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Shock waves in two-dimensional granular flow: Effects of rough walls and polydispersity

Sune Ho”rlück, Martin van Hecke,* and P. Dimon
The Center for Chaos and Turbulence Studies, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark

~Received 27 September 2002; published 26 February 2003!

We have studied the two-dimensional flow of balls in a small-angle funnel, when either the side walls are
rough or the balls are polydisperse. As in earlier work on monodisperse flows in smooth funnels, we observe
the formation of kinematic shock waves~density waves!. We find that for rough walls the flows are more
disordered than for smooth walls and that shock waves generally propagate more slowly. For rough wall funnel
flow, we show that the shock velocity and frequency obey simple scaling laws. These scaling laws are
consistent with those found for smooth wall flow, but here they are cleaner since there are fewer packing-site
effects and we study a wider range of parameters. For pipe flow~parallel side walls!, rough walls support many
shock waves, while smooth walls exhibit fewer or no shock waves. For funnel flows of balls with varying
sizes, we find that flows with weak polydispersity behave qualitatively similar to monodisperse flows. For
strong polydispersity, scaling breaks down and the shock waves consist of extended areas where the funnel is
blocked completely.

DOI: 10.1103/PhysRevE.67.021304 PACS number~s!: 45.70.Mg, 45.70.Vn
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I. INTRODUCTION

Density waves can occur in various granular flow syste
such as funnels and hoppers@1#, pipes@2#, and hour glasses
@3#. In previous experiments, we studied the formation
kinematic shock waves which propagate against the m
flow in a two-dimensional system of balls rolling in a sma
angle funnel@4–6#. A sketch of the setup used is shown
Figs. 1~a,b!. In this earlier work, the walls of the funnel wer
smooth, and the balls were of equal size~monodisperse
flow!. In the present work, we study what happens when
break the peculiarities of this smooth-wall–monodispe
system by either~i! making the walls of the funnel roug
@Fig. 1~c!#, or ~ii ! taking ‘‘polydisperse’’ mixtures of balls of
different sizes@Fig. 1~d!#.

The crucial experimental parameters characterizing
flow geometry are the funnel opening angleb and the funnel
outlet width D. For smooth-wall–monodisperse flows th
most important features of the shock waves were found to
the following @4–6#: ~i! For b.0, the rolling grains tend to
locally form triangular lattices which lead to the creation
shock waves predominantly at particular sites in the fun
where close packing occurs.~ii ! The velocitiesU of the
shocks are, in good approximation, a function of the resca
width w(x)/D only. Herex is the coordinate along the funne
@Fig. 1~b!# andw(x) denotes the funnel width at positionx.

As we will show below, by making the walls rough or th
flow polydisperse, the triangular packing can~partially! be
suppressed. We have studied the shock statistics and th
havior of individual balls as in previous work@5,6#, and will
present here the results for the creation and propagatio
shocks in these systems in the pipe flow~parallel walls! and
in the small angle, intermittent flow regime@5,6#. We have
also investigated, using ball tracking, the formation of sh
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bands for rough walls and the effects of completely stati
ary shock packings in polydisperse flows.

Recently, a number of related experiments on tw
dimensional flow have been performed. Tsaiet al. @7# studied
a system close to our rough wall pipe flow experiment, a
included the effect of partially blocking the outlet. Reydelle
Rioual, and Cle´ment @8# studied a falling vertical column o
balls, where ball-ball interactions are dominated by co
sions, and the rolling of balls does play a minor role. Fina
Le Pennecet al. @9# studied two-dimensional rolling flows o
small glass balls in flow geometries with very large funn
angles.

The experimental setup and methods of analysis h
been described in detail elsewhere@5,6# and we summarize
the essential aspects here. A sketch of the setup is show
Fig. 1~a! and the important geometric parameters are sho

n,

FIG. 1. ~a! Sketch of the experimental setup.~b! Schematic top
view of the setup, showing the important parameters of the fun
geometry.~c! Closeup of the balls rolling between rough walls. Th
linked balls near the edges are glued to the walls~the scale is in
cm!. ~d! Snapshots of two different polydisperse mixtures, refer
to as Mix I and Mix IV ~see text!.
©2003 The American Physical Society04-1
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in Fig. 1~b!. The balls roll on a coated Lexan plane~with
inclination u54.1°) in a single layer, in a funnel formed b
aluminum walls and covered by a transparent lid. The gra
lar material is comprised of 50 000 brass balls of 3.18 m
diameter in the monodisperse case, while details of the p
disperse mixtures are discussed in Sec. III. The rough w
were made by glueing linked rows of balls of nearly t
same diameter as the rolling balls to the original smo
walls @Fig. 1~c!#. The walls are straight for 200 cm and curv
smoothly at the top to form a reservoir. They can be mov
to vary the outlet widthD ~0–35 mm! and the funnel half
angleb (0° –3°). A light box is placed below the funnel t
illuminate the balls from below, and a video camera is plac
above the system. Snapshots of a small part of the fun
show the effect of rough walls@Fig. 1~c!# and polydispersity
@Fig. 1~d!# on the packing of the balls.

The paper is structured as follows. In Sec. II we pres
data based on monodisperse flows between rough w
Shock wave statistics for both intermittent flows (b.0°)
and for pipe flows (b50°) are discussed, and we also stu
data based on ball tracking. In Sec. III we investigate
effect of various degrees of polydispersity in flow betwe
smooth walls. Finally, in Appendix A, we discuss some sim
larities with traffic flow.

II. ROUGH WALLS

The basic phenomenology of the formation of sho
waves is illustrated in Fig. 2, which shows ten subsequ
snapshots of the balls in a small section near the outlet of
rough wall funnel. In dense regions, which may occur due
a combination of geometric effects~the finite funnel angle
b) and the inelastic nature of the collisions, kinetic energy
dissipated rapidly and so the balls here have a lower velo
than the balls in dilute regions. This leads to kinematic sh
waves, in which the balls become almost stationary and t
to pack in a lattice which extends from wall to wall. In suc
a region, both energy and momentum are efficiently tra

FIG. 2. Film sequence showing 18 cm of the funnel showin
propagating shock wave atb50.2°, D520 mm ~each vertical
‘‘stripe’’ is a separate picture!. Such movies are recorded at 22
frames/s and are used for the ball tracking discussed in Sec.
For clarity, only every eight frame is shown.
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ferred to the walls. Shocks grow in the upstream direct
due to incoming, high velocity balls, and dissolve in t
downstream direction due to the action of the~effective!
gravity, which eventually accelerates the balls again. To a
lyze these shocks, we recorded;229 s movies of 37 cm
sections of the flow~usually at 220 frames/s!, and applied
ball tracking software@6#, gaining detailed knowledge of th
position, velocity and acceleration of the individual balls~see
Sec. II C!.

In many cases, however, one may be more intereste
the overall features of the shocks and not so much in
individual balls. For such analysis, sequences of ima
taken at 60 frames/s and covering 100 cm sections of
funnel were averaged in the transverse direction to obta
one-dimensional relative density profile. An example of
space-time plot of this relative densityr̃(x,t) is shown in
Fig. 3 for two different sets of parameters. From these
position of a shock wave and its creation site, average lo
velocity U(x) and frequencyn(x) can be determined. As
with smooth walls, shock waves between rough walls
easily distinguished by eye@5#. They are created at variou
positions in the funnel and there are some noticeable in
actions between shocks. As in earlier work on smooth wa
shock waves are created more often at large funnel an
and for small values ofD. The shock velocityU is generally
observed to grow with increasingb, x, and decreasingD.

A. bÌ0

We will study now in detail the statistics of shock cr
ation, velocity, and frequency, based on density data ta
for D ranging from 15 to 30 mm, and forb ranging from
0.1° up to 1.2°. The case of pipe flow (b50), where rough
and smooth walls show very different behavior, will be stu
ied in Sec. II B, and some results following from ball trac
ing are discussed in Sec. II C.

1. Shock creation

The monodispersity of the balls permits them to for
close packed triangular lattices at certain packing sitex
5x i in the funnel. For smooth walls, the positions of the
packing sites are given by

a

C.

FIG. 3. Space-time plots of the densityr̃(x,t) at b50.4° for ~a!
D515 mm and~b! D525 mm.
4-2
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x i5
2r 1A3r ~ i 21!2D

2 tanb
, ~1!

wherei is an integer andr is the ball radius@5#. In a funnel
with smooth walls, packing effects are rather pronounced
shown in Fig. 18 of Ref.@5#.

For rough walls, it is slightly more difficult to give an
estimate of where one expects packing sites. It is, for
ample, not obvious whether the value ofD ~which is the
minimum distance between the two rough walls! is the rel-
evant parameter. We have found that packing effects pe
from small D, but are washed out for larger funnel outle
This is illustrated in Fig. 4, which shows the manua
counted shock creation rates for two different values ofD as
a function of the local widthw ~this aligns possible packing
sites!. Clearly, packing effects are present forD520 mm,
but are washed out forD525 mm. This is consisted with th
D515 mm andD530 mm data sets, although in these ca
it is difficult to obtain a precise estimate for the shock c
ation rates. A comparison of the data shown in Fig. 4 to d
on the shock creation rates in smooth funnels, as show
the top of Fig. 12, confirms that rough walls suppress
effects of packing.

We therefore have shown that packing effects are s
pressed in sufficiently wide rough wall flow, and that in th
case shock waves are created everywhere in the funnel
equal probability.

2. Shock velocity

From the density fields, we can obtain the local sho
velocity U(x) using the shock detection algorithm RG
~Relative density contrastGradient Edge detection! @11#.
This is a refinement of the GE-method described in detai
Ref. @5#, and is used to measureU(x) andn(x). The shock
velocities obtained with this method for forty different se
of parameters are shown in Fig. 5~a! as a function of the
local funnel widthw(x). This already indicates a clusterin
of the data in groups given by the funnel outletD. When the
data is replotted against the dimensionless param
w(x)/D as in Fig. 5~b!, there is a fairly good data collaps
with U(x)'79@w(x)/D20.73# cm/s. A similar scaling

FIG. 4. Manually counted shock creation rates~SCR! @13# for
rough walls shown as a function of the local funnel widthw(x) for
D520 mm andD525 mm ~both data sets coverx502100 cm).
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@U(x)'64@w(x)/D20.14# cm/s# was observed for smooth
walls @5,6#. Experiments with one rough and one smoo
wall, which we will refer to as ‘‘semi rough’’~not shown!
gave a more disordered flow with a decent data collapse
U(x)'83@w(x)/D20.57# cm/s, which falls between rough
wall and smooth wall data for loww(x)/D @see Fig. 7~a!#.
Therefore we conclude that the roughness of the walls le
in general, to a slowing down of the shock waves.

In the data collapse Fig. 5~b! there seems to be a trend fo
wide funnels to have slightly larger velocities. Some of t
D530 mm data sets had problems with static buildup at
outlet during parts of the experiment, which is likely to ha
affected shock statistics@increasingU(x) andn(x)] near the
outlet. It is also possible that for larger outlet widths the d
for rough walls becomes more comparable to those
smooth wall systems. Nevertheless, we find that the sh
velocity is in good approximation a function of the loc
rescaled widthw(x)/D only, both for smooth and rough
walls.

FIG. 5. Average shock velocityU(x) for 40 different sets of
parametersb andD as function of~a! the local widthw(x) and~b!
the rescaled, nondimensionalized widthw(x)/D.
4-3
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3. Shock frequency

From the density plots we can also obtain the local sh
frequenciesn(x) using the RGE algorithm@11#. In Fig. 6~a!
we show the shock frequencies for our rough wall data a
function ofw(x). While some packing site periodicity is sti
visible for D515 mm, for larger values ofD the curves are
fairly smooth and we will discuss the data collapse that
curs there.

From the data shown in Fig. 6~a! it appears thatn goes to
zero whenw(x)→D, i.e., near the outlet. Replotting the da
then as function ofw(x)/D21 ~not shown! confirmed this,
and indicated that to achieve data collapse, one needs to
the productn(x)D as a function ofw(x)/D21. Finally, in
contrast to the shock velocity, the frequency clearly gro
nonlinearly withw(x)/D21. On a log-log plot, it appear
thatnD scales as@w(x)/D21#p, with an exponentp around
0.7 @Fig. 6~b!#. While the scaling range is to small to dete
mine whether such power law scaling holds asymptotica
it is a useful way of collapsing our data, as also is shown
Fig. 6~c!. Note that significant deviations can be seen
larger values ofw(x)/D. The data falling below the curve in
Fig. 6~c! mainly belong to data sets withD515 mm b

FIG. 6. ~a! Average shock frequencyn(x) vs w(x). ~b! Rescaled
shock frequencyn(x)/D vs @w(x)/D21#0.7 ~lin/lin !. All for 40
different sets of parametersb andD.
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>0.5°, where the RGE method tends to underestimaten(x)
for largex, b @11#.

In a previous paper@5#, which discussed the shock dy
namics for smooth funnels, the issue ofn(x) data collapse
was not discussed@12#. Reprocessing of this smooth-wa
data employing the RGE algorithm does show a decent d
collapse, wheren(x)D51.9(1)@w(x)/D21#0.7(1), but the
number of old data sets withDÞ10 mm that gives reliable
n(x) data is insufficient to judge whethern(x)D or n(x)
gives a better data collapse. We will discuss this issue be
for weakly polydisperse mixtures in smooth funnels in S
III 2, where more data is available.

Note that the shock frequency for smooth walls is gen
ally less than half the frequency for rough walls. Howev
since we believe that shock waves are, in general, produ
by disturbances in the flow, this should not be a big surpr
rough walls produce more disturbances.

Data obtained from flows with one rough wall an
one smooth wall~‘‘semi rough’’! confirm this intuitive
picture, since we find a decent data collapse ofn(x)D
'3.4(1)@w(x)/D21#0.7(1) cm/s ~not shown!. This is right
between the fits for the rough wall and smooth-wall da
discussed above.

4. Rough wall intermittent flow: Conclusion

The rough walls allow us to suppress packing effects,
that two simple scaling laws for the shock velocity and fr
quency emerge:

U~x!'a1@w~x!/D2a2#, ~2!

n~x!'D21a3@w~x!/D21#0.7. ~3!

The fitting coefficientsa1 ,a2 and a3 vary with the rough-
ness of the walls. In Fig. 7 we show the best fits for d
obtained for rough walls, semirough walls, smooth-wa
and smooth-walls–weakly polydisperse balls~discussed in
detail in Sec. III 2!. The fits are all made in the interval
<w(x)/D<2.5 for consistency.

As shown in Fig. 7~a!, changes in the boundaries have
weak effect ona1, but substantially affecta2. The old

FIG. 7. Linear fits for 1<w(x)/D<2.5 of U(x) vs w(x)/D in
~a! and forn(x)D vs w(x)/D in ~b!. Both graphs show the lines fo
smooth wall, smooth or rough combined walls and rough w
flows. Data for weakly polydisperse, smooth-wall flows are a
included.
4-4
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smooth-wall data for the velocity seems to deviate a li
from this trend, and we do not know the reason for this. F
the frequency, the roughness of the walls has a profo
influence on the prefactora3. For small-angle funnels, roug
walls promote the occurrence of shock waves, but do
affect their propagation velocity substantially.

B. Pipe flow

The behavior of shocks in pipe flow (b50°) can be ex-
pected to be rather different from those in intermittent flo
(b>0.1°) since for pipe flow there is no ‘‘geometric’’ sourc
for the formation of shock waves, and dissipative collisio
are now presumably the dominant origin of shock wave f
mation.

Indeed, for smooth walls the~few! shock waves that are
generated never reach the reservoir and consequently
flow rate~and indirectly all other flow properties! are entirely
determined by the reservoir outflow@4,5#. Surprisingly, the
qualitative features of pipe flow with rough walls are simil
to the intermittent flows. For example, many shocks do tra
upwards and reach the reservoir.

Similar to smooth-wall pipe flow, the rough wall pip
flow is extremely sensitive to exact experimental conditio
and consequently the statistics obtained for these flow
bound to be more noisy. In fact, as we will see below, sub
problems near the outflow area render part of the data u
able. The analysis of shock properties is further hampere
the fact that the RGE shock identification method@11# used
above has problems detecting some shocks withU,15
220 cm/s. We have therefore decided to use an alterna
method, based on space-time correlation functions, to ob
a measure of the velocity, and determine their freque
based on a simple threshold algorithm~see Appendix B!.

Based on these methods, we have determined the s
velocities for rough wall pipe flow. We find that the data f
the lower part of the funnel (0,x,100 cm) does not show
any systematic trend, and often here data sets show a c
plicated mixture of periods of stationary shocks and mov
shocks. We think that this is due to experimental proble
~in particular static charge buildup near the funnel outlet
some measurements!. In later runs, when we studied the u
per funnel (100,x,200 cm), these problems were solve
Here we find that the shock velocity is essentially indep
dent of the widthD, apart from some effects near the outflo
of the reservoir@see Fig. 8~a!#.

The shock frequencies decrease withD, but do not show a
clear trend withx. Rescaling the frequency withD, we find
that nD is fairly constant, forD ranging from 15 mm to 30
mm @see Fig. 8~b!#. Again, most data for (0,x,100 cm)
does not show any systematic behavior, due to the la
amount of stationary shocks.

Using the linear fits ofU(x) and n(x)D similar to Sec.
II A, we find U(w(x)5D)'21 cm/s andn@w(x)5D#D
'0.8 cm/s. Considering the systematic differences betw
RGE based and space-time correlation based measurem
of U(x) there is a fairly good correspondence between
pipe flow shock wave data from thex.100 cm part of the
funnel and the shock wave behavior forb.0° flows. This
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suggests that the mechanisms of shock wave propagatio
not too different after all.

We conclude that in good approximation, rough w
shock flow is dominated by shocks that are created ma
near the outflow region, travel upward with fairly consta
velocity and whose frequency decreases as 1/D.

C. Ball tracking

We have processed detailed films such as shown in Fi
to obtain ball trajectories~details of this method are de
scribed in Ref.@6#!. From the full set of ball trajectories, w
have constructed continuous one-dimensional Eulerian fi

of the relative densityr̃(x,t), velocity v(x,t), and accelera-
tion a(x,t) @6#. A comparison of the acceleration fields fo
rough and smooth walls indicates that the flow for smo
walls has more disturbances and the shocks are less sh
defined.

We have previously shown~Appendix C in Ref.@6#! that
smooth-wall flows are reasonably one dimensional, i.e.,
density, velocity and acceleration fields do not show a stro
dependence ony, the coordinate across the funnel. This is
longer true for rough wall flows as shown in Fig. 9. Th
velocity ^vx& as a function of the transverse coordinatey is
shown for various pipe flows in Fig. 9~a! and for b.0°
flows in Fig. 9~b!. In both cases do we find that^vx& drops
off near the boundaries, and this effect is most pronoun
for pipe flow and small-angle flow. A number of differen
flow behavior could underly these statistics, the most ob
ous being:~i! The flow has a shear component near the wa
i.e., balls near walls move typically slower than in the bu
~ii ! In shock packings the flow reaches from wall to wall, b
in fast regions~between shocks! balls near walls are re
pulsed. In this interpretation, balls in fast regions are repe
from the boundaries, and this transverse momentum is
sorbed via ball-ball interactions in the funnel center, leav
the regions near the walls relatively empty.

To resolve this ambiguity we plot histograms of they
positions of balls with theirvx in a certain interval in Fig.
9~c! ~for pipe flow! and in Fig. 9~d! ~for b50.4° flow!. If
reason~ii ! would dominate, the histogram of the slowe
balls ~in shock regions! should be fairly flat, but this is no

FIG. 8. Velocity ~a! and rescaled frequency~b! of shock waves
in rough wall pipe flow.
4-5
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the case and therefore we conclude that there is an impo
shear component to the flow.

The y dependence of they component of the granula
temperature,Tyª^vy

2&, is shown in Fig. 9~e! for pipe flow
and in Fig. 9~f! for b.0° flow. For theD515 mm pipe
flow, Ty(y) is constant while the wider pipe flows exhibit
more quiet region in the center—perhaps consistent with
‘‘transverse momentum sink’’ mentioned in~ii ! above. The
b.0° flows in Fig. 9~f! are denser and slower, showing th
in dense flows (b51°, b52°) transverse momentum is ab
sorbed immediately and the profile is flat. The ‘‘transve
heat sink’’ does not play a role here.

III. POLYDISPERSE FLOWS

To suppress the close packing effects that occur for mo
disperse balls rolling in smooth funnels, we have also
plored flows of balls of mixed sizes. We have studied sho
waves for four different mixtures, which we will refer to a
Mixture I–IV in increasing order of ‘‘polydispersity’’~see
Table I!.

A crucial and unexpected effect of polydispersity can
seen in the space-time plots of the density such as Fig.
For a weakly polydisperse mixture@Mix I in Fig. 10~a!# the

FIG. 9. Averagevx as function ofy in various pipe flows~a! and
b>0.1° flows ~b!. Histograms of ball positions~considering the
width of the balls! grouped according to thevx value for a pipe flow
(b50.0°, D520 mm) in ~c! and intermittent flow (b50.4°, D
520 mm) in ~d!. The average square transverse velocity^vy

2&
5Ty is shown as a function ofy for three pipe flows in~e! and for
b.0° flows in ~f!. Note that in~b!, ~d!, and~f! the rescaled coor-
dinatey/w(x) is used on the horizontal axis.
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shocks appear to display similar behavior as for monod
perse balls, but for increasingly polydisperse mixtures, sh
waves lead to theblocking of finite fractionsof the funnel.
Here all balls are stationary for a finite time interval. Som
clear examples of this ‘‘freezing’’ can be seen for Mix IV i
Fig. 10~b!, for x'80 cm andt'3.5 s. The occurrence o
finite blocked fractions can be interpreted in terms of a co
petition between the leading and trailing edge of a shock.
strongly polydisperse mixtures, the velocity of the trailin
edge of the shock where the shocks dissolve, is lower t
that of the leading edge where the shock grows due to
coming balls. As a function of its lifetime, a shock will there
fore spread out, and finite regions of the funnel will b
blocked. In contrast, when one would generate an exten
blocked area in a monodisperse flows, it appears that
velocity of the trailing edge is larger than that of the leadi
edge. Such a shock would then shrink, until leading a
trailing edge come very close together and the shock lose
spatial extent.

We have measured, employing ball tracking methods,
velocities of individual balls in shocks, and some repres
tative results are shown in Fig. 11~a!. The ball tracking
method has not been specifically fine tuned for polydispe
flow, which leads to a slightly noisier determination ofvx .
The overall picture that emerges is that in monodispe
flows, balls almost never stop completely in a shock@notice
that for the example in Fig. 11~a! the minimum velocity of
the balls in monodisperse shocks indeed stays finite#. In Mix
I, complete stopping of balls in a shock occurs only in

FIG. 10. Space-time diagrams of the densityr̃(x,t) showing
differences in shock behavior between weak and strong polydis
sity at b50.5°, D510 mm for Mix I ~a! and Mix IV ~b!.

TABLE I. Quantities of balls of various sizes in the four diffe
ent polydisperse mixtures used here.

Mixture 2.5 mm 3.0 mm 3.2 mm 3.5 mm 4.0 mm

I 10000 10000
II 10000 10000 5000
III 10000 10000 10000
IV 10000 10000 3000
4-6
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minority of the shocks, but its occurrence increases w
polydispersity andx. In Mix III complete stopping of balls
occurs in most shocks that have propagated for more
20–40 cm and do not have another shock right in front
them and in Mix IV blocking occurs essentially in all shock

To quantify this behavior further, we have measur
~based on density space-time diagrams!, for fixed values ofb
andD the fraction of time that the balls are stuck in such
stationary shock as a function ofx @see Fig. 11~b!#. This data
confirms what we already observed in Fig. 10: the amoun
blockage increases both withx and with the strength of the
polydispersity. The increase withx can be understood simpl
from the observation that for strongly polydisperse mixtu
shocks spread out during their lifespan, and since sho
travel upwards, the amount of blocked channel grows withx.

One possible explanation we can find for the increase
this blocking with polydispersity is the occurrence of 3
effects. One can imagine that in a shock wave, bigger b
that are squeezed between small balls are lifted from
support on which they roll. When such shock dissolv
small balls have to move over afinite distance before the
bigger balls can start to roll, leading to a finite blocking tim

1. Shock creation

The polydispersity has two effects on the shock creati
One could have anticipated that for stronger polydisper
the periodic packing sites become irrelevant, but as we
from Fig. 12, what happens in addition is that all shocks
generated near the outflow of the funnel, an effect that
also be observed when comparing the density space-
diagram Fig. 10.

2. Breakdown of scaling of U„x… and n„x…D

Using the RGE method we have studied to what exte
the scaling ofU(x) andn(x)D with w(x)/D holds. In Fig.
13~a,b!, we have plottedU(x) andn(x) for b50.4° andD
510 mm for the four polydisperse mixtures. For Mix I, bo
U(x) and n(x) grow fairly linearly with the usual packing
site related variations@5#. For Mix II the behavior is similar
but bothU(x) and n(x) become flatter for largex. For the
stronger polydisperse Mixtures III and IV strong deviatio
from the monodisperse or weakly polydisperse case are

FIG. 11. ~a! The2vx~t! of individual balls during the passing o
a shock.~b! Fraction of time the flow stands still behind a ju
passed shock, based on density map data for polydisperse Mix
I,II,III,IV.
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served. The shock velocityU(x) grows rapidly for smallx,
then peaks and subsequently begins to drop for largerx. The
shock frequenciesn(x) in Mix III and IV behave similar to
that of monodisperse or weakly polydisperse flows at smax
but become constant at largerx. This is fully consistent with

res

FIG. 12. Shock creation rates for monodisperse flow and po
disperse Mix I,II,III,IV. for b50.4°, D510 mm.

FIG. 13. RGE based plots ofU(x) ~a,c,e! andn(x) ~b,d,f!: ~a!
showsU(x) vs x at b50.4°, D510 mm for Mix I-IV. ~b! shows
n(x) vs x at b50.4°, D510 mm for Mix I-IV. ~c! showsU(x) vs.
w(x)/D for Mix I. ~d! showsn(x)D vs w(x)/D for Mix I. ~e!
showsU(x) vs w(x)/D for Mix III. ~f! showsn(x)D vs w(x)/D
for Mix III. @In each of~c–f! 18 data sets are displayed.#
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the data in Fig. 12 that shows that for strong polydispe
mixtures, all shocks are created near the outlet.

Based on the similarity between weak polydisperse
monodisperse flows we plotU(x) vs w(x)/D for Mix I in
Fig. 13~c!. Apart from packing site variations the data co
lapse is reasonably good, so in this respect the weakly p
disperse flow behaves as a monodisperse flow. Linear fit
the data in Fig. 13~c! yield U(x)'74@w(x)/D
20.18# cm/s. It is perhaps surprising that the mix I sho
velocities are higher than those found for smooth wall mo
disperse flows~see Sec. II A!.

The frequency deserves some more attention. When
plot n(x)D vs w(x)/D in Fig. 13~d! the data collapse is no
very convincing, especially for largex where the rescaled
frequency is widely spread. This may be due to beginn
effects of polydispersity@causingn to drop for highx as
shown in Fig. 13~b!# or partial failure of the RGE algorithm
This algorithm tends to discard weak shocks at highb, x
since the density contrast of the shocks becomes very s
there~see Refs.@5,11#!. SinceD57 mm data~highest shock
frequency and lowest density contrast! show the biggest de
viation the latter reason may be the most important.

Despite the deviations for highx there seems to be a da
collapse ofn(x)D vs w(x)/D which is superior ton(x) vs
w(x)/D. Together with the reanalysis of the older data@5#
discussed in Sec. II A 3 this lead us to believe that the s
ing of n(x)D with w(x)/D is a feature of both rough wal
and smooth wall flows. Power law fits of the data in F
13~d! yield n(x)D'1.6(1)@w(x)/D21#0.7(1) cm/s. That the
shock frequencies of Mix I are slightly lower than for mon
disperse flows is not surprising, since polydispersity gen
ally seems to make it harder for shock waves to form a
where else than near the outflow of the funnel.

For the U(x), n(x) statistics based on Mix III density
data shown in Fig. 13~e,f!, there is data collapse for neithe
U(x) nor n(x)D vs w(x)/D. All U(x) curves in Fig. 13~e,f!
show the same pattern of rapid growth towards a maxim
value after which a moderate decline sets in. We have fo
no clear pattern in thex andU values of the peaks, and the
seems to be now(x)/D scaling involved. Then(x)D data
for Mix III shown in Fig. 13~f! displays growth at lowx
followed by a plateau, but there is no clear trend in t
plateau value. It seems likely that both types of deviat
from the monodisperse scaling relations are linked to
stagnant regions behind shocks and thus to the th
dimensional packing effects discussed above.

The U(x) and n(x) data for polydisperse Mix II~not
shown! are similar more to Mix I, while the Mix IV data~not
shown! are similar to the Mix III data.

In conclusion, we find that for sufficiently strong polydi
persity, the nature of the shock waves changes qualitativ
and that scaling relations that hold for monodisperse flow
either smooth or rough funnels break down.

IV. DISCUSSION

This work, in combination with earlier work on smooth
wall–monodisperse flows@5,6#, leads to a number of conclu
sions about the effects of funnel geometry, wall roughn
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and inelastic dissipation. It is well known that the dissipati
occurring in ball-ball and ball-wall collisions is enhanced
the rolling nature of the ball motion@14#; however, the pre-
cise value of the effective coefficient of restitution is presu
ably not of large importance for the phenomenology. In p
ticular, the frequency and velocity scaling for monodispe
and weakly polydisperse systems are very similar~see Fig.
7!, even though for weakly polydisperse flows dissipati
seems enhanced. For strongly polydisperse flow, where
sipations seems very strong, we unfortunately lose the
nature of the experiment.

In the case of smooth walls and monodisperse flo
packing effects become very important, and they tend to
scure scaling law. Possibly the simplest case is then the c
bination of rough walls and monodisperse flows~or, to a
lesser degree, smooth walls and weakly polydisperse flo!.
The rough walls have the additional advantage that t
make the system less sensitive to small perturbations~which
are inevitably present for ‘‘smooth’’ walls!.

The scaling laws for shock velocity and frequency, E
~2! and~3!, are the main result of our work. Since these la
also approximately hold for smooth walls, etc., their ma
origin must lie in the geometry of the experiment. That t
shock velocity and frequency depend onx via w(x)/D is not
surprising, since this is the most obvious way in whichx can
be made nondimensional~we do not expect the ball diamete
to play an important role!. The fact thatn(x)D and notn
scales is harder to understand, and may point at certain
evant velocity scales~note that bothU and nD have the
dimension of velocity!. Two-dimensional quantities tha
characterize the system are the effective ball-accelerationaeff
~related to the inclination! and D, but these two quantities
alone are not sufficient to provide for the correct scali
factors, since a velocity scale would beADaeff, and a fre-
quency scale would beAaeff /D, which both show scaling
with D different from what is observed.

We believe that the underlying reason for the occurre
of the scaling laws is an important open question that
serves further study. Our data indicates that details of
ball-ball or ball-wall interactions are not important~although
rough walls lead to more frequent shocks, they do not a
the nature of the scaling!, which suggests that a relativel
straightforward model may capture the phenomenology h
Indeed, for pipeflow, where the geometrical cause of sh
formation dissapears, leads to quite fragile behavior, wh
only in the case of rough walls seems to reproducable
similar to small funnel angle behavior.

However, to make such a model one seems to need a
tional information about the relation between ball densit
and velocities on one hand, and shock frequencies and
locities on the other.

Finally, shock waves have also been studied in some o
geometries. Tsaiet al. @7# examined a two-dimensional roll
ing pipe flow of 3.2 mm steel spheres between rough wa
Partial blockage of the funnel outlet was used as an a
tional system parameter. These authors performed high r
lution ball tracking measurements of small~12 cm! sections
of the funnel and obtained detailed local measurements
4-8
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v(x,t), r̃(x,t), Ty(x,t), andvx(y). For an almost unblocked
flow with D519 mm they found n'0.4 1/s and U
'14 cm/s, which is consistent with our data.

Reydellet, Rioual, and Cle´ment @8# studied 1.5 mm me-
tallic balls in a vertical pipe flow with rough walls. The bal
were not rolling on a support, and the rolling of balls su
posedly played less of a role than in our experiments. T
qualitatively observed the existence of upwards propaga
shock waves, using a ‘‘double flash technique’’ to study lo
ball velocities and made measurements similar to thos
our Fig. 9. Note that their funnel was not continuously
filled from a reservoir and thus their studies were limited
the transient behavior. All our experiments are preceded b
.30 sec. flow in order to avoid such transient behaviors

Finally, Le Pennecet al. @9# studied a two-dimensiona
rolling flow of 1 mm glass balls in flow geometries with ve
largeb ~mostly 30°), largeD ~typically 10–120 ball diam-
eters! at various flow plane inclinations. Due to the differe
geometry it is hard to make any direct comparison, althou
these authors did measure shock velocities and frequen

V. SUMMARY

The packing effects that we observed in earlier work
monodisperse, smooth-walled flow@5,6# can be suppresse
by either making the side walls rough or using polydispe
mixtures of balls. For rough walls, we find that there a
more shock waves than for smooth walls as a result of
greater disturbances in this flow. In earlier work@5# on
smooth-wall flows we found that the average shock sp
U(x) scales withw(x)/D. We have found a similar scalin
for rough walls and observed that alson(x)D scales with
w(x)/D for both rough and smooth walls@12#. By using ball
tracking methods we shed light on the shear flow proper
for rough walled flows.

In polydisperse flows between smooth walls we find t
our scaling relations persist for very weak polydispersity,
breaks down for stronger polydispersity. This breakdown
most likely caused by weak three-dimensional effects in
packing of shock waves, which apparently lead to par
blocking of the funnel. By using ball tracking methods w
shed light on the shock structure and on the extended sta
ary shock packings found in strong polydisperse flows.
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APPENDIX A: COMPARISON WITH TRAFFIC FLOW

To compare our flows to traffic flows, small angle,
preferably pipe flows should be considered. In earlier w
we made comparisons between smooth-wall funnel flo
with nonzerob and traffic flows@6#. In smooth-wall pipe
flows, shock waves are extremely fragile, and such a c
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parison is not meaningful. For the rough wall pipe flow d
cussed here, however, such a comparison can be mad
principle. In addition, we will discuss our results for roug
wall funnel flows in terms of traffic flows.

It is commonly assumed that there are three flow types
traffic flow, namely,uncongested flow~a steady flow of ve-
hicles at low to moderate densities,queue flow~a slow flow
of near maximum density!, andqueue discharge~a flow of
vehicles accelerating out of a queue flow! @10#. Traffic data
are usually represented asv(q) ~speed/flow relation! or as
q(r) ~fundamental diagram!, whereq5rv is the flow rate.

In Figs. 14~a! and 14~b! we show gray scale histograms o
(q,v) and (r̃,q) for a rough wall pipe flow (b50°, D

515 mm). Note that we use the relative densityr̃ instead of
r. The average values, corresponding tov(q) andq( r̃), are
shown as solid lines. In Fig. 14~a!, we observe regions cor
responding to queue flow and queue discharge, but the
no region corresponding to uncongested flow. As shown
Fig. 14~b!, the flow rateq( r̃) has a parabolic shape with
peak value aroundr̃50.6.

For larger values ofD ~not shown!, the flow rates exhibit
similar parabolic behavior, albeit with larger typical valu
of v and q, and with theq( r̃) ‘‘parabola’’ skewed towards
lower r̃ ( r̃50.420.5 for D520 mm, r̃50.220.4 for D
525 mm).

Figures 14~c! and 14~d! show the corresponding diagram
for small angle, rough wall funnel flow atb50.4°, D
520 mm. We find queue flow and queue discharge but
uncongested flow, similar to what we found in earlier wo
on smooth-wall funnel flow@6#. In Fig. 14 we observe a
parabolic shapedq( r̃). Similar plots for higherb ~not
shown! exhibit ‘‘parabolas’’ skewed towards higher values
r̃.

FIG. 14. Fundamental diagrams in rough wall flows.~a! and~b!
Pipe flow studied in the interval 37,x,74 cm for b50.0° and
D515 mm. ~c! and ~d! Intermittent flow studied in the interval 0
,x,37 cm forb50.4° andD520 mm.
4-9
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APPENDIX B: VELOCITY AND FREQUENCY
DETERMINATION FOR PIPE FLOW

The method to obtain shock velocities for pipe flow da
is illustrated in Fig. 15. First of all, to highlight the shock
that occur in the density plots, some smoothing and differ
tiation is applied yielding a fields(x,t) as shown in Fig.
15~a!. Clearly, shocks are now visible as bright streaks~high
values ofs) in a fairly even background. The temporal a
erages of the spatiotemporal correlation functi
C(x,Dx,Dt)ª*dt s(x,t)s(x1Dx,t1Dt), two examples of
which are shown in Figs. 15~b! and 15~c! for x5130 and 170
cm, clearly show a dominant direction in space-time that
be associated with the local dominant velocity of the shoc
this method of shock velocity determination works over t
whole range of parameters considered. In comparison to
RGE method, this method is more local, and often give
slightly smaller estimate for the velocities~order of 10–
20 %!. This is presumably due to the fact that shocks hav
tendency to perform intermittent jumps forward, maki
their dominant local velocity smaller than the typical velo
ity obtained over longer timescales. Some effect of th
jumps shows up in the correlation functions, where the bri
streak tends to bend for larger correlation distances and
intervals.
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To obtain the frequency froms(x,t) is fairly straightfor-
ward: after choosing an appropriate threshold, one obta
two-color images as shown in Fig. 15~d!. A simple algorithm
suffices to count, for a fixed value ofx, the number of shock
waves that occur.

FIG. 15. Illustration of methods used to obtain shock velocit
and frequencies for pipe flow for the case ofD520 mm. ~a! Modi-
fied density plot.~b! and~c! Space-time correlation functions base
on data shown in~a!, for ~b! x5130 cm, and~c! x5170 cm. Note
that the scales of~a!, ~b!, and~c! are different, so that the dominan
angles appear different.~d! Thresholded data used for determinatio
of shock frequency.
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