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Model of coarsening and vortex formation in vibrated granular rods
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Neicuet al. observed experimentally spontaneous formation of the long-range orientational order and large-
scale vortices in a system of vibrated macroscopic rods. We propose a phenomenological theory of this
phenomenon based on a coupled system of equations for local rods density and tilt. The density evolution is
described by the modified Cahn-Hilliard equation, while the tilt is described by the Ginzburg-Landau type
equation. Our analysis shows that, in accordance with the Cahn-Hilliard dynamics, islands of the ordered phase
appear spontaneously and grow due to coarsening. The generic vortex solutions of the Ginzburg-Landau
equation for the tilt correspond to the vortical motion of the rods around the cores which are located near the
centers of the islands.
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Vibrated granular materials exhibit many interesting phe+od. According to experimen{/], the driving force is pro-
nomena, including formation of cellular and localized pat-portional to the tilt of rods for small tilt values, but saturates
terns, phase separation, eft—6]. Neicu et al. [7] studied and eventually decays to zeromtCoefficienta is propor-
the dynamics of a layer of long cylindrical graifeds sub-  tional to the velocity magnitude of the plate oscillations, and
jected to vertical vibration, and discovered a surprising pheso for a fixed acceleration magnitude is inversely propor-
nomenon of spontaneous formation of “islands” of vertically tional to the vibration frequency. For definiteness we fget
aligned rods which coexist with the “sea” of almost horizon- = a; —n?, with a;=const(the last term inf, models decay
tal rods. Subsequently, small islands merge and form largef driving force for large tilts. The term/v describes the
islands which typically exhibit collective vortical motion of momentum dissipation due to bottom friction. Equatidn
rods. Near the core this motion has a form of a solid bodymust be augmented by the mass conservation equation
rotation, while farther away the angular velocity decays.

While the bistability and first-order phase transitions leading dyp+div(vp)=0. 2
to phase separation and coarsening are typical in granular ) o
dynamics and usually caused by the inelasticity of graindn the following we assume that friction is strong, and ne-
[2—6,8, the emergence of the vortical motion within the or- glect the inertia ternbv/Dt with respect to the friction term
dered phase is unexpected. Experim@itshows that rods ¢V. Thus, we can express the velocity in the form
within a vortex are tilted in the azimuthal direction, and
slowly drift in the direction of the tilt. Neictet al. [7] sug- v=—[Vp—anfo(n)pl/p. )
ggsteq that the erft oceurs due to the confinement of the roRlow, substituting the velocity3) into the mass conservation
vibration by its tilted neighbors. | :

. ) . . law, Eq.(2), we obtain

In this article we introduce a continuous phenomenologi-
cal model of. t_he transition to the orde_red vortlca! state based dp=¢"1diV[Vp—anfe(n)p]. (4
on the modified Cahn-Hilliard equation governing the dy-
namics of local rods density and the Ginzburg-Landau typero describe phenomenologically the observed phase separa-
equation for the tilt. Our model reproduces qualitatively thetion and coarsening we employ the Cahn-Hilliard approach
observed phase separation, coarsening and vortex formatiofzee Ref[10] for review). We assume that the pressiprean
We derive the solutions for the Stationary vortices and diS'be obtained from the variation of a “free energy” functional

cuss their stability. _ _ of the p field p= 6F/5p. We adopt the standard form of the
Model The motion of rods is described by the momentumfree energy taking into account the local dynamics and
conservation equation in the form diffusive-type spatial coupling
Dv |2
Pl op T4V =~ Vptanfe(n)p. (1) sz f dxd E(vp)2+f(p) , (5)

Herev=(v,,vy) is the horizontal velocity of rods is the  wherel is the length scale related to the rod size. To be able
density, p is the hydrodynamic pressure, the tilt vector to exhibit phase separation, functidnshould have two
=(ny,ny) is the projection of the rod director on thg,{) minima separated by a maximum. We choose a generic cubic
plane, anch=|n|. The termanfy(n)p accounts for the av- polynomial form ofdf/dp. Without loss of generality we
erage driving force from the vibrating bottom on the tilted can write df/dp=(p— po)[ o— S1(p— po) + (p— po)?].
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Sincedf/dp is defined up to an additive constant, we can fix
the rootp, to be a minimal density for the onset of nematic
order. The existence of such a density for the system of rigid -
rods for equilibrium systems was argued by Onsddét.
The constantsy, and §; are some functions of the driving 1.20}
acceleration. Experimentally, the dense phase nucleates for | === ===~
large gnough vertical accgleratmn. In our description, a mini- & Nematic +
mum ind f/dp corresponding to the existence of dense phase clusters
appears for largé;. We will associates; with acceleration
and keepd, fixed. Substitutingp with Eq. (5) into Eq. (4),
after rescaling we obtain the modified Cahn-Hilliard equa-
tion (we replacedp by p—py and used the same notations
for the rescaled variablas—r/I, t—t/{1?)

Gas + clusters

1.00-

Nematic

| | | |
- ) 08835 000 025 050 075 100 125
dhp=—=VIVp—p(So—1p+p°)] P

—adiv[nfo(n)(p+po)], (6) FIG. 1. Phase diagram fa%,=0.3. Above the solid curve high
and low-density phases coexist, below there are only single-phase
To close the description we need to add an equation fogolutions, “nematic” ford®>0 and gas otherwise.

the evolution of tiltn. For p smaller than the maximum
packing density the vertical orientation of rods correspond- p(89— 61p+p?)=B, 9
ing to n=0 is unstable, as rods spontaneously tilt. We as-
sume that the growth rate of the instability depends on thavhereB= const is determined below. In the phase separation
rods packing density, so we can write for the local dynamicgegime Eq.(9) has three real rootp;<p,<p3 (p, corre-
an="F1(p)n—|n|?n with fi(p)=as—aip, ay,;>0 some sponds to the unstable solution apgs to the stable ongs
constants. The last term i describes the saturation of the The phase separation leads the high-density phase domains
instability at smaller values of the equilibrium tilt for larger p=p3 of the areaS;, and the low-density onp=p; of the
p. In addition, rods interact with each other, which leads toareaS =S—=S,,. From the mass conservation one obtains

the spatial derivative operat®{n]. Since the tilt field is not . _
divergence-free, from the general symmetry considerations, Shpat (S=Sh)py=SO. (10

in the lowest(second order, the “diffusion” operator acting  Here we neglected the interfacial contributions assuming that
on n, takes the forrD[n]="f,(p)(£,V%n+&,Vdivn). The S, S,;>1. In addition, Eq(10) must be augmented by the
coefficients §; , (normalized by{) in this expression are condition that the free energy densities of the both phases are
analogous to the first and second viscosity in ordinary fluidqual, which is expressed by the relatiso-called area rule,
(see Ref[9]). Functionf,(p) describes the decrease of the see e.g., Ref.12])

spatial coupling strength as the rods density decreases. In the
gas phased<0) the spatial coupling between the rods is
small and their tilt becomes large and uncorrelated. Accord-
ingly, we setf,=p, if p>0 andf,=0 otherwise. Finally, we
include the simplest term describing coupling between thé=quationg9) and(11) fix the value ofB and correspondingly
tilt and the density gradier®V p. Combining all these terms the rootsp, ;. From Eq. (10) it follows that multiphase

P3
[p(8o— S1p+p®)—B)]dp=0. (13)

P1

we arrive at stable solutions are possible pf <®<p5;. This condition
defines the transition line shown in Fig. 1. Below this line
an="F1(p)n—|n?n+f,(p)(&,V2n+ £, Vdivn)+ BV p. only single-phase stationary solutions with=® exist. If

(7) d>0, according to Eq(8), these solutions have nonzero tilt
and fixed phas&= o exfidygl, g, do=const(nematic or-
It is convenient to introduce new complex variable  dering of the rodg otherwise a gaseous state with no orien-
=n,+in,. Then, Eq.(7) assumes the form of the general- tational order is formed. Above the transition one expects

ized Ginzburg-Landau equatiod &, + £,/2) spontaneous formation of dense clusters with densjtgo-
existing with low-density ;) nematic phaséif p;>0) or
o= (Fa(p) =~ [¥*) g+ B(ax+iay)p gas(if p1<0).

In addition to the uniform solutions, E¢8) admits solu-
®) tions with nonzero topological charge: defects or vortices.
Let us consider radially symmetricortex solutions to Eq.
(8). In this casep is a function of the polar radius and ¢
For larged; Eq. (6) exhibitsphase separatiom a certain  can be expressed @s=exp(xif)w(r), wherew is a complex
range of the filling fraction defined a®=S"1[[pdxdy, function, andd is the polar angléfor definiteness we take
where S is the cavity area. Stationary uniform solutions to sign +). Using d,+idy,=exp(6)(d,+i/rdg), we obtain, from
Eq. (6) obey Eq. (8),

+f2(p)| EV2y+ %(ax+iay>2w* :
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ﬁtWZfZ(EVrzw_l'%VrZW* +faw—|w?w+ Bp, , d & ¥ .
(12 : . .
whereVZ?=g%+r 19, —r 2 is the radial Laplacian operator. .

For&,, B=0, Eq.(12) possesses a stationary solution in the
form w=W(r)exp(i¢y) with the real positive magnitude/

and an arbitrary constant phagg. The termsx¢,, B still
permit the constant phase solutions, but they destroy the con-
tinuous phase degeneracy. Indeed, @) for =0 yields

f2

— ¢
&+ Ezcos 20

V2WHf,W-WP=0 (13 ' ‘

and sin 25,=0. Solutions exist only fothg=0, 7, or = 7/2.
Function W describes the standar@nd well-documented .
vortex solution to the Ginzburg-Landau equation with the
propertyW— 12 for r —o andW~r for r<1 (for its ratio-
nal approximation see e.g., Rdfl3]). Solutions with ¢

FIG. 2. Evolution off ¢, vortices are shown as black dots, white

e q ibe Sink ith irculati area corresponds to large#| (andp), dark vice versa. Parameters,
=0, m describe sinks(source} with zero circulations, =1, £,=1, =004, fom 15— |2, f,=1.4-07p, 5,=1.3, 6,

whereas the solutions wit, = /2 are vortices with non- - 2o 3 6 55 ,—0.03. Images are shown for=80 (a), 400(b),

zero_cwculatlons. The sign ab, determ|_nes the direction of ;400 (c), andt=3200(d).

rotation. Near the vortex cofd/~r, which corresponds to

the solid body rotation, as velocity,~W. Far away from ) ) ] ]

the core the vortex exhibits differential rotation. simulations(see belowand agrees with experiments. In ad-
For Barpgﬁo, Eq. (12) has constant phase solutions 0n|y dition, one can show that f(ﬁ>0 the term,BVp considered

with ¢o=0, , i.e., with zero circulation However, it does ~as a small perturbation, leads to the drift of the vortex core

not guarantee the selection of this solution in the bulk oftowards the gradient of density, and therefore it stabilizes the

large islands where the density gradient is small. It is easy tgortex core near the center of the island. Note that topologi-

show that solutions witlpp,=0 are energetically unfavorable cal defects exist also in the nematic phase. However, in the

with respect to rotating solutions witfhy= = 7/2 if 8d,p is  nematic phase tilt is large and, correspondingly, the hydro-

small. Equation(12) for Bd,p=0 can be written in the form dynamic velocity is small, so the nematic defects do not form

dw=— U/ sw* with the free energy hydrodynamic vortices.
Numerical simulation®f the Cahn-Hilliard equatiori6)
U= | drl f.2(1a.wi2+r 2wl were performed using an FFT split-step me.thod, an.d. the
f r[ (19wl wi®) Ginzburg-Landau equatiori8) was solved using explicit

f¢ method. The domain of integration was 20000 dimen-
+ 2220 (9, + 1 Yw* ]2+ c.cl—fqow|2+|w|4|. (14  sionless units with periodic boundary conditions, number of
4 FFT harmonics was 256256. As initial conditions we used
p= p, with small amplitude noise and random initial condi-

one obtains after integratidsince the calculation of the vor- tions for . Selected results are presented in Figs. 2-4.

tex energy is rather straightforward, we refer interested read- At the initial stage of the evolution, many vortices and
ers to Ref[13], p. 10. small dense cluster@slandsg are created throughout the do-

main of integration[Fig. 2(a)]. Islands are seen as darker
U= f1f2(g+ £,12 COS 2by)In RIT o+ const, (15) areas on the figure, because an increase in depsiggults

in the decrease dfyy|. Some islands trap vortices and are
wherer ,~O(1) has the meaning of core radius, @ the  practically immobile, others do not contain vortices and drift
outer cutoff radius of integration. As one sees from @¢), in the direction defined by the average orientation of the tilt
for physically realizable cas&,>0 the vortices with¢y= n. With time, small islands disappear and bigger islands
+ /2 have lower energy, and therefore are more energetgrow [Fig. 2(b),(c)]. It is interesting to note that due to the
cally favorable, and are selected in dynamics. In a generdllt-driven drift coarsening occurs much faster than in the
case, the vortex solution would have a radius-dependerdrdinary Cahn-Hilliard dynamics. Finally, one big island
phase¢,. Near the center where the density is almost conwith the vortex in the center is formé#ig. 2(d)]. Densityp,
stant, the phase would be closetar/2, and near the island tilt amplitude|y|, the phase arg, and the velocity field of a
border where the density decreases rapidly, the phase showdasistationary vortex are shown in Fig. 3. Even far from the
approach 0 orr. This scenario suggests that the azimuthalisland there are some “dormant vortices” in the low-density
velocity should grow with radius near the core, and decreasphase(gag. These defects are seen as the end points of the
near edge of the vortex, which is confirmed by our numericaphase singularity linedines between dark and whjten Fig.

Substituting vortex solutiomv=W(r)expl¢oy) in Eq. (14),

021305-3



I. S. ARANSON AND L. S. TSIMRING PHYSICAL REVIEW BE57, 021305 (2003

L . . .
10 50

FIG. 4. Azimuthal velocity 4 (solid line) and density (dashed
line) vsr for the parameter of Fig. 2.

FIG. 3. Densityp (a), phase args (b), tilt amplitude| | (c), and ) i o
velocity field for t=4960, other parameters as in Fig. 2. Black Vertically vibrated rods. The model reproduces qualitative

corresponds top=0=argy=|#|=0, white to p=1.4, argy features of the vortex formation process observed in the re-
=27, |y|=1.2. cent experimen(it7]. Note that in our theory the tilt of rods in
a single-phase regim@t low &,) is determined by the den-

3(b). They do not annihilate because in the low-density phaséity' so high fi_IIing fractiqn automaFicaIIy implies almost ver
the diffusion terms in Eq(8) are absent. They are not seen in Uic@l rod packing even without driving. In the experiment, the
Fig. 3(c), because their core size is small in the gas phasén'_t'al high filling fraction configuration corresponded to a
Figure 3d) shows the corresponding velocity field calculatedthick layer of randomly packed almost horizontal rods. This
using Eq.(3). Rods perform circular motion around the vor- makes it difficult to compare the phase diagram, Fig. 1, to
tex center. The azimuthal velocity, vsr is shown in Fig. 4.  the experimental one for high filling fraction, although quali-
The velocity is maximal somewhere between the core anéptively it correctly described the transition to phase separa-
the island edge. It qualitatively resembles the experimentdion regime with the increasing “vibration magnitudes; .
one [7]. Outside the island the tilt becomes large and theWe thank Toni Neicu, Daniel Blair, and Arshad Kudrolli for
velocity becomes small. The magnitude of azimuthal velocstimulating discussions.
ity is proportional to«, and, therefore, inversely propor- ,
tional to the vibration frequency, in agreement with experi- 1hiS work was supported by the U.S. DOE under Grant
ment. Nos. W-31-109-ENG-38 and DE-FG03-95ER14516. Simula-
In conclusion, we developed a phenomenological modefions were performed at the National Energy Research Sci-
of the formation of the vortical ordered state in the system ofntific Computing Center.
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