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Model of coarsening and vortex formation in vibrated granular rods
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Neicuet al. observed experimentally spontaneous formation of the long-range orientational order and large-
scale vortices in a system of vibrated macroscopic rods. We propose a phenomenological theory of this
phenomenon based on a coupled system of equations for local rods density and tilt. The density evolution is
described by the modified Cahn-Hilliard equation, while the tilt is described by the Ginzburg-Landau type
equation. Our analysis shows that, in accordance with the Cahn-Hilliard dynamics, islands of the ordered phase
appear spontaneously and grow due to coarsening. The generic vortex solutions of the Ginzburg-Landau
equation for the tilt correspond to the vortical motion of the rods around the cores which are located near the
centers of the islands.
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Vibrated granular materials exhibit many interesting ph
nomena, including formation of cellular and localized p
terns, phase separation, etc.@1–6#. Neicu et al. @7# studied
the dynamics of a layer of long cylindrical grains~rods! sub-
jected to vertical vibration, and discovered a surprising p
nomenon of spontaneous formation of ‘‘islands’’ of vertica
aligned rods which coexist with the ‘‘sea’’ of almost horizo
tal rods. Subsequently, small islands merge and form la
islands which typically exhibit collective vortical motion o
rods. Near the core this motion has a form of a solid bo
rotation, while farther away the angular velocity deca
While the bistability and first-order phase transitions lead
to phase separation and coarsening are typical in gran
dynamics and usually caused by the inelasticity of gra
@2–6,8#, the emergence of the vortical motion within the o
dered phase is unexpected. Experiment@7# shows that rods
within a vortex are tilted in the azimuthal direction, an
slowly drift in the direction of the tilt. Neicuet al. @7# sug-
gested that the drift occurs due to the confinement of the
vibration by its tilted neighbors.

In this article we introduce a continuous phenomenolo
cal model of the transition to the ordered vortical state ba
on the modified Cahn-Hilliard equation governing the d
namics of local rods density and the Ginzburg-Landau t
equation for the tilt. Our model reproduces qualitatively t
observed phase separation, coarsening and vortex forma
We derive the solutions for the stationary vortices and d
cuss their stability.

Model. The motion of rods is described by the momentu
conservation equation in the form

rS Dv

Dt
1zvD52“p1anf 0~n!r. ~1!

Herev5(vx ,vy) is the horizontal velocity of rods,r is the
density, p is the hydrodynamic pressure, the tilt vectorn
5(nx ,ny) is the projection of the rod director on the (x,y)
plane, andn5unu. The termanf 0(n)r accounts for the av-
erage driving force from the vibrating bottom on the tilte
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rod. According to experiments@7#, the driving force is pro-
portional to the tilt of rods for small tilt values, but saturat
and eventually decays to zero atn. Coefficienta is propor-
tional to the velocity magnitude of the plate oscillations, a
so for a fixed acceleration magnitude is inversely prop
tional to the vibration frequency. For definiteness we setf 0
5a12n2, with a15const~the last term inf 0 models decay
of driving force for large tilts!. The termzv describes the
momentum dissipation due to bottom friction. Equation~1!
must be augmented by the mass conservation equation

] tr1div~vr!50. ~2!

In the following we assume that friction is strong, and n
glect the inertia termDv/Dt with respect to the friction term
zv. Thus, we can express the velocity in the form

v52@“p2anf 0~n!r#/zr. ~3!

Now, substituting the velocity~3! into the mass conservatio
law, Eq. ~2!, we obtain

] tr5z21 div@“p2anf 0~n!r#. ~4!

To describe phenomenologically the observed phase sep
tion and coarsening we employ the Cahn-Hilliard approa
~see Ref.@10# for review!. We assume that the pressurep can
be obtained from the variation of a ‘‘free energy’’ function
of the r field p5dF/dr. We adopt the standard form of th
free energy taking into account the local dynamics a
diffusive-type spatial coupling

F5E E dxdyS l 2

2
~“r!21 f ~r! D , ~5!

wherel is the length scale related to the rod size. To be a
to exhibit phase separation, functionf should have two
minima separated by a maximum. We choose a generic c
polynomial form of d f /dr. Without loss of generality we
can write d f /dr5(r2r0)@d02d1(r2r0)1(r2r0)2#.
©2003 The American Physical Society05-1
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Sinced f /dr is defined up to an additive constant, we can
the rootr0 to be a minimal density for the onset of nema
order. The existence of such a density for the system of r
rods for equilibrium systems was argued by Onsager@11#.
The constantsd0 and d1 are some functions of the drivin
acceleration. Experimentally, the dense phase nucleate
large enough vertical acceleration. In our description, a m
mum ind f /dr corresponding to the existence of dense ph
appears for larged1. We will associated1 with acceleration
and keepd0 fixed. Substitutingp with Eq. ~5! into Eq. ~4!,
after rescaling we obtain the modified Cahn-Hilliard equ
tion ~we replacedr by r2r0 and used the same notation
for the rescaled variablesr→r / l , t→t/z l 2)

] tr52¹2@¹2r2r~d02d1r1r2!#

2a div@nf 0~n!~r1r0!#, ~6!

To close the description we need to add an equation
the evolution of tilt n. For r smaller than the maximum
packing density the vertical orientation of rods correspo
ing to n50 is unstable, as rods spontaneously tilt. We
sume that the growth rate of the instability depends on
rods packing density, so we can write for the local dynam
] tn5 f 1(r)n2unu2n with f 1(r)5a02a1r, a0,1.0 some
constants. The last term inf 1 describes the saturation of th
instability at smaller values of the equilibrium tilt for large
r. In addition, rods interact with each other, which leads
the spatial derivative operatorD̂@n#. Since the tilt field is not
divergence-free, from the general symmetry consideratio
in the lowest~second! order, the ‘‘diffusion’’ operator acting
on n, takes the formD̂@n#5 f 2(r)(j1¹2n1j2¹div n). The
coefficientsj1,2 ~normalized byz) in this expression are
analogous to the first and second viscosity in ordinary flu
~see Ref.@9#!. Function f 2(r) describes the decrease of th
spatial coupling strength as the rods density decreases. I
gas phase (r,0) the spatial coupling between the rods
small and their tilt becomes large and uncorrelated. Acco
ingly, we setf 25r, if r.0 andf 250 otherwise. Finally, we
include the simplest term describing coupling between
tilt and the density gradientb“r. Combining all these terms
we arrive at

] tn5 f 1~r!n2unu2n1 f 2~r!~j1¹2n1j2“div n!1b“r.
~7!

It is convenient to introduce new complex variablec
5nx1 iny . Then, Eq.~7! assumes the form of the genera
ized Ginzburg-Landau equation (j̄5j11j2/2)

] tc5~ f 1~r!2ucu2!c1b~]x1 i ]y!r

1 f 2~r!S j̄¹2c1
j2

2
~]x1 i ]y!2c* D . ~8!

For larged1 Eq. ~6! exhibitsphase separationin a certain
range of the filling fraction defined asF5S21**rdxdy,
whereS is the cavity area. Stationary uniform solutions
Eq. ~6! obey
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r~d02d1r1r2!5B, ~9!

whereB5const is determined below. In the phase separa
regime Eq.~9! has three real rootsr1,r2,r3 (r2 corre-
sponds to the unstable solution andr1,3 to the stable ones!.
The phase separation leads the high-density phase dom
r5r3 of the areaSh and the low-density oner5r1 of the
areaSl5S2Sh . From the mass conservation one obtains

Shr31~S2Sh!r15SF. ~10!

Here we neglected the interfacial contributions assuming
Sl , Sh@1. In addition, Eq.~10! must be augmented by th
condition that the free energy densities of the both phases
equal, which is expressed by the relation~so-called area rule
see e.g., Ref.@12#!

E
r1

r3
@r~d02d1r1r2!2B!]dr50. ~11!

Equations~9! and~11! fix the value ofB and correspondingly
the roots r1,3. From Eq. ~10! it follows that multiphase
stable solutions are possible ifr1,F,r3. This condition
defines the transition line shown in Fig. 1. Below this lin
only single-phase stationary solutions withr5F exist. If
F.0, according to Eq.~8!, these solutions have nonzero t
and fixed phasec5c0 exp@if0#, c0 , f05const~nematic or-
dering of the rods!, otherwise a gaseous state with no orie
tational order is formed. Above the transition one expe
spontaneous formation of dense clusters with densityr3 co-
existing with low-density (r1) nematic phase~if r1.0) or
gas~if r1,0).

In addition to the uniform solutions, Eq.~8! admits solu-
tions with nonzero topological charge: defects or vortic
Let us consider radially symmetricvortex solutions to Eq.
~8!. In this caser is a function of the polar radiusr, andc
can be expressed asc5exp(6iu)w(r), wherew is a complex
function, andu is the polar angle~for definiteness we take
sign 1). Using]x1 i ]y5exp(iu)(]r1i/r]u), we obtain, from
Eq. ~8!,

FIG. 1. Phase diagram ford050.3. Above the solid curve high
and low-density phases coexist, below there are only single-ph
solutions, ‘‘nematic’’ forF.0 and gas otherwise.
5-2
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MODEL OF COARSENING AND VORTEX FORMATION IN . . . PHYSICAL REVIEW E67, 021305 ~2003!
] tw5 f 2S j̄¹ r
2w1

j2

2
¹ r

2w* D1 f 1w2uwu2w1br r ,

~12!

where¹ r
25] r

21r 21] r2r 22 is the radial Laplacian operato
For j2 , b50, Eq.~12! possesses a stationary solution in t
form w5W(r )exp(if0) with the real positive magnitudeW
and an arbitrary constant phasef0. The terms}j2 , b still
permit the constant phase solutions, but they destroy the
tinuous phase degeneracy. Indeed, Eq.~12! for b50 yields

f 2S j̄1
j2

2
cos 2f0D¹ r

2W1 f 1W2W350 ~13!

and sin 2f050. Solutions exist only forf050, p, or 6p/2.
Function W describes the standard~and well-documented!
vortex solution to the Ginzburg-Landau equation with t
propertyW→ f 1

1/2 for r→` andW;r for r !1 ~for its ratio-
nal approximation see e.g., Ref.@13#!. Solutions withf0
50, p describe sinks~sources! with zero circulations,
whereas the solutions withf056p/2 are vortices with non-
zero circulations. The sign off0 determines the direction o
rotation. Near the vortex coreW;r , which corresponds to
the solid body rotation, as velocityvu;W. Far away from
the core the vortex exhibits differential rotation.

For b] rrÞ0, Eq. ~12! has constant phase solutions on
with f050, p, i.e., with zero circulation. However, it does
not guarantee the selection of this solution in the bulk
large islands where the density gradient is small. It is eas
show that solutions withf050 are energetically unfavorabl
with respect to rotating solutions withf056p/2 if b] rr is
small. Equation~12! for b] rr50 can be written in the form
] tw52dU/dw* with the free energy

U5E dr F f 2j̄~ u] rwu21r 22uwu2!

1
f 2j2

4
$@~] r1r 21!w* #21c.c.%2 f 1uwu21uwu4G . ~14!

Substituting vortex solutionw5W(r )exp(if0) in Eq. ~14!,
one obtains after integration~since the calculation of the vor
tex energy is rather straightforward, we refer interested re
ers to Ref.@13#, p. 11!.

U5 f 1f 2~ j̄1j2/2 cos 2f0!ln R/r 01const, ~15!

wherer 0;O(1) has the meaning of core radius, andR is the
outer cutoff radius of integration. As one sees from Eq.~15!,
for physically realizable casej2.0 the vortices withf05
6p/2 have lower energy, and therefore are more energ
cally favorable, and are selected in dynamics. In a gen
case, the vortex solution would have a radius-depend
phasef0. Near the center where the density is almost c
stant, the phase would be close to6p/2, and near the island
border where the density decreases rapidly, the phase sh
approach 0 orp. This scenario suggests that the azimut
velocity should grow with radius near the core, and decre
near edge of the vortex, which is confirmed by our numeri
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simulations~see below! and agrees with experiments. In a
dition, one can show that forb.0 the termb“r considered
as a small perturbation, leads to the drift of the vortex c
towards the gradient of density, and therefore it stabilizes
vortex core near the center of the island. Note that topolo
cal defects exist also in the nematic phase. However, in
nematic phase tilt is large and, correspondingly, the hyd
dynamic velocity is small, so the nematic defects do not fo
hydrodynamic vortices.

Numerical simulationsof the Cahn-Hilliard equation~6!
were performed using an FFT split-step method, and
Ginzburg-Landau equation~8! was solved using explicit
method. The domain of integration was 1003100 dimen-
sionless units with periodic boundary conditions, number
FFT harmonics was 2563256. As initial conditions we used
r'r2 with small amplitude noise and random initial cond
tions for c. Selected results are presented in Figs. 2–4.

At the initial stage of the evolution, many vortices an
small dense clusters~islands! are created throughout the do
main of integration@Fig. 2~a!#. Islands are seen as dark
areas on the figure, because an increase in densityr results
in the decrease ofucu. Some islands trap vortices and a
practically immobile, others do not contain vortices and d
in the direction defined by the average orientation of the
n. With time, small islands disappear and bigger islan
grow @Fig. 2~b!,~c!#. It is interesting to note that due to th
tilt-driven drift coarsening occurs much faster than in t
ordinary Cahn-Hilliard dynamics. Finally, one big islan
with the vortex in the center is formed@Fig. 2~d!#. Densityr,
tilt amplitudeucu, the phase argc, and the velocity field of a
quasistationary vortex are shown in Fig. 3. Even far from
island there are some ‘‘dormant vortices’’ in the low-dens
phase~gas!. These defects are seen as the end points of
phase singularity lines~lines between dark and white! in Fig.

FIG. 2. Evolution ofucu, vortices are shown as black dots, whi
area corresponds to largerucu ~andr), dark vice versa. Parameter

j̄51, j251, b50.04, f 051.52ucu2, f 151.420.7r, d151.3, d0

50.3, r050.25,a50.03. Images are shown fort580 ~a!, 400~b!,
1600 ~c!, andt53200 ~d!.
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3~b!. They do not annihilate because in the low-density ph
the diffusion terms in Eq.~8! are absent. They are not seen
Fig. 3~c!, because their core size is small in the gas pha
Figure 3~d! shows the corresponding velocity field calculat
using Eq.~3!. Rods perform circular motion around the vo
tex center. The azimuthal velocityvu vs r is shown in Fig. 4.
The velocity is maximal somewhere between the core
the island edge. It qualitatively resembles the experime
one @7#. Outside the island the tilt becomes large and
velocity becomes small. The magnitude of azimuthal vel
ity is proportional toa, and, therefore, inversely propo
tional to the vibration frequency, in agreement with expe
ment.

In conclusion, we developed a phenomenological mo
of the formation of the vortical ordered state in the system

FIG. 3. Densityr ~a!, phase argc ~b!, tilt amplitudeucu ~c!, and
velocity field for t54960, other parameters as in Fig. 2. Bla
corresponds tor505argc5ucu50, white to r51.4, argc
52p, ucu51.2.
v.
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vertically vibrated rods. The model reproduces qualitat
features of the vortex formation process observed in the
cent experiment@7#. Note that in our theory the tilt of rods in
a single-phase regime~at low d1) is determined by the den
sity, so high filling fraction automatically implies almost ve
tical rod packing even without driving. In the experiment, t
initial high filling fraction configuration corresponded to
thick layer of randomly packed almost horizontal rods. Th
makes it difficult to compare the phase diagram, Fig. 1,
the experimental one for high filling fraction, although qua
tatively it correctly described the transition to phase sepa
tion regime with the increasing ‘‘vibration magnitude’’d1.
We thank Toni Neicu, Daniel Blair, and Arshad Kudrolli fo
stimulating discussions.
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FIG. 4. Azimuthal velocityvu ~solid line! and densityr ~dashed
line! vs r for the parameter of Fig. 2.
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