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Shearing of loose granular materials: A statistical mesoscopic model
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A two-dimensional lattice model for the formation and evolution of shear bands in granular media is
proposed. Each lattice site is assigned a random variable which reflects the local density. At every time step, the
strain is localized along a single shear band which is a spanning path on the lattice chosen through an
extremum condition. The dynamics consists of randomly changing the “density” of the sites only along the
shear band, and then repeating the procedure of locating the extremal path and changing it. Starting from an
initially uncorrelated density field, it is found that this dynamics leads to a slow compaction along with a
nontrivial patterning of the system, with high-density regions forming which shelter long-lived low-density
valleys. Further, as a result of these large density fluctuations, the shear band, which was initially equally likely
to be found anywhere on the lattice, gets progressively trapped for longer and longer periods of time. This state
is, however, metastable, and the system continues to evolve slowly in a manner reminiscent of glassy dynam-
ics. Several quantities have been studied numerically which support this picture and elucidate the unusual
system-size effects involved.
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[. INTRODUCTION stiff, and when the high-frequency part of the stress signal is

not filtered out[6]. Numerical simulations indicatg/] that
Modeling the rheology of granular media using con-instantaneous strain fields consist essentially of localized
tinuum solid mechanics has reached a high degree of sophigtrains occurring along one or a few shear bands. However,

tication in terms of constitutive equatiof$]. Whatever the 25 th(_a strain increasésver the modera}te range accessibl_e in
pe simulation, there seems to be little or no correlation

complexity of load paths being studied, an accurate accou _ .
etween successive shear bands, so that the time average of

of the experimental stress-strain relationship can now b X . . o
achieved provided enough parameters or internal variable%'e displacement field erases these discontinuities and pro-

are included in the constitutive laws. However, such ap- u%es rs]rr}:)oth st_ram fields. biously | di .
proaches are descriptive and leave unanswered questions uch fluctuations are obviously ignored In continuum
pertaining to the scale of grain sizes modeling. And indeed it may appear that the identification of
In parallel to such phenomenologiéal descriptive theories'fhese.3 instabil?ties s releva_mt only for discussing fine o!etails
a lot of effort has been spent in recent years in developin%f microscopic and transient feafures. However, their rel-
powerful computer models able to simulate granular systemg"2N¢€ car;] be !udged o_nIy at a melsoschoplc level O; m?del-
at the individual grain level. Molecular dynamics approache ng, since the microscopic numerical techniques are far from
[2], or other techniques such as “contact dynamif34] eing able to reach the relevant time scales. In fact, in the

now offer the possibility of dealing with several thousandfc_’ll()y\{ing we will argue that these instabilities may have a
particles, and provide extremely realistic pictures of the de§|gn|_f|cant impact, both on large scz_ile heter_ogeneltles_ of the
tailed micromechanics medium itself, and on the systematic slow time evolution of

Such numerical techniques can be used to accurately iﬁhe macroscopic friction a.ngle. A ;hort account of some of
vestigate displacement fields, resolved both spatially angu’ results has appeared in a previous publicait&jn

temporally [5]. The latter reveal an intriguing feature: The paper is organized as f.OIIOWS' In Sec. Il, we recall
namely, that even in the most simple tests, such as a simp me features observed experimentally or numerically that

steady shear imposed over large strains, the local displac&‘ledcons'ﬁer elssen]tclal, ang, Im r?ec. I”.’ we pr%gress_é)vely in-
ment appears very unsteady, with short quiescent perio oduce tl erules o fa rrr:o elw ?sl,e aim is to | escr d(? some
where the displacement field is spatially smooth, separate?iit""t's‘tICa aspects of shearing of loose granular media over

by sudden changes where the configuration of grains reach g€ .s'tralns. I'n Sec. IVZ we presept in detail the d'ﬁere.”t
a local instability and undergoes a rapid reorganizatiorﬂuant't'es studied numerically for this model. We conclude in

through significant displacements at the grain level. Thissec'_g/I with a _summ?ryhofkour results and a discussion of
temporal variability manifests itself in giant stress fluctua-P0SSiole experimental checks.

tions observed experimentally when particles and walls are Il. THE SHEAR PROCESS IN LOOSE GRANULAR
MATERIAL

*Present address: Santa Fe Institute, 1399 Hyde Park Road, SantaWe will address here the question of the behavior of
Fe, NM 87501. granular media subjected to a simple shear for large strains.
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y governing the friction angle. It could be either simply the
density or a combination of density and texture. Neverthe-
less, in all cases we will refer to this internal variable as
“density,” irrespective of its precise meaning.

As mentioned above, numerical simulations seem to re-
veal [7] evidence for the existence of instantaneous shear
bands even in loose granular media. On the other hand, in
experiments the strain appears to be homogeneous and not
localized. The resolution of this apparent paradox is that the

FIG. 1. Schematic picture of the shear process. The shear bargh€ar bands change rapidly, and may visit the entire medium
is parallel to the shear direction due to the periodic boundary in the process. Thus, during an increment of shear that can be
conditions in this direction. We sum up along this direction to get aobserved experimentally, only a time average over many
two-dimensional sample in they plane. such shear bands is seen. In our modeling, we introduce a

basic time scale for each elementary procedure. This time

We restrict ourself to the simplest granular medium one mayteP iS then clearly much shorter than most experimentally
consider, namely, rigidundeformablg grains with Coulomb ~ @ccessible time scales. However, our model attempts to
friction. This refers experimentally to dry sand subjected to s2Chieve a qualitative rather than a precise quantitative map-
low confining pressure. We are concerned here with larg®ing. One of the main features of the model is to show that
strains, and thus in order to avoid the problem of boundaryh€se two apparently unrelated facts—the existence of in-
conditions, which would limit the maximum strain, we con- stantaneous shear bands at early times and its localization at
sider an annular shear cell. To simplify the problem further)ate times—are actually related, with a slow transition be-
we consider only the case where the problem is invariantV€€n these two limiting cases. This slow dynamics is remi-
along the shear direction. As shown in Fig. 1, the displaceliscent of slow aging properties encountered in glassy sys-
ment is a single function of the coordinate of a radial crosd€ms, and indeed we will see that a breakdown of ergodicity

section &,y), and constant along the orthoradial direction d0€S appear in this model.
(traditionally this situation is termed “antiplang” More-
over, we are interested only in the quasistatic regime, i.e., Ill. THE MODEL
time as such is irrelevant, and only the total strain matters.
One of the important observations of soil mechanics con-
cerning such media is the concept of a critical sf&d0]. At every instant the two-dimensional medium is charac-
Depending on the preparation of the sample, the behaviderized by a single, scalar internal variable, the density
under shear may differ considerably. For loose séod o(x,y). This represents an average of the density along the
density, the deviatoric stress to be applied increases with th@rthoradial directiore. From this density, we deduce a cor-
total shear strain and, simultaneously, a densification is olbresponding local friction coefficien(x,y). The latter is
served[11,12. However, as the shear strain increases, th@ssumed to be a single monotonically increasing function of
density and shear stress seem to reach a plateau independdre density[16]. For simplicity, we may assume a linear
of the initial density. This state is called the “critical state.” relationship in the following although this is inessential.
On the contrary, if the initial density is large, a single shear The strain is imposed on the shear cell through prescribed
band forms, while the rest of the medium remains frozerdisplacements of the bottom and top planes. As particles are
[13]. The formation of the shear band is preceded by a volconsidered rigidno elastic deformation the shear cell can
ume expansion of the mediuifi4], but after the band is move only if the shear force exceeds a threshold value pro-
formed all further properties remain quasiconstant. A deportional to the normal pressure. This limit stress is given by
tailed experimental investigation has revealé8| that in-  the “weakest internal surface.” Indeed, in our antiplane ge-
side the shear band the density tends to approach the criticametry, the shear strain will localize on the surfgice., path
state density. This concept of the critical state has receiveth the (x,y) pland that fails first. The latter is assumed to be
considerable experimental evidence over the years, and @ven by the following algorithm. For each directed p&th
implemented in a number of continuum constitutive laws.spanning the entire cross section along thexis, we com-
Experiments, however, mostly deal with a rather moderatgute the maximum shear force it can support according to the
total strain well below unity. local density. Assuming that the local slope of the path is
A simple picture which is consistent with the critical state always small, this maximum forcé(P) is simply propor-
concept is that both the friction and the dilation angle in-tional to the sum of local friction coefficients, and thus, mak-
crease with the density, and that the critical state is the dering use of the assumed linear variation of the friction coef-
sity for which the dilation angle is zefmo change in volume ficient with the densityF(P) is proportional to the sum of
under shear Retaining the density as the only internal vari- local densities,
able is an approximation. Other characteristics of the texture
of the medium, such as the fabric ten$ahich has informa- _
tion about the orientation of contact normalsertainly play S(P)_( 2 e, @
a significant role. For the purpose of simplicity, we will in
the following only retain one single scalar internal variablewhere the sum runs over the sites along the path. Among all

A. Motivation and definition

X,y)eP
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the possible paths, the weakegt [for which S(P*)
=min] will fail first, and this fixes the value of the shear
force F=F(P*). In agreement with the previously men-
tioned observation, at every basic time step the shear strain
realized along a single shear band. Away from this shea ”
band, the strain rate is zero, and thus the density is key
constant in time. However, inside the shear band, there is
relative motion of grains, and thus the density is susceptibli
to change.

The next step is now to determine how the density inside
the shear band evolves with time. Even though it is observe
that large strains are necessary in order for a system to reach
its critical state, we argue that at the microscopic level the FIG. 2. (2) Visualization of the tilted lattice. The shear band is
evolution of the mediuncannotdepend on the total imposed marked with a thick line(b) Asa_mple_conflgur_a_\tlon of _the mlnlmgl
strain. Thus the evolution rules for the density within thepath on the normal square lattice with densities assigned to sites.

shear band should be designed in such a way that they do nf?atttice realizations. We note here that Figs. 4-6, 13, and 14

depeqd on the past hlstqry, but only on the presen.t ?tatgelow are obtained for the tilted and the others for the nor-
(density field. As the density ought to contain the basic in- mal square lattice

formation of the local character_istics, We propose that Within We mention here that a third type of lattice, the hierarchi-
the shear band the local densigfx,y) is randomly modi- ¢4 giamond latticg[17], was also studied. The numerical
fied. More precisely, in one elementary time step, corréygqyits are, surprisingly, essentially unchanged by the un-
sponding to the “lifetime” of the shear band in a very loose gya| topology of this recursively constructed lattice. The
granular sample, we assume that the density along the shegerarchical construction of this lattice, however, allows us to
band acquires random uncorrelated values picked from a stgplve the model analytically, thus giving us a quantitative
tistical distributionp(e). The uncorrelated character of the picture of the behavior of the system. These results are pre-
distribution is, however, justified only on a mesoscopic scalesented in[18] where the intimate relationship of our model

After the elementary strain event, we have a new densityo other models of statistical physics is also discussed.
mape(x,y). We now simply reiterate this procedure as long The rule of our model, finding the extremal directed span-
as desired; namely we identify the new path that minimizesiing path at every instant, is similar to finding the ground
S(P) (there is a linear algorithm for finding the gobal mini- state of a directed polymer in a random poteriti#l]. How-
mum), and update the value of the densities along this patl§ver, in our case this potential is uncorrelated only at the
randomly. As the purpose of the present article is to illustratdeginning; it changes in time through the process described
some statistical aspects of this dynamics, we do not try t@bove of ascribing new densities to all sites along the mini-
mimic any specific granular system by imposing a realisticnal path. Itis clear from .thIS relatlpnshl_p between the mod-
density distribution or initial correlations . We will €IS that the shear band is self-affine with a Hurst exponent
choose here a simple uniform distribution between 0 and $ — 2/3 at the beginning, i.e., the transverse fl_uctuat|?ns of
for p(@). The mean value and variance of the distribugon 1€ Pand grow with the sizeL() of the sample width ak;.
can be chosen arbitrarily, since a translation and rescaling ¢ will discuss the time evolution of the roughness later in
e do not affect the result. this paper.

A key assumption of our model which may appear as
precluding the occurrence of a slow evolution toward a criti- IV. NUMERICAL RESULTS
cal state is the selection of the density values within a shear \ye first show the density map, Fig. 3, of the system at

band from uncorrelated, smooth distributions. In fact, wegifferent timest/L ranging from 4 to 4000. The gray scale
will show below that, on the contrary, a collective and purelychosen focuses on the vicinity of 1 so as to highlight the
statistical effect produces a slow increase of the mean delprogressive densification. It may appear counterintuitive at
sity over large strains. first that the rest of the medium shows a densification at all,
Our model is furthermore discretized on a regular squarevhen the only dynamics consists of finding a minimal path
lattice. We have looked at two different kinds of square lat-and updating sites along it randomly. However, the reason is
tice to check the robustness of our results. In the first one theimply that this update systematically hunts out the sites with
value of the density is carried by the bonds. The orienta- the lowest density values and replaces them.
tion of the lattice is chosen so that the principal directions At early times, we observe an apparently uncorrelated
lies at /4 with respect to thex,y) axis as shown in Fig. field. However, as time proceeds, it is possible to distinguish
2(a). In the other version, density values are assigned to thpreferential channels of high density aligned along the direc-
sites of a square lattice. In this case the minimal path can biéon (x axi9 of the minimal paths. These channels, however,
connected through the next nearest neighbors too, as showrave a significant width, which shows that though the mini-
on Fig. 2b). Both square lattices give exactly the same re-mal path has been confined to this zone it has enough free-
sults so in the following we just refer to them as squaredom to explore different neighboring configurations and

(b)

L

X
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FIG. 4. The difference of the average density from its
asymptotic value 1 is plotted as a function of time. The system sizes
are L=32, 64, 128, 256, 512. The average was done over the
inactive sites on the lattice and for an ensemble of 20-1000
samples.

is the volumetric strain, which is just the change in the in-
FIG. 3. Snapshots of densities of a square lattice of size o5yerse of the average density. In our model, wi@) is

X 256 at time(a) 1000=4L, (b) 10°=40L, (c) 1P=400L, and(d) chosen to be the uniform distribution in the intery@l 1],
10°=4000. The gray scale is presented at the bottom. The actuail'® average density is bounded f@)=<1. Itis easy to see
shear band is drawn in black. that in finite systems the steady stétiee asymptoticscan-

not be other than a system with maximal densities every-

achieve a significant local densification. We also see Withiﬁ"’h‘?re except for_a path \_Nhlch _W|II always be chosen as the
these wide and dense channels a single path with a lowdpinimal path. This state is equivalent¢g)=1. _
density. This was the last active minimal path in the channel. We are interested in the approach to this asymptotics so
As time passes, the number of channels increases, and § Plot the quantity +-(¢) as a function of time. Within the
does their width. They get partly interconnected, leaving algranular medium context, this means that we mainly study a
ways the same scars of low-density paths. Finally, at théoose initial state and_ its convergence to the crmcal state
latest time shown on the figure, the average density is quite?-10. However, we will also present results obtained when
high, and traces of ancient minimal paths are still visible.ON€ Starts from a high initial density late8ec. IV G. .
Nevertheless, what is striking is the occurrence of islands Figure 4 shows that the difference of the average density
entrapped by these high-density channels, where the densif{Pm its asymptotic value remains almost constant during a
map looks as it did at the very early stage of the time evofirst staget/L<f1, and then decreases stead|ly_. This first in-
lution. This signals that these regions have basically not beeff€ase of(¢) is well captured by a reduced time equal to
visited by the minimal path during the entire history of the t/L. However, as time progresses, the average density in-
system. These features are quite generic, and they reveal tHg€ases more and more slowly. Quite strikingly, the larger the
the spatial(and temporal organization of the activity is System size, the slower the increase in density. Further on
rather complex. The rest of the study is devoted to a moréhis will be interpreted as a breakdown of ergodicity.
guantitative account of this activity, of the resulting kinetics

of compaction, and of the unexpected finite-size effects 2. Shear band density
which appear in this problem. It is also natural to define théensity of the shear band
In the following subsection, we will introduce the main \yhich we denote bysg. This is just the average density of
measurements performed numerically on the model. the sites along the minimal patbefore updating themAs
already mentioned in the Introduction, we assume that the
A. Definitions of numerically measured quantities maximal static shear force is a single function of the density.

Thus the density of the shear band can be related to the shear
stress in experiments.

The most important quantity is tteverage densitpf the Figure 5 shows the evolution in time of the difference
sample, which we define as the mean of the density of th@.5—psg. As expected, as time proceeds, the density along
inactive sites, i.e., the sitewt belongingto the shear band. the shear band will tend toward the average of the random
We denote this byg). This definition is convenient because densities that are used to refresh the sites or bonds along the
(o) increases monotonically by the rules of our model. Inshear band. Using a uniform distribution of densities be-
experiments one of the most frequently measured quantitiesveen 0 and 1 implies that this average is 0.5. Note that, in

1. Average density
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FIG. 5. The difference of the mean density of the shear band
from its asymptotic value 0.5 vs time. Notation and system sizes are

the same as in Fig. 4. 1000 ' ' ' ' ' 2
b)

contrast to the previous case, the reduced titheaccounts 800 - §
nicely for the time evolution of this quantity for all system
sizes fort/L=<10*. This is a second puzzle we will try to 2 600f i
address further in the following sections as well a$1if]. :a -

3. Mean Hamming distance W 400 f ]

We also calculate thélamming distancef two succes-

sive shear bands, which is defined as the number of @tes 200 - ]
bonds by which two consecutive shear bands differ. We de- /
note this distance bg. The natural normalization is to divide 0 L L L L L L
this distance by the total length of the path. As we will 0 20 40 60 80 100 120
see this quantity is very useful in characterizing the time x

evolution of the localization process.

Figure 6 shows that the mean Hamming distance is clos
to unity (i.e., two consecutive paths do not overlap at atl
early times, and_decrea;es toward 0 dr>1. We recall . cumulative representation ¢d): =Y_,n,(j). The dashed line indi-
that when the distance is equal to 0 the two consecutive ias the homogeneous case. !
conformations of the shear band are identical, in spite of the

total renewal of random densities along them. This indicate§hat the shear bands have a tendency to remain more and
more persistent as the system “ages.” We will analyze fur-

FIG. 7. Numerical estimation of the cumulative shearing,, .
((ea) represents the number of times,f a sitey was active up to
time t=1000 in a cross section of a 12828 sample(b) is the

L e ther the complete statistical distribution of the Hamming dis-
| tance later in this paper.
-1
10 3
I 4. Cumulative shear
107 N ] An experimentally relevant quantity is theumulative
% I 1 shearingdenoted by .,,. The numerical procedure we fol-
=107 i 1 low to obtain this quantity in our model is the followirigee
E [ ] Fig. 7. We mark a line in they direction (see Fig. 2 We
at ] measure the total activity,(y) along the line, i.e., the num-
107 ¢ 3 ber of instances when the shear band went through a point
| | on the line. From this, we define
10-5 A R PR B | NP B B

104 101 100 10°  10° oo
t/L TeunlY)= 2, Na(j)- )
=
FIG. 6. The average Hamming distance vs time. The same sys- o _ _
tem sizes were scaled together as on Fig. 4. The analytical predi®y definition o,(L,)=t, since at every instant the shear

tion [18] 1/(t+1) is plotted over the data. Note that scaling with band has necessarily to pass through one or the other site on
system size displays systematic corrections for larger systems. a cut along they axis. The fluctuations of,,(y) about its
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s d—————— — T state of the shear band after the densities of the sites along it
cum have been changed is independent of its previous state and
02r ¢=1000 T &=5000 1 the mean density is now 0(8ince it is just an average bf,
P OSSO O independent random numbers taken from the uniform distri-
bution[0,1]). This implies that at the next instant the chosen
02 + g shear band will have a very low probability of sharing bonds

or sites with the previous one, since there will still be many

04r T 7] spanning paths with density smaller than 0.5. Thus, until all
o6 . . .. o the sites are visited at least once, successive shear bands
o4 T T have few sites or bonds in commod=L, in Fig. 6). Also,
02} =10.000 1 /\ - in this regime, since the path sweeps all sites, the cumulative
shearing appears to be homogene(kig. 8, first ploj. As
L A | |G I mentioned in the Introduction, this uniform shear strain is
\/r consistent with the experimental observations that no well-
o2y T 1 defined shear bands persist over observable time scales in
o4l 1 1220000 i loose samples. - _ _ _
) The characteristic time to build up correlations is set by
ﬁ'ﬁ — — the sweeping through the sample, i.e., it is giverLby This
) is the reason why in the early time regime the plots in Figs.
02 T  =100.000 1 4-6 can be scaled together with .
N FY AN R >N

\,\\/\[ C. Localization
02}

T 1 The above described behavior is drastically changed as
time goes on and the shear band gets localized for very long

04r £=30.000 T 1 times at the same location.
As the average density increases, the probability of choos-
_0'6 I I 1 1 1 1 I I 1 1 1 1 . . . . .
O 20 40 60 8 100120 0 20 40 60 80 100 120 ing a minimal path with density less than 0.5 starts decreas-

x ing, and thus for the new path it becomes more favorable to

FIG. 8. The cumulative shear corrected by the average displaceo—verlap to a greater and greater extent with the previous one.

) . As a result, the activity is restricted to a small region and,
ment for a system of size 128128. As one can observe, this quan- =~ . - . : -
tity encodes the history of the process; a dip in the profile indicateémth the Iocallz.a.tlon of the activity, the denSI'Fy of this region
the presence of the shear band and the depth of the dip is indicatiyECr€aSes: Strikingly, the path do_es not eas"Y move to other
of the amount of time it has spent in that location. For example, i €9i10Ns with lower average density because it would need a
the beginning when successive shear bands are distinct, every sitefd JUmp (such that consecutive paths do not overl&s the
visited approximately equally and the profile has no deep peaks giverage density along all possible paths in the sysextept
valleys. After this, at=5000, the first shear band gets localized atfor the latesk is larger than 0.5, such a jump is extremely
aroundx=100. This lasts until about=20 000, and then it jumps improbable especially in large systems. Thus only small
to x=40. After spending some time here it jumps back, close to itgumps occur in the path conformation. As the density in the
previous position (X 10*<t<5x10%). vicinity of the path increases this motion soon gets extremely

slow, and finally the path gets trapped in canyonlike struc-

mean value (/L,)y then reflect the inhomogeneity of the tures surrounded by extremely high-density regi¢sse
shear process within the sample. In Fig. 8, we track the tim&igs. 3b)—3(d)]. This lasts until a rare big jump is per-
evolution of o, (), after subtracting out the mean value. formed. o o _

As indicated, a snapshot of this quantity encodes the history The early repulsive interaction is thus now inverted to an
of the process of shearing in this system. attractive one as is shown by the rapid-like decrease of
the Hamming distancéFig. 6), as well as the decrease of
0.5— pgg and of(g) from their initial values(Figs. 5 and 4,
respectively in this regime.

It is apparent from Figs. 4, 5, and 6 that the initial behav- There are a number of consequences of the localization.
ior of the model is very different from the late stages. In theFirst, as time goes on, the shear band, which was not visible
former regime, the average distartéFig. 6) is equal to the at all in the density map of the systemee Fig. 8], be-
system size, indicating that successive shear bands do nobmes more and more apparent until finally it becomes lo-
overlap at all. In other words there is an effective strongcalized at a given position for macroscopic times. This is in

B. Early time regime

repulsive interaction between them. accordance with experiments and with the critical state con-
The density of the shear baitBig. 5 provides an expla- cept[9,10]. Secondly, since the same path for the shear band
nation for this behavior. From the directed polyni&®] pic- is chosen most of the time, its density saturates to its

ture it is known that the first shear band has a mean densitgsymptotic value 0.%Fig. 5. Again this is consistent with
of psp(t=0)=e*~0.22 on the tilted square lattice. The the experimental observation that the density within the
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FIG. 9. Long samples with width =4 (lower curves andL, FIG. 10. Time dependence of the density difference from its
=8 (upper curves Three different lengths were used in both cases,asymptotic value for wide samples. The length of the system along
Ly/Ly=25, 5, and 10. the shear band is,=5; the widths ard.,=5, 10, 20, 40, 80, and

. . 160 f ively.
shear band tends to achieve a well-defined value somewha(f30 rom bottom 1o top, respectively

smaller than in the rest of the medium for dense granular

media. Simultaneously, the shear stress saturates to a cofHrves. Thet/L, scaling is excellent in both cases. How-

stant value since this is imposed by the shear band fisglf ever, the densification obeys a different time evolution for

However, we note that in our model the global density of thedifferent L,,. The rate at which the density increases is

system continues to increase in time, albeit very slowly. Thisslower as the width increases.

extremely slow trend may well be out of reach experimen-

tally. However, it is knowr{1] that the shear stress saturates 2. Wide systems: Breakdown of ergodicity

much faster than the volumetric strdihe average density in ] )

our casg which is clearly justified by the numerical results. ~ Wide samples can be considered as subsystems placed
On the cumulative shear, which is a straight line withnext to each other and coupled in parallel. In contrast with

small statistical fluctuations in the early time regime, therethe previous case, we will see that the evolution of the dif-

appear steplike structures, indicators of progressively moréerent subsystems cannot be accounted for by a simple aver-

persistent localizatioiiFig. 8). However, this localization is age.

not everlasting since the shear band may perform big jumps In the case of wide systems the same plot as befeig

to other local minima. This can be seen on the series 010) shows nat/L, scaling for small system sizes.

cumulative shear curves in the form of certain steps disap- We could imagine the following construction. Suppose we

pearing and others becoming more prominent. This predicsplit a given wide system into two subsystems of dize

tion could easily be tested experimentally. X (Ly/2). ProvidedL, is large enough, we can ignore the
interaction between the two subsystems, and thus we can
D. Systems with different aspect ratios study independently the time evolution of both subsystems.

All changes take place along the shear band, which i&ow if we merge them again, we realize that the only reason
aligned along the direction, and thus we may anticipate that Why the resulting densification could differ from the mea-
the x andy directions will play different roles. Therefore in Surement on separate subsystems is that the ttintieat the

this section we study the influence of the width and length ohear band has stayed in subpart 1 is far from being equal to
the system. In what follows, we use the teramg for  t/2. In other words, the breakdown of the data collapse of

samples withL,<L, and wide in the opposite caseL( 1—(@) vs.t/L is abreakdown of ergodicityThis is natu-
>L,). rally associated with what we termed “localization” earlier.
With very long and wide systems we are able to separate In order to make this concept more explicit, let us con-
the two kinds of dynamics described in Sec. IV C. If onesider an extreme version of such a breakdown of ergodicity.
considers a long samplé (/L is smal), we expect the time  During a first stage, up t¢/L, of order 1, the activity is
evolution to be independent bf, for all quantities of interest  evenly spread over the system. Then we assume that after
since the lattice can be split into subparts placed in seriessych a time the activity remains confined in a subsystem of
Thus one may expect the large jumps to disappear and thgze| ,x ¢. All other subsystems are assumed not to be vis-
average density to scale solely wit) (Fig. 9). A wide sys-  ited by the shear band, and thus their density is quenched at
tem, on the other hand, might be expecéepriori to behave  the value reached at the onset of localizatipg, at time
like a number of competing subsystems. to= 0L, . The global density will thus obey

1. Long systems

On Fig. 9 we plotted the time dependence of the density 1 (o) (t)= (1= o) (Ly =)+ (t=0(Ly—€))C ,
in long samples witt., =4 (lower curveg andL, =8 (upper Ly

()
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FIG. 11. The same data as in Fig. 10 with a different effective
densityp* =p(L,—¢). Note that the plot displays nice scaling as
well as a clean power law decay over at least three decades. How
ever, if the simulation is continued further the average density in-
creases ovep*.

t/L=172
d= 029

where f (t)=1—(p)(t) describes the densification of the

representative cell of size, X ¢ where the activity is con- A VT

fined, and thus }Qozf6(9€)- 0 10 20 30 40 sodsos«t 0 10 2 30 40 50 dsosa
In this crude scenario, we note that the global density

does not converge to 1 as time goes to infinity, but rather FIG. 12. The distribution of the Hamming distance on x&4

remains stuck at a value such thadt—()(t)]—f(6€)(1 square system for different times. The dashed lines indicate the

—¢/Ly). In more quantitative terms, we tried to carry out mean €).

such a procedure, and indeed for a fixgdit is possible to i ) L .
account for the time evolution of systems of different widthstion from repulsive to attractive effective interaction between

using ¢, as a free parameter and calculatifigrom the L, cpns_ecu_tive path conformations. At fixéldrge times, the
dependence. It turns out thatchanges for small values of distribution P(d,t) decays as a power law af, as can be
L, but becomes constant£30) above the system size of S€€N In Fig. 13. The measured exponent is
L,=30. The test of this analysis can be seen in Fig. 11. P(d,t)sd 3 (4)
However, the asymptotic density turns out to depend.pn ’ '

The conclusion is that, although such an extreme modeln addition to which there exists a peakait 0, the ampli-

ing of the localization is able to capture some of the strongude of which varies significantly with time. The decay of
size effects observed numerically, it is too crude to provide a

quantitative account of the densification. The hierarchical lat- 10"
tice provides us with a convenient case where an analytical 2
investigation of this breakdown of ergodicity can be made. It 10
is shown in Ref[18], that the local “age” distribution as- 3
- o ~ 10
sumes a multifractal distribution whose spectrum can be =
computed exactly. This property can then be used to provide =10
an expression for the density evolution in time. D .
~ 10
N’
E. Time evolution of the Hamming distance distribution A, 10
We study here the distribution of Hamming distances as a 107
function of time,P(d,t). This quantity is the analog of an 5 :
“avalanche distribution,” such as is usually studied in self- 10 S
organized critica[SOQ systems. As we will see below, this 1 10 d 100 300
guantity does indeed decay as a power-law, as in SOC sys-

tems. However, since a steady state is never reached, the i, 13. scaling plot for the distribution of the Hamming dis-

power-law decay is multiplied by a time-dependent prefactoriancep(d,t) vs d. The three curves are for three square systems of

The distributionP(d,t) is shown in Fig. 12. At early sizes:L =64 att=10 000,L =128 att=1000, andL=256 att
times, this quantity is peaked around the maximum value=500. The straight line has slope3 indicating that the decay of
(d=L,) while in the localized regime it becomes peaked atP(d,t) with d is a power law. Jumps of order of half the system
the minimum value §=0). This corresponds to the transi- size, however, seem to have an enhanced probability.
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C 0.75

0.7

100 200 ¢/L

0.65 S
1 10
t/L FIG. 15. Time dependence of the difference of the average den-
FIG. 14. Estimated self-affine exponent as a function of timeSity from its asymptotic value for starting densities with initial den-

obtained through Eq(6) for system sizes varying froh=64 to Sty ranges[Qinix:1] from top to bottom, respectivelyg;n;
L=512. =0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8. The system size is 64.

G. Systems with high initial densities;

averaged as 1t (see Fig. 6 found earlier implies that the relevance of initial conditions

time dependence of the#0 part isp(d,t)s1/(td®). Thus,

including the different scalings with, andL,, we obtain We have so far studied the situation when a very loose
finally the asymptotic form granular medium compactifies under shear, while simulta-

neously a shear band gets quasilocalized in the system. It is
also of interest to study samples with higher initial density
LiLy where it is known experimentally that a shear band is local-
P(d,t)= 3" (5 ized from the very beginning. In this section we study the
td . : ;
interesting crossover to that state from the previously de-
scribed dynamics.
Here again the hierarchical lattice allows us to compute this We choose initial densities from the interv@dpi; : 1]
distribution analytically(for L,=L,), and we find that a with a uniform distribution and varyin@;,;; . In Fig. 15 the
similar behavior is obtaineflL8]. time evolution of the difference of the average density from
its asymptotic value is plotted using different initial condi-
tions. Since all previous arguments hold we assume that in
finite systems the asymptotic value of the average density is
From the directed polymer analogy we know that thel, irrespective of the initial density.
shape of the shear band is self-affine with an exponeigt of  The striking result of these simulations is that,dfy;;
= 2/3 for infinitely large systems. It is an interesting question<0.5, all curves coincide in the decreasing regime. How-
whether this property of self-affinity is conserved in the timeever, if p;,;;>0.5 a different time evolution is observed for
evolution of our system. We have investigated this questiomarge times. Thus we can assume that in the early time re-
and have found self-affine scaling for albeit with a time-gime, when the shear band is swapping uncorrelatedly, it
dependent effective Hurst expondfig. 14). We have esti- visits all sites that have a value less than the expectation
mated the value of by measuring the width of the shear value of the refreshing density distribution of 0.5. After the
band,w (t), for different system sizekXL. The width is  first regime, as all small values are eliminated, the system
defined as the standard deviation of theoordinate of the effaces the initial condition almost entirely.
active path. The latter is expected to scalevagt) =L for a On the other hand, starting from initial conditions with
self-affine object. To estimaig the roughness exponent, we p;,;;>0.5 we largely eliminate the possibility of big jumps.
have computed the ratio of two such widths for lattice sizesThe shear band fluctuations are now very small, involving
differing by a factor of 2, and used the following estimate: changes in a very few sites, and hence the density change of

the sample is extremely slow.
_ log;d war (t)/w(t)] ®

log,(2) H. Summary of the numerical results

F. Roughness exponent of the shear band

We have seen that the system densifies with time so as to
wherew/ (t) is the width of a shear band inlax L lattice at  approach a unit density, i.e., the maximum available density
timet. The results obtained for the tilted square lattice can bérom the distribution used to refresh the sites. The kinetics of
seen on Fig. 14. It starts frof(t=0)=2/3 as expected from the densification is sloslower than any power lawMore-
the directed polymer result and has an asymptotic value obver, after a first transient where the reduced titfe ac-
{=0.8. counts for theL dependence, the compaction process de-
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pends on the system size in a nontrivial way. The width oflarge-strain behavior of sheared loose granular matter on a
the system is the parameter that really controls this anomanesoscopic level. The rules of the model do not include any
lous behavior, signaling that the competition between paraldependence on the total amount of shear imposed on the
lel paths may somehow play a key role in this breakdown ofmedium; nevertheless, a constant friction angle and slow
system-size rescaling. This competition is a subtle one, howdensification are observed—a property referred to as
ever, lying somewhere in between complete localization of'aging”—which reproduce the experimental results qualita-
the path(which, as we saw in Sec. IV B, is too crude to tively [11]. By construction, the strain takes place through
mirror the actual scenanoand complete delocalization local shear bands which initially travel throughout the me-
(which, as mentioned earlier, accounts only for the early timadium homogeneouslyand hence produce a uniform shear
behavioj. but which progressively become more permanent, giving rise
The density maps display an interesting organization ofo more steady shear bands, a feature also observed experi-
“canyonlike” paths with density much lower than their im- mentally[13]. Our model reproduces further features seen in
mediate surrounding@vhere the density approaches 1 quite experiments and numerical simulations, including the high-
uniformly). Moreover, large regions are left quiescent, beingfrequency fluctuations of the local shq&i.
systematically avoided by the minimal paths. This contrast of In addition, we predict a complex self-organization of
high and low activity within the same system is at the hearthese shear bands, displayed in the inhomogeneities in the
of the breakdown of ergodicity observed after an initial tran-local density. This feature can be studied experimentally, in
sient. As remarked, however, the distribution of Hammingparticular through the use of x-ray tomography, to access the
distances between consecutive paths displays a somewHatal density of a sheared medium. The use of tracer particles
simpler behavior where the role of the width and the lengthcould also be helpful in identifying the inhomogeneous aging

of the system can be simply accounted for. and localization of the shear bands as well as their sudden
changes.
V. CONCLUSION AND DISCUSSION Most of the results presented here for the Euclidean lattice

_ ) are closely mirrored by the results on the hierarchical lattice
Although very simply defined, our model seems to cap-stydied in[18]. The recursive topology of this lattice allows

ture some essential features of granular shear and provides gtyyantitative analytical understanding of many of the quan-
the same time several predictions. The model demonstrategies studied numerically in this paper. This includes eluci-
the self-organized mechanism of the localization of the sheggjating the mechanism for the breakdown of ergodicity and
band in loose granular materials. As the sample ages, vefpe siow density evolution, as well as the behavior of the
high fluctuations in density appear where we can observejamming distance at late times.
some kind of screening effect: the more resistant regions of

higher Qensjty protect the !ooser ones. This model also.glives ACKNOWLEDGMENTS
an insight into a dynamics that exhibits very nontrivial
system-size effects. This work was supported by EPSRC, U.K., and OTKA
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