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Heat conductivity in linear mixing systems
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We present analytical and numerical results on the heat conduction in a linear mixing system. In particular
we consider a quasi-one-dimensional channel with triangular scatterers with internal angles which are irrational
multiples ofp, and we show that the system obeys the Fourier law of heat conduction. Therefore, deterministic
diffusion and normal heat transport which are usually associated with full hyperbolicity, actually take place in
systems without exponential instability.
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Given a particular classical, many-body Hamiltonian s
tem, neither phenomenological nor fundamental transp
theory can predict whether or not this specific Hamilton
system yields an energy transport governed by the Fou
heat law@1#. Heat flow is universally presumed to obey
simple diffusion equation which can be regarded as the c
tinuum limit of a discrete random walk. In consequen
transport theory requires that the underlying determini
dynamics yield a truly random process. Therefore, it is
mere idle curiosity to wonder what class, if any, of man
body systems satisfy the necessary stringent requirem
Moreover, it now becomes increasingly meaningful to se
example of many-body systems which, using dynam
alone, can be shown to obey the Fourier heat law. A la
number of papers have recently approached this prob
mainly via numerical simulations@2–12#. Leaving aside, for
the purpose of the present paper, systems which conserv
total momentum, the general picture which emerges is
the positive Lyapunov exponent is a sufficient condition
ensure Fourier heat law. In particular, the paper@10# was
precisely aimed at answering this question. Indeed in R
@10# the thermal conductivity was studied for a Loren
channel—a quasi-one-dimensional billiard with circu
scatterers—and it was shown to obey the Fourier law. T
conclusion at which the above numerical computations p
out appears quite natural. Indeed modern ergodic theory
us that forK systems, a sequence of measurements with
nite precision mimics a truly random sequence, and there
these systems appear precisely those deterministically
dom systems tacitly required by transport theory. On
other hand we do not have rigorous results and in spite
several efforts, the connection between Lyapunov expone
correlations decay and diffusive properties is still not co
pletely clear. In a recent paper@13#, a model has been pre
sented which has a zero Lyapunov exponent and yet it
hibits an unbounded Gaussian diffusive behavior. Si
diffusive behavior is at the root of normal heat transport,
above results constitutes a strong suggestion that normal
conduction can take place even without the strong requ
ment of exponential instability. If this would be the cas
then it may turn out to be an important step in the gene
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attempt to derive macroscopic statistical laws from the
derlying deterministic dynamics. Indeed, systems with z
Lyapunov exponent have zero algorithmic complexity and
least in principle, are analytically solvable.

In this paper we consider a two-dimensional billia
model that consists of two parallel lines of lengthL at dis-
tanced and a series of triangular scatterers~Fig. 1!. In this
geometry, no particle can move between the two reserv
without suffering elastic collisions with the triangles. Ther
fore this model is analogous to that studied in Ref.@10# with
triangles instead of discs, and the essential difference is
in the triangular model discussed here the dynamical in
bility is linear and therefore the Lyapunov exponent is ze
Strong numerical evidence has been recently given@14# that
the motion inside a triangular billiard, with all angles irratio
nal with p is mixing, without any time scale. Moreover, a
area preserving map, which was derived as an approxima
of the boundary map for the irrational triangle, when cons
ered on the cylinder shows a nice Gaussian diffusive beh
ior even though the Lyapunov exponent of the map is z
@13#. It is therefore reasonable to expect that the motion
side the irrational polygonal area of Fig. 1 is diffusive th
leading to normal conductivity.

In the following we present careful numerical investig
tions of the energy transport in the system of Fig. 1 both
direct numerical simulation of energy flow for the system
contact with thermal baths as well as via the Green-Ku
approach. Our results provide convincing evidence that

FIG. 1. The geometry of the model. Particles move in the reg
outside the triangular scatterers. Thex coordinate goes along th
channel andy is perpendicular to it. The two heat reservoirs
temperaturesTL andTR are indicated. The length of each cell isl
53, the base of the triangles isa52.19, and the distance betwee
the two parallel lines isd51.8. The geometry is then uniquel
specified by assigning the internal anglesu andf.
©2003 The American Physical Society04-1
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the anglesu andf are irrational multiples ofp, the system
obeys Fourier law and the coefficients of thermal conduc
ity computed via the two approaches, coincide.

In our computations we model the heat baths by stoch
tic kernels of Gaussian type, namely, the probability dis
bution of velocities for particles coming out from the baths

P~vx!5
uvxu
T

expS 2
vx

2

2TD ,

P~vy!5
1

A2pT
expS 2

vy
2

2TD , ~1!

for vx andvy , respectively.
The total length of the channel isL5Nl whereN andl are

the number and the length of the fundamental cells. For
irrational angles we takeu5(A221)p/2 andf51. By in-
creasingL, the number of particles per cell must be ke
constant. However, since the particles do not interact we
consider the motion of a single particle over long times a
then rescale the flux.

We turn now to the definition of the two relevant quan
ties: the internal temperature and the heat flux. The temp
ture field at the stationary state is calculated following
idea used in Ref.@10#, namely, we divide the configuratio
space in slices$Ci%. The time spent by the particle within th
slice in thej th visit is denoted byt j and the total number o
crossings of a sliceCi during the simulation isM. The tem-
perature is defined by

TCi
5

(
j

M

t jEj~Ci !

(
j

M

t j

, ~2!

whereEj (Ci) is the kinetic energy at thej th crossing of the
sliceCi . Since the energy changes only at collisions with
heat baths, we define the heat flux as

j ~ tc!5
1

tc
(
k51

Nc

~DE!k , ~3!

where (DE)k5Ein2Eout is the change of energy at thekth
collision with the heat bath andNc is the total number of
such collisions which occur during timetc .

For sufficiently long integration times (.1010 time unit!
both the internal temperature field and the heat flux reac
stationary value. We have checked that the temperature
file obeys the law given in Ref.@10#. For small temperature
differencesDT, it is a linear function, as illustrated in Fig. 2

“T5
TR2TL

L
. ~4!

In the calculation of the temperature profile shown in F
2 and heat flux shown in Fig. 3, the total simulation times
larger than 1.231011 units for system sizeN,100, and
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larger than 2.431011 units for N.100. The time unit is de-
fined as the time a particle, with velocityv51, takes to cross
a unit length of the channel.

In order to study the dependence of the heat flux on
system size, we need to consider larger and larger syst
keeping the particles density constant. The correspond
heat flux~for a density of one particle per unit length! is J
5L j , where j is the flux computed with a single particl
simulation. In Fig. 3, we plot the heat fluxJ as a function of
the system sizeN. For the irrational case, the best fit give
J5AN2g, with g50.9960.01 andA50.015. The coeffi-
cient of thermal conductivity is therefore independent onN,
which means that the Fourier law is obeyed and its numer
value isk52(J/¹T)50.225.

The point under discussion here is very delicate and
merical experiments must be very accurate and reliable
order to reach clear conclusions. We have therefore chec
the validity of our result by an independent approach, vi
Green-Kubo type formalism, by studying the diffusive pro
erties of our model isolated from thermal baths.

FIG. 2. Internal local temperature as a function of the resca
cell numberm/N for the irrational case withu5(A221)p/2 and
f51. The total numberN of cells isN510 (n), N520 (h), N
540 (3), and N580 ~solid line!. Here TL51.1, TR50.9, l 53.
Notice the quite good scaling behavior of the temperature field

FIG. 3. Scaling behavior of the stationary heat fluxJ as a func-
tion of the system size for the irrational case of Fig. 1 (d) and for
the rational case~m! ~see later in the text!. N is the number of
fundamental cells. The best-squares fit gives a slope20.9960.01
for the irrational case and20.7860.01 for the rational one.
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In our numerical calculations, we follow Ref.@3#, namely,
we consider the system with periodic boundary conditio
and with an initial temperature distributionb(x) given in
Fig. 4~a!. Then we calculate how the heat flows from the h
hotter part (L/4,uxu,L/2) of the system to the half colde
part (2L/4,x,1L/4). At time t50 we take a Maxwellian
distribution of velocities, namely, P(vx,y)
5exp$2vx,y

2 /@2T(x)#%/A2pT(x). If we denote byQ(t) the en-
ergy contained in the cold half part of the chain then, if t
system obeys the Fourier law, the quantity^DQ(t)&
5^Q(t)2Q(0)& must increase linearly with timet,
^DQ(t)&5(2kT2¹b)t. Clearly the linear increase take
places only for times smaller than the sound transit ti
across channel. The numerical results are shown in Fig.~b!
where the dotted line, which fits the initial linear increase
the curve forN540, has slopek50.225 thus indicating a
very good agreement with simulations with thermal baths

Another important characteristic which is relevant f
transport properties is the decay of the velocity autocorr
tion function. In Fig. 5 we show the decay of the absolu

FIG. 4. ~a! Initial temperature distributionb(x)51/T(x) with
b(0)51.1,b(6L/2)50.9. ~b! The rescaled heat flow
^DQ(t)&/2T2¹b versus timet for different values of chain lengthN
for the irrational case. The dotted line has slope 0.225.

FIG. 5. The absolute value of the velocity autocorrelation fu
tion uC(t)u averaged over 63105 orbits initially with unit velocity
amplitude but random directions. The solid line has slope23/2.
The dotted line shows the statistical errors.
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value of the normalized velocity autocorrelationC(t)
5^vx(0)vx(t)&/^vx

2(0)& for the irrational case. This function
decays asuC(t)u;t2a with a'3/2.

In Fig. 6 we show the diffusive behavior of our mod
isolated from thermal baths. A clear diffusive behavi
^Dx2&52Dt for the irrational case is observed with diffusio
coefficientD50.15.

In fact, in our model, we can establish a connection
tween the thermal conductivityk and the diffusion coeffi-
cient D. Indeed, the average time a particle takes to tra
from the left to the right bath and vice versa is

^tLR&5^tRL&5
L2

2D
; ~5!

then according to Eq.~3!, we can write the heat current as

j 5

E
0

`v2

2
@P~v,TL!2P~v,TR!#dv

^tLR&1^tRL&
, ~6!

whereP(v,T)5(4p/(2pT)3/2)v2exp(2v2/2T) is the distri-
bution for the modulus of velocity of particles coming o
from the baths@see Eq.~1!#. The thermal conductivityk
52L j /“T is thus

k5
3

2
D. ~7!

We have numerically tested this formula. The therm
conductivity calculated from Figs. 2 and 3 isk50.225. On
the other hand the diffusion coefficient calculated from Fig
is D50.15 which, according to the above relation, givesk
53D/250.225.

As expected, a completely different behavior is obtain
when the anglesu and f are rational multiples ofp. The

-

FIG. 6. Diffusive properties of our model isolated from therm
baths. In the irrational case~left scale!, ^Dx2&50.308t1.007 (h); in
the rational case~right scale!, ^Dx2&50.082t1.178 (n). Dx2

[@x(t)2x(0)#2. In the numerical calculation, 43105 particles are
used. The particles are initially atx50 ~in the center of the chain!
and the initial velocities obey the Maxwell-Boltzmann distributio
at temperatureT51.
4-3
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case withu5p/5 andf5p/3, is shown in Fig. 6~triangles!,
and leads to a clear anomalous diffusive behavior indica
the absence of the Fourier law. Correspondingly, the sim
tions with the heat baths~solid triangles in Fig. 3! indicate a
divergent behavior of the coefficient of thermal conductiv
k;N0.22.

In conclusion, when all angles are irrational multiples
p the model shown in Fig. 1 exhibits the Fourier law of he
conduction together with nice diffusive properties, and
numerical value of the thermal conductivity computed via
Green-Kubo approach agrees with that obtained by di
numerical simulations with thermal baths. However, when
angles are rational multiples ofp, the model shows abnor
mal diffusion and the heat conduction does not follow t
d

ev
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Fourier law.
One may argue that the model considered here is so

how artificial and far from realistic physical models. How
ever, the problem discussed here is quite delicate and con
versial and our main purpose is to understand wh
dynamical properties are necessary and sufficient to de
the Fourier law. In this respect billiards like models are ve
convenient, since they are more suitable for analytical a
numerical analysis.
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