P

tive, Ill. SHEAR VISCOSITY OF A HEATED

GRANULAR MIXTURE
ji:mif dvVfi(v) (12
The Chapman-Enskog method assumes the existence of a
is the mass flux for speciégelative to the local flow, normal solution in which all space and time dependence of
the distribution function occurs through a functional depen-

dence on the hydrodynamic fields,
P=> | dvmVV f(v) (13)
' fi(r,va, ) =filva|xq(r,t),p(r,t), T(r,H),u(r,n]. (18
is the total pressure tensor, and This functional dependence can be made local in space and
time by means of an expansion in gradients of the fields.
q=> f dvimV2V f,(v) (14)  Thus, we writef; as a series expansion in a formal parameter
i € measuring the nonuniformity of the system,
is the total heat flux. fi=fO+efM+ 2D+ ... (19)

The energy balance equati@tl) shows that the existence o )
of a driving force with the choicé=¢ compensates for the Where each factor o means an implicit gradient of a hy-

cooling effect due to the inelasticity of collisions. In that drodynamic field. The local reference stdf& is chosen to
case, the macroscopic balance equations look like those of@Vve the same first moments as the exact distributjorThe
conventional mixture with elastic collisions. Nevertheless,time derivatives of the fields are also expandedyasd(®
the transport coefficients entering in constitutive equationst ed{"+ - - - . The coefficients of the time derivative expan-
are in general different from those of a gas of elastic parsion are identified from the balance equati¢®s-(11) after
ticles. Furthermore, for systems with elastic collisions, theexpanding the fluxes, and the cooling ratein a similar
specific set of gradients contributing to each flux is restrictedseries as Eq(19). More details on the Chapman-Enskog
by fluid symmetry, time reversal invarian¢®nsager rela- method adapted to inelastic collisions can be found in Ref.
tions), and the form of the entropy porducti¢t8]. In the  [10]. Now, the main difference with respect to the free cool-
case of inelastic collisions only fluid symmetry applies anding case{10] is that the sink term in the energy equation is
so there is more flexibility in representing the fluxes andzero(when one takeg={¢), so that the terms coming from
identifying the corresponding transport coefficients. It fol- the time derivativeago) vanish.
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In the zeroth orderf(®) obeys the kinetic equation ratio, size ratio, composition, and restitution coefficients. Re-
cently, the accuracy of this approximate solution has been
confirmed by Monte Carlo simulation of the Boltzmann
equation over a wide range of the parameter spate

The analysis to first order ire is similar to the one
where use has been made of the ch@i®=¢(®. Here,/(®  worked out in Ref[10] for the free cooling case. Some de-
is determined by E(38) to the zeroth order. With this choice, tails of the derivation of the transport coefficients as well as
Eq. (20) is identical to the the one obtained in the unforced their final expressions are given in Appendix A. Here, given
case[20], and there is an exact correspondence between thbat the theoretical predictions for the shear viscosity coeffi-
homogeneous cooling state and this type of driven steadgient » will be compared with those obtained from Monte
state. This is one of the advantages of the Gaussian therm@arlo simulations, we focus our attention on the explicit final
stat. Dimensional analysis requires tﬁéﬁ)(V) must be of  expression for. According to Eq(A25), the shear viscosity

_§(0) (Vf(o)) 2 Jii [f(O) f(O)] (20)

the form can be written as

(0)\/\ _ . —3

fi’/(V)=njvo "®i(V/vy), (21 77=E7l*, (24

14
where
where
_\[pr Tt (22)
vo mim, V= \/;na'izvo, (25)

is a thermal velocity defined in terms of the temperafitd  is an effective collision frequency and the reduced shear vis-
the mixture. So far, the exact form df; has not been found, cosity coefficients*

although a good approximation for thermal velocities can be

obtained from an expansion in Sonine polynomi&8]. In 7% =x173d} 1+ X2 503 (26)

the leading orderd; is given by ' '

with
32
d,(V*)— b e OiV*? 1+ 0-V*4—50<V*2+E * % * * % *
i - 4 i i 4 o VAT )yt P 21 G i S e X1
23 9T A - Gam A |

whereV* =V/v,, 6;=(ujiy) ", andy,=T,/T. The coef- @D

ficientsc; (which measure the deviation df; from the ref-  Here, ¢* = (O,

erence Maxwellian are determined consistently from the

Boltzmann equation. The approximati@@3) provides de- A=y y [ {¥ 2= 0* (5 7)) + Thmh— Thrs,  (28)
tailed predictions for the cooling raé®), the temperature

ratio T, /T, and the cumulants; as functions of the mass and the dimensionless quantitie|’$ are given by[(10]

01

1 c
T 5( (—) 0;”{1—11—%92(1 &l

3 B B i c,
+ §M2191 2( 0.+ 02)1/2(3— a15)+560; 1( 6,+ 6,) 12y e

8
TEXomo1(1+ @) 93/292 Y2

15 601 2(1202— p21601)( 01+ 0,) 12

» 205(121191+ 915~ 10) = 01(5—6u21) — 5 wo1(3— a1 (61 + 6,)
(01+ 6,)%?

; (29

,U«21 3
1= 15X (1+a 2) 0320, 17 605 2oy — por61) (01 + 0,) " V2+ 2#2102 2014 05)VA3— a1 =56, H(01+ 0,) M2

Cl 2601(10— 1215~ o1 + 02(5— 61 — 5 (33— 1) (61+ 67)

16 (01+ 02)5/2 (30)
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The corresponding expressions fef, and 75, can be in- IV. MONTE CARLO SIMULATION FOR UNIFORM

ferred from Eqs(29) and(30) by interchanging 2. SHEAR FLOW WITH THERMOSTAT
Equations(24)—(30) provide the explicit expression for

:Ee fs_h?asr viscosity; of a hﬁate?tgranular bltn?hrytrtnhlxturz n atant partial densitier;, a linear velocity profileu=u;=a
€ irst sonine approximation. 11 1S apparent fhat the reduced, " here the elements of the tensorrea, =ad oy, , a

. . :
V'SCOS'W n prese'ﬁ? a complex nonlinear dependence OrE)eing the constant shear rate. In addition, the granular tem-
the restltut|on'coeff|C|ent&11, ag2, anda;, and the param- - ,oratureT and the pressure tensBrare uniform, while the
e;e;]s of the mllxtu:cena/m?”, éfll/ffz, andnllné.bThe quallty mass and heat fluxes vanish by symmetry reasons. This spe-
o.th eMexpresCsmln on V\l" e later ﬁSSﬁsssg ybclomparlﬁon cial state is generated by Lees-Edwards boundary conditions
with Monte Carlo simulations in the problem With @ 551 \which are simple periodic boundary conditions in the
thermostat. Before studying the general dependencg*of local Lagrangian frameR=r—a-rt and V=v—a-r. In

on the parameter space, It Is instructive to consider SOMgy g of these variables, the velocity distribution functions
special limit cases. In the elastic limit;;= ap=a,=1, 40 uniform[23]

{*=0, y;=1, andc,;=c,=0, so that the expressia26)
becomes fi(r,v;t)="f;(V;t). (39

The USF is a nonequilibrium state characterized by con-

In the case of elastic collisiong€0) and in the absence
, (31) of a thermostatting force, the energy balance equatldn
xfsl+x§SZ+x1x2812 yields the heating equation

N XiR; +X5R,+ X1XaRy

here 2
w hT=— %aPXy.

(39
2_:“ R :E+ i 32) Since the granular temperatufeincreases in time, so does
5"’ 273 ' 5u° the collision frequency(t) according to Eq(25). As a con-
sequence, the reduced shear gdtét) =a/v(t) (which is the
2 relevant uniformity parametgmonotonically decreases with
) Ml—21/2,u2—11 , increasing time and the system asymptotically tends towards
that of (local) equilibrium. This implies that for sufficiently
(33 long times(which means hera* <1), the system reaches a
regime described by linear hydrodynamics and the Navier-
16 ( 01)2 " 16 ( 02)2 " Stokes shear viscosity can be identified agl4,15
2

S;=——R;|— , =——R
15\/51 M21 325\/5

“12, -1
(—) o1 Mz T
12

012

012 012 *

v - Py
(34) n_T n=-— tlma_*' (40)
2 2
312:3_2+ E( 01) (2) (paopnr) ~ Y2 (35) WhereP§y= Pyy/nT. This route has been shown to be quite
1525 012 efficient to measure the Navier-Stokes shear viscosity coef-
ficient for dilute[24] and dens¢15] gases.
Here, u= 15/ yy=my /M, is the mass ratio. Equatiaidl) For a granular mixture, unless a thermostat is introduced,
agrees with the results obtained in the first Sonine approxithe energy balance equati¢tl) leads to a steady state when
mation to the coefficient of viscosity of a molecular gas mix-the viscous heating effect is exactly balanced by the colli-
ture of hard spherd®1]. In the case of mechanically equiva- sional cooling[25]. However, if the granular mixture is ex-
lent particles (y=m,, a11=axn=a,=a, 01,=0,=0), cited by the Gaussian thermostat
yi=1, *=(2/3)(1- a?)(1+3c/32), and

012

th 1
Fi=omidV, (41)
321—a)(1—-2a?)
C1=Co,=C= > . (36) ) o
81-17a+30a“(1— a) which exactly compensates for the collisional energy loss,
the viscous heating still heats the system and B§) re-
In this case, one gets mains valid. Consequently, the linear relationsfif) allows
one to determine the shear viscosity coefficient in the long
c 1 time limit. Recently, this idea has been used to measure the
7=—|(1+a)|(2+a) +—(33a—39)}) . (37)  shear viscosity of a heated granular monocomponenf4jas
4 128 The comparison with kinetic theory shows an excellent

agreement over a wide range of values of the restitution co-
This expression coincides with the one recently obtained foefficient. It must be noted that herg represents the shear
a heated granular monocomponent gdsAll this shows the  viscosity of anexcitedgranular mixture and thus it does not
self-consistency of the present description. necessarily coincide with the Navier-Stokes shear viscosity
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obtained in the unforced ca$&0]. As a matter of fact, the T
results obtained in Sec. Il indicate that the transport proper- 1O
ties are affected by the Gaussian thermostat and the expre:, «
sion (26) for the (reduced shear viscosity differs from the *i osk
one derived in the free cooling cask)]. The use of thermo- &
stats to control collisional cooling in undriven systems is =
guite commor{12,26]. Usually, the motivation is to produce
a steady state while here it is to remove the steady state il
favor of one whose dynamics determines the viscosity. 04
The Boltzmann equation for a mixture of inelastic hard
spheres under the USF and subject to the external Gaussic ¢,
force (41) reads

J 1 J 00 1 . 1 N 1 N 1
atfi_avya_vxfi"i'EgW'(Vfi):; Ji[VITi(),f;()]. 0.00 0.05 , 010 0.15
(42)

a

_ _ _ FIG. 1. Plot of the ratiop* (a*)/ 7§ as a function ofa* for «
The second term on the left-hand side represents an inertialg.9 in the casen, /m,=4, n,;/n,=1, ando,/o,=3 for three

force of the formF"= —mja-V, while the third term repre- different values of the initial shear ras : a%=0.2,0.3, and 0.4.
sents the thermostat fortEérh given by Eq.(41). Thus, in this  Here, § refers to the Navier-Stokes shear viscosity value given by
frame, the system is in a homogenous state subjected to tltlee first Sonine approximation to the Boltzmann equation.

: in h :
action of the(total) force Fi'+F". We have numerlcglly the shear rate. In Appendix B, it is easily proved that the
solved Eq.(42) by means .Of _the DSMC methc_{d3]. Th"?’ first-order solution to Eq(42) leads to the same expression
method was devised to mimic the processes involved in thg, the shear viscosity as the one obtained in Sec. Il from
Boltzmann collision term and its extension to deal with in-ne general Chapman-Enskog method specialized to the USF.
e|aStiC CO||iSi0nS iS Straightforward. In addition, Since theThUS’ in the first Sonine approximation' the theoretical pre_
USF is spatially homogeneous in the Lagrangian frame, th@iction of %* is given by Eqs(26)—(30).
simulation method is easy to carry out and only thecu- Before analyzing the dependence of the dimensionless
liar) velocities of the particles need to be stored. The restricshear viscosity coefficieny* on the parameters of the prob-
tion to this homogeneous state prevents us from studying thiem, it is instructive to test the consistency of the simulation
possible formation of particle clustemicrostructurg method in the limita* —0 (which corresponds here to

Technical details of the DSMC method and its applications-1) . For long times and for given values af m;/m,,
to the USF state can be found in Reff$1,25. In our simu- ¢, /0, , andn;/n,, the reduced viscosity* must reach a
lations we have typically taken a total number of particlesvalue independent of the inital preparation of the system. In
N=10°, a number of replicasV=5, and a time step\t  Fig. 1, we plot the shear-rate dependent viscositi&ta*)
=3X10 3¢1,/vg, Wherel;=(\27n,02) "t is the mean measured in the simulation, relative to its Navier-Stokes
free path for collisions 1-1 andy,=+2T/m;. value n§ given by the Boltzmann theorjEgs. (26)—(30)]

At given values of the shear rage the restitution coeffi-  for three different choices of the initial shear ratg: 0.2,
cientsa;;, and the parameters of the mixture, the system i9.3, and 0.4. Here, the restitution coefficientais-0.9, the
initially prepared in a local equilibrium state with a tempera- mass ratio ism; /m,=4, the concentration ratio ia,/n,
ture T(0)= T, such that the initial value of the reduced shear=1, and the size ratio is; /o, =3. After a transient regime
rate isay =a/v(Ty). As the system evolves, we monitor the of a few mean free times, we observe that the curves corre-
time evolution of the reduced shear rat&(t)=a/v[ T(t)] sponding to the three different initial conditions practically
and the reduceday element of the pressure tensdﬂi‘y(t) coincide. This means that a hydrodynamic regime indepen-
=P, (t)/nT(t). We observe that in all the cases, after adent of the inital conditions has been achieved. In addition,
transient period, the ratig* = — P% /a* reaches a constant for very small values o&*?, the ration* (a*)/ »} fluctuates
value that is independent of the shear rate and time. Thiground 1 showing that in this regime the viscosity coefficient
allows us to measure the corresponding shear viscosity coefreasured in the simulation is consistent with the value ob-

ficient » as tained from the Boltzmann kinetic theory. The same behavior
has been found for other values of the restitution coefficient
nT(t) as well as of the parameters of the mixture. Notice that the

n(t)= (0 7", (43 Jimit a*—0 is strictly unattainable in the USF because it

requires an infinite amount of time. Also, the signal-to-noise

where the dimensionless shear viscosify is independent ratio decreases in that limit so that the fluctuations increase.

of'tlme but depend; on dissipation and the parameters of tl\(; COMPARISON BETWEEN THEORY AND SIMULATION
mixture (masses, sizes, and concentratjons

The theoretical prediction fop* can be obtained from Once the consistency of the simulation method has been
the Chapman-Enskog solution to E¢2) up to first order in  tested, we focus our attention on the study of transport prop-
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FIG. 2. Plot of the temperature rafig /T, as a function of the FIG. 3. Plot of the ratiop* (a)/ * (1) as a function of the mass
size ratiooy /o= (m, /my) Y3 for n; /n,=1 and three different val-  ratiom, /m, for o, /a,=n;/n,= 1 and three different values of the
ues of the restitution coefficient: (a) «=0.9 (circles, (b) «  restitution coefficient: (a) «=0.9 (circles, (b) «=0.8 (squarel
=0.8 (squares and(c) «=0.7 (triangleg. The lines are the theo- and(c) «=0.7 (triangles. The lines are the theoretical predictions
retical predictions and the symbols refer to the results obtained frorand the symbols refer to the results obtained from the DSMC
the DSMC method. method.

erties in the Navier-Stokes regime. In this section, we com=n,/n,=1. Here, »* (1) refers to the elastic value for the
pare the predictions of the Sonine approximation with theshear viscosity coefficient. Again, the symbols represent the
results obtained from the DSMC method. A complete presensimulation data while the lines refer to the theoretical results
tation of the results is complex due to the high dimensionalobtained from the Boltzmann equation in the first Sonine
ity of the parameter spacdiq, @y, a12,M /My, 0q/05, approximation. We see that in general the deviation of
ny/n,}. For the sake of concreteness, henceforth we willy* («) from its functional form for elastic collisions is quite
assume that the spheres are made of the same material, iiportant. This tendency becomes more significant as the
a11= ax= a,=c. This reduces the parameter space to fourmass disparity increases. The agreement between the first
guantities. Sonine approximation and simulation is seen to be in general
Apart from the shear viscosity coefficient, another inter-excellent. This agreement is similar to the one previously
esting quantity at this level of description is the temperaturdound in the monocomponent ca$é]. At a quantitative
ratio T,/T,. This ratio measures the breakdown of the en-
ergy equipartition. The analysis of the temperature differ- | ¢
ences has been a subject of growing interest in the past fev
years among both theoridtg,11,12,20 and experimentalists
[8,9]. As was previously found from the Boltzmann kinetic . 13| 7
theory[20], except for mechanically equivalent particles, the E;
partial temperature§; are different. For the sake of illustra- 3§ 141 i
tion, Fig. 2 shows the dependence of the temperature ratio or=
the size ratioo, /o, for an equimolar mixturer{;/n,=1)
and three different values of the restitution coefficient 1.3
=0.9, 0.8, and 0.7. We consider a binary mixture of constant
density and som;/m,=(o,/0,)%. We observe that for 12k

3
large size ratios the temperature differences are quite impor I L] [ ]
tant, even for moderate dissipation. It is also apparent that al K}\{ @
excellent agreement between the the@iven by the first L1F —% —2
M M M 1 M 1
4 5

©

Sonine correctionand Monte Carlo simulationsymbolg is
found over the entire range of values of size and mass ratio:
considered.

Next, we explore the influence of dissipation on the re- i 4. plot of the ration* (a)/7* (1) as a function of the size
duced shear viscosity* () for different values of the mass ratio ¢, /o, for m, /m,=4, n,/n,=1 and three different values of
ratio, the size ratio, and the concentration ratio. Three differthe restitution coefficienta: (@) «=0.9 (circles, (b) «=0.8
ent values of thécommon) restitution coefficient are consid- (squarel and(c) a=0.7 (triangles. The lines are the theoretical
ered: «=0.9,0.8, and 0.7. In Fig. 3, we plot the ratio predictions and the symbols refer to the results obtained from the
7*(a)/5* (1) versus the mass ratim;/m, for o;/0,  DSMC method.

[
(V]
w

o/o,
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1.6 T T T T T T T T T and controversy. In this context, there are some doubts about
] the possibility of going from a kinetic theory to a hydrody-
15k i namic level of description by using a Chapman-Enskog ex-
] pansion around the homogenous cooling state. Given that the
2 © search for exact solutions of the Boltzmann equation is far
L4F T beyond the present perspectives, an alternative to get some
LN insight into the above question is to numerically solve the
13}F ® . kinetic_ equatior_1 and compare these r_esults with _th_e corre-
sponding solution obtained by assuming the validity of a

2k [ [ _ hydrodynamic description. In this paper, we have performed

such a comparison at the level of the shear viscosity coeffi-

§\§\ @ 1 cient of a heated granular mixture. The system is heated by

L1 2 B the action of a thermostatting external force that exactly
5

n(om(l)

*

. . compensates for cooling effects associated with the inelastic-
1 2 3 4 ity of collisions. Although some previous workg,27,29

oL have compared kinetic theory predictions for transport coef-

ficients with computer simulations in the case of a mono-

component gas, studies for multicomponent granular gases

ferent values of the restitution coefficieat (a) «=0.9 (circles, are more Scarqe' Vgry recently, a segmlngly similar an,alys's
(b) a=0.8 (squares and(c) @=0.7 (triangles. The lines are the for the shear viscosity; of a dense mlxturg hgs been given
theoretical predictions and the symbols refer to the results obtainetil Ref. [29]. Nevertheless, the above kinetic theory only
from the DSMC method. holds for nearly elastic particles and the expressiomn di

the first Sonine approximation coincides with the one ob-

level, the discrepancies between theory and simulation teniined in the elastic case.

to increase as the restitution coefficient decreases, although As a first step in our issue, in Sec. lll we have derived the
these differences are quite smédhy, for instance, around general hydrodynamic equations oheatedbinary mixture
2% ata=0.7 in the disparate mass casg/m,=10). of smooth inelastic spheres from the Boltzmann kinetic

The influence of the size ratio on the shear viscosity isequation by using the Chapman-Enskog method. The corre-
shown in Fig. 4 form;/m,=4 andn;/n,=1. We observe sponding transport coefficients have been expressed in terms
again a strong dependence of the shear viscosity on dissip8f the solution to integral equations, which are then solved
tion. However, for a given value of, the influence of approximately(first Sonine polynomial approximatipfust
o1/0, on 5* is weaker than the one found before in Fig. 3aS In the case of elastic collisions. The explicit expressions
for the mass ratio. The agreement for bath-0.9 anda  for the —set of relevant transport ~coefficients
=0.8 is quite good, except for the largest size ratioaat {D,Dp,D’,D_”,L,)\,n} are displayed in Appendix A. In con-
—0.8. These discrepancies become more significant as tHEast to previous work§6,29], our results are not limited
dissipation increasesaya=0.7), especially for mixtures of Prori to weak inelasticity _and they take into account the_
particles of very different sizes. Finally, Fig. 5 shows thee_ffect of the temperature differences on the_transport coeffi-
dependence of* (@)/7* (1) on the concentration ratio for cients. On the'o'ther ha_nd, the'results obtained here for _the
m,/m,=4 ando,/o,=1. We observe that both the theory transport cov_afﬁments slightly gllffer fro_m those obtalned in
and simulation predict a very weak influence of compositionth® free cooling casgl0], showing that in general the intro-
on the shear viscosity. With respect to the influence of dissiduction of a thermostat affects the transport properties of the
pation, the trends are similar to those of Figs. 3 and 4: thas[23]. The Chapman-Enskog results obtained for the mix-
main effect of inelasticity in collisions is to enhance the mo-{Ure have been then specialized to the hydrodynamic state of
mentum transport with respect to the case of elastic collifransverse shear. In this state, th_e_shear viscosity coefficient
sions. The agreement now between theory and simulation ig 1S the relevant transport coefficient of the problem. The
very good, even for disparate values of the concentratio§XPlicit form of 7 is given by Eqs(26)—(30) in terms of the
ratio and/or strong dissipation. Therefore, according to théestitution coefficientsy;; and the parameters of the mixture
comparison carried out in Figs. 3, 4, and 5, we can concludémasses, diameters, and concentragions
that the agreement extends over a wide range of values of the TO test the assumptions of the Chapman-Enskog method
restitution coefficient, indicating the reliability of the first @nd the approximate Sonine solution to the resulting integral
Sonine approximation for describing granular flows beyond@duation, the DSMC method has been used to solve the Bolt-

FIG. 5. Plot of the ratiop* (a)/%*(1) as a function of the
concentration ratim, /n, for m;/m,=4, o,/0,=1 and three dif-

the quasielastic limit. zmann equation in the uniform shear flow state. In the ab-
sence of a thermostat, in a granular fluid there is a competi-
V1. DISCUSSION tion between two opposite effects: viscous heating and

collisional cooling. In that case, when both effects exactly
Although the utility of a hydrodynamic description for cancel each other, a steady state is reached after a transient
granular media under rapid flow conditions has been recogperiod. In this steady state, due to the coupling between dis-
nized for many years, its domain of validity as well as thesipation and the shear rate, the system is far away from the
forms of the transport coefficients remain a topic of interestNavier-Stokes regime, except when-1 [25]. However, if
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the external thermostat is adjusted to compensate for the eor less unstable to long-wavelength perturbations than that of
ergy lost in collisions, the shearing work still heats the systhe one-component case, and what are the mechanisms in-
tem. As a consequence, as the system evolves, the reducedlved in phenomena very often observed in nature and ex-
shear ratea* (t) goes to zero and the system achieves aeriments such as phase separatiosegregation\We hope
regime described by linear hydrodynamics. In this regimef[hat the present results give some insight into the understand-
the Navier-Stokes shear viscosity coefficient can be mednd of these interesting and complex problems.

sured from simulations. In this paper, the thermostat is used

to remove the steady state in favor of a time-dependent state ACKNOWLEDGMENTS

whose dynamics allows one to get the Navier-Stokes shear . S
viscosity just as for the case of elastic collisidiis, 24, V.G. acknowledges partial support from the Ministerio de

The dependence of the viscosityon the full parameter Ciencia y Tecnolog (Spain through Grant No. BFM2001-

space has been explored. Specifically, the parameter space
over which our solution has been verified is the mass ratio
m, /m,, the concentration ratin, /n,, the ratio of diameters

o1/op, and the (common restitution coefficienta=ay, In this appendix, the expressions of the transport coeffi-
= a1y = az=ay,. The theory and simulation clearly show cients for a heated granular mixture are obtained. The deri-
how in general, the influence of dissipation on momentumyation follows similar steps as those made in R&€] in the

transport is quite important since there is a relevant depemree cooling case. Here, we will use the same notation as in

dence of the viscosity)(«) on the restitution coefficient.  Ref, [10]. In the first order, the distribution functiof*)
At a given value of the restitution coefficient, the depen-ygrifies the kinetic equation

dence ofn(a)/7(1) on the mass ratio is more significant

than the one found on the composition and diameters. This 1 ©) d i " " "
feature has been also found for the temperature ratio in the | £i+ 57—V [ fi7+ Mifi = —(D7+V- V)i,
experiments recently carried out in vibrated mixtuf8s)], (A1)
although experimental confirmation of the trends observed

here for the viscosity is still lacking. With respect to the whereD{"=4"+u.V, and

accuracy of the theory predictions we see that, in general, the

Chapman-Enskog results in the first Sonine approximation £;f{V=—(J;[f{? ]+ 3£ £+, 1D £(0]),

APPENDIX A: CHAPMAN-ENSKOG EXPANSION

exhibit an excellent agreement with the simulation data. This (A2)
supports the idea that the Sonine polynomial approximation L o (1
for granular fluids has an accuracy comparable to that for MiFP=— 3,1 £O £ (D], (A3)

elastic collisions. Exceptions to this agreement are extreme ) . )

mass ratios and strong dissipation. These discrepancies dfethese equations, itis understood that and use has been

basically due to the approximations introduced in applyinghade of the fact that{”’T=0 and the resultg{”=q®

the Chapman-Enskog method, and more specifically in usingt {'=0. The last equality follows from the fact that the

the first Sonine approximation. cooling rate is a scalar, and 6 should be proportional to
One of the main limitations of the results obtained hereV -u. However, as shown later, there is no contribution to

from the Boltzmann equation is its restriction to the low- (1) proportional to the divergence of the flow field so that

density regime. In this regime, the collisional transfer contri-Z(")=0 by symmetry. This property is special to the low-

butions to the fluxes are negligible and only their kineticdensity Boltzmann kinetic theory and such terms occur at

contributions are taken into account. Possible extension ihigher densitieg5]. The macroscopic balance equations to

both aspects, theory and simulation, of the present simplérst order are

hydrodynamic state to higher densities can be carried out in

the context of the revised Enskog theory. In this case, many DWy. =0 ED(l)In _ §D(1)InT= V.u

of the phenomena appearing in dense granular fiisidsh as tAs gt P 2t '

spontaneous formation of dense clusters surrounded by re-

gions of low density[30]) could be studied. On the other DMu=—p~tvp. (A4)

hand, although the comparison performed here has been

made undergoinginiform shear flow without paying atten- Use of these in EqiAL) yields

tion to the possible formation of particle clustd®il], our

Chapman-Enskog results apply for genardlomogeneous

situations. The only restriction is that they provide the irre-

versible parts of the mass, heat, and momentum fluxes to

leading order in the spatial gradients of the hydrodynamic +Ci- VT+Di o5V alig, (A5)

fields. In this context, the results derived in this paper can be h

used to analyze the behavior of granular mixtures in a lot of'Nere

1 d
I (¢) B
£,+2§ N Vv

fH+ M FPD=A;- Vx+B;-Vp

physical situations. Thus, for instance, the knowledge of the 9
complete hydrodynamic equations for a binary mixture al- Ai(V)= —(—fi(o)) V, (AB)
lows one to say whether the mixture hydrodynamics is more Xy p,T
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B-(V)=—1 1oy 740 (A7) = dvmV,V ,D; A18
1 p i p &V 1 ’ n=- 10 “ \ m BYi,aB " ( )
1 Accurate approximations to the solutions to the integral
. = (0) (0)
Ci(V)= f 2 2 oV (Vi )} (A8) equations for (4;,1;,C;,D; ,5) may be obtained using

low-order truncation of expansions in a series of Sonine
© I 0 polynomials. In the case of the mass flux, we consider the
Di,aB(V):Vaan 3%V oy fi7- (A9 leading Sonine approximatiditowest degree polynomigl

The solutions to EqgA5) are of the form {ALB; L Cif =i Vi ,bia, Gty

fD= A Vx;+B,-Vp+C;-VT+D; 5V . fi m(V)=ni(mi/27T;)*%exp — mV2/2T;),  (A19)
(A0 wherea; ;= —(mym,n/pnT;)D, b; ;=—(p/pnT;)D,, and
The coefficientsA4; ,B;,C;, andD; ,, are functions of the ¢; 1= —(p/Tn;T;)D’. The coefficients, ;, b; ;, andc; ; are
peculiar velocityy and the hydrodynamic fields. The cooling determined by multiplying the three first equations of Eqg.
rate depends on space through its dependenog op, and  (Al1l) by m;V and integrating over the velocity. The result is
T. The integral equations for the unknowns are easily iden-

tified as coefficients of the independent gradients in Eq. - 1 ) 19
(A10). The result is a;1=—|vp— 55 &_xlln niTy p =~ (A20)
A A Ai 1 “n,T, mnT
J B B B, bllz_(VD__g(O)) (1— >, (A21)
5(0) RY; S VN R I ‘ 2 p pTy
N G 1< G |
Di g Dj ap Di'a(lja\]_ €11=0. (A22)

Here, the collision frequencyp, is given by Eq.(73) of Ref.
Note that, in contrast to what happens in the free coolind10l.
case[10], here each one of the quantities, , B;, C;, and In the case of the pressure tensor, the leading Sonine ap-
D, .5 obey closed integral equations. The solution to Eg.proximation for the functiorD; .4 is
(Al11) provides the expression for the transport coefficients.

In the case of the mass flijx, these coefficients are identi-  Di.ag— fimdiiRiap:  Riag=Mi(VaVp—3V28,5).
fied as (A23)
p The shear viscosity coefficient is given by
D=—3m nf dvVv- A, (A12)
2 7=—NT2(X1¥{d1 1+ X;730; 2. (A24)
D,=— mlpf dvV -8B, (A13) The coefﬁcie.ntsdi’l can be determined b_y multiplying the
3 fourth equation of Eq(A1l) by R; .z and integrating over
the velocity to get the coupled set of equations
m,T
D’=——lj dvV.c;. (A14)
3p

7'11_5(0) T12 )(dl,l) (Tll)
==l_ 1/ (A25)

— 7O/ q T
T T
The transport coefficients for the heat flux are 2 2 ¢ 21 2
The collision frequencies;; = 7j; v, where7j are given by
D" = dv = mV2V - A15 Eqs.(_29) and (30). From Eq._(A25)_, one ea_sily gets t_he ex-
3T2 E f A (A19) pression(24) for the shear viscosity given in the main text.
The calculations for the heat flux are similar to those pre-
2 viously made for the other fluxes. As in the unforced case,
E f dv=mV3V. B;, (Al6) this requires going to the second Sonine approximation. In
= this case, the transport coefficients defining the heat(fléx
are given by

A=—= >, dvlm-v2v -C (A17) 3
34 2 e 5 n171 N>y

D= ——T| ——a, ;- ——ay,| +
2 my; 1,2 m, 2,2

Finally, the shear viscosity is given by
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5 y n 73 5
L:_—T( ! lblz rzanZ’Z +—B ﬂ_ﬁ Dp,
2

2 2n\im; m,
(A27)
5 .(nyi Nyy3 5 (y1 7
N ] it - L e ’
)\ 2T ( C1’2+ m2 C2‘2 + 2p ml m2 D .
(A28)

The coefficientsa; ,, b; ,, andc; , obey the equations

3
(o))
Vi1 2§ V1o ans| (% o0,
3 ars o B X2 ’
_ _ #(0) '
Vo1 Voo 2§

v 5 ¢ Y12 b Y
3

3 b Y
Yoy Voo— _5(0) 2,2 2
— _ #(0)
Vi1 2 g Vi2 Clz) ( Z]_
= , (A31
3 0) C2'2 Zz ( )
V21 V22_§§
where
. §<°>m1m2nD 1 T2 9 I e
1 pani 2 1T3 8X 1Y1C1
2 mm,nD fd S, Ly(fiVe)
+——— | dv;S;-
15 pniT‘I 1 1(Tym Ve
_57’f dvlsl'Ml(fZ,Mvz)}v (A32)
V.= g(O)pr 1c
' pn, T2 2pTy
2 mlp
p fdvlsl Lq(f1mVa)
15
_57’f dvlsl'Ml(fZ,MVZ)}v (A33)
_ {9%D" 2+¢
YT T 2T
2 mlP
15 T fdvlsl Lq(f1mVa)
_57J dVlSI'Ml(fZ,MVZ)}y (A34)
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and

8| m? 15
ﬁ f dv, Vi@ — — (A35)
iti

Ci:1_5 an 2|

The corresponding expressions of the eleméptsY,, and

Z, can be deduced from Eg6A32), (A33), and (A34), re-

spectively, by interchanging<t2 and settingD—D, D,

——D,, andD’——D". The frequencies;; and the colli-
sion integrals appearing in Eq6A31), (A32), (A33), and

(A34) were explicitly evaluated in Appendix D of RdfL0].

Thus, the transport coefficien®’, L, and\ are completely
determined.

APPENDIX B: FIRST-ORDER SOLUTION TO THE USF

In this appendix, we get the solution to E42) in the first
order in the shear rate The normal solution to Eq42) is
provided by the Chapman-Enskog method, i.e., a solution
given as a power series m

fi:fi(0)+fi(1)+..._ (Bl)

The zeroth-order solutiof{®) verifies Eq.(20) and it corre-
sponds to the homogeneous cooling state distribution in the
local Lagrangian frame. Its first Sonine approximation is
given by Eq.(23). Inserting the expansiofB1) into Eq.(20)
leads to the following integral equation f6{"

3tfi(l)_ f(0)+ 5(0) (Vf(l))

g(1> v (VA =—cifP- M, (B2)

where the operators; and M; are defined by Eq4A2) and
(A3), respectively. Sincéfl) depends on time only through
the temperature, Eq39) implies thats,f(*)=0(a?) and so
the first term on the left-hand side of H&@1) vanishes in the
first order. Further;(")=0 by symmetry becausé-u=0 in
the USF. Taking into acount the above properties, (B)
reduces to

1
+§g(°>§ )f(1)+Mf(1)—aV 0. (B3

This integral equation is identical to EGA5) when one par-
ticularizes the latter one to the USF. Therefore, the expres-
sion for the shear viscosity obtained from EB3) is given

by Egs.(24)—(30).
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