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Heat conductivity in linear mixing systems
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We present analytical and numerical results on the heat conduction in a linear mixing system. In particular
we consider a quasi-one-dimensional channel with triangular scatterers with internal angles which are irrational
multiples of 7, and we show that the system obeys the Fourier law of heat conduction. Therefore, deterministic
diffusion and normal heat transport which are usually associated with full hyperbolicity, actually take place in
systems without exponential instability.
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Given a particular classical, many-body Hamiltonian sys-attempt to derive macroscopic statistical laws from the un-
tem, neither phenomenological nor fundamental transporderlying deterministic dynamics. Indeed, systems with zero
theory can predict whether or not this specific HamiltonianLyapunov exponent have zero algorithmic complexity and, at
system yields an energy transport governed by the Fourideast in principle, are analytically solvable.
heat law[1]. Heat flow is universally presumed to obey a In this paper we consider a two-dimensional billiard
simple diffusion equation which can be regarded as the conmodel that consists of two parallel lines of lendthat dis-
tinuum limit of a discrete random walk. In consequence tanced and a series of triangular scatter¢Fsg. 1). In this
transport theory requires that the underlying deterministicd€ometry, no particle can move between the two reservoirs
dynamics y|e|d a tru|y random process. Therefore’ itis noWithOUt Suf'fering elastic collisions with the triangles. There-
mere idle curiosity to wonder what class, if any, of many-fore this model is analogous to that studied in R&@] with
body systems satisfy the necessary stringent requiremenﬁéi_angle; instead of discs,. and the essential difference ils that
Moreover, it now becomes increasingly meaningful to seein the triangular model discussed here the dynamical insta-
example of many-body systems which, using dynamicdility is linear and therefore the Lyapunov exponent is zero.
alone, can be shown to obey the Fourier heat law. A largétrong numerical evidence has been recently g\t that
number of papers have recent'y approached this prob'erﬁr;]e motion inside a triangular b|”|ard, with all angles irratio-
mainly via numerical simulation2—12). Leaving aside, for ~nal with 7 is mixing, without any time scale. Moreover, an
the purpose of the present paper, systems which conserve tREea preserving map, which was derived as an approximation
total momentum, the general picture which emerges is tha®f the boundary map for the irrational triangle, when consid-
the positive Lyapunov exponent is a sufficient condition toered on the cylinder shows a nice Gaussian diffusive behav-
ensure Fourier heat law. In particular, the paptd] was i0r even though the Lyapunov exponent of the map is zero
precise|y aimed at answering this question_ Indeed in Rei[l3] It is therefore reasonable to eXpeCt that the motion in-
[10] the thermal conductivity was studied for a Lorentz Side the irrational polygonal area of Fig. 1 is diffusive thus
channel—a quasi-one-dimensional billiard with circular leading to normal conductivity.
scatterers—and it was shown to obey the Fourier law. The [n the following we present careful numerical investiga-
conclusion at which the above numerical computations pointions of the energy transport in the system of Fig. 1 both by
out appears quite natural. Indeed modern ergodic theory teldirect numerical simulation of energy flow for the system in
us that forK Systerns7 a sequence of measurements with fiCOﬂtaCt with thermal baths as well as via the Green-Kubo
nite precision mimics a truly random sequence, and therefor@Pproach. Our results provide convincing evidence that, if
these systems appear precisely those deterministically ran-
dom systems tacitly required by transport theory. On the
other hand we do not have rigorous results and in spite of
several efforts, the connection between Lyapunov exponents,
correlations decay and diffusive properties is still not com-

6 ¢
pletely clear. In a recent papgt3], a model has been pre-
sented which has a zero Lyapunov exponent and yet it €x- gg, 1. The geometry of the model. Particles move in the region
hibits an unbounded Gaussian diffusive behavior. Sincgyside the triangular scatterers. Thecoordinate goes along the
diffusive behavior is at the root of normal heat transport, thechannel andy is perpendicular to it. The two heat reservoirs at
above results constitutes a strong suggestion that normal he@imperature§, and T are indicated. The length of each celllis
conduction can take place even without the strong require=3, the base of the triangles és=2.19, and the distance between
ment of exponential instability. If this would be the case,the two parallel lines isd=1.8. The geometry is then uniquely
then it may turn out to be an important step in the generaspecified by assigning the internal angkeand ¢.
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the anglesy and ¢ are irrational multiples ofr, the system
obeys Fourier law and the coefficients of thermal conductiv-
ity computed via the two approaches, coincide.

In our computations we model the heat baths by stochas- 1.051
tic kernels of Gaussian type, namely, the probability distri-
bution of velocities for particles coming out from the bathsis 100}

1.10
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for v, andvy, respectively. FIG. 2. Internal local temperature as a function of the rescaled

The total length of the channellis=NI whereN andl are  cell numberm/N for the irrational case witto=(\2—1)/2 and
the number and the length of the fundamental cells. For thg=1. The total numbeN of cells isN=10 (A), N=20 (d), N
irrational angles we také=(\2—1)7/2 and¢p=1. By in- =40 (x), andN=80 (solid line). Here T, =1.1, Tg=0.9, |=3.
creasinglL, the number of particles per cell must be keptNotice the quite good scaling behavior of the temperature field.
constant. However, since the particles do not interact we will
consider the motion of a single particle over long times andarger than 2.4 10'* units for N>100. The time unit is de-
then rescale the flux. fined as the time a particle, with velocity=1, takes to cross
We turn now to the definition of the two relevant quanti- 3 unit length of the channel.
ties: the internal temperature and the heat flux. The tempera- |n order to study the dependence of the heat flux on the
ture field at the stationary state is calculated following thesystem size, we need to consider larger and larger systems,
idea used in Refl10], namely, we divide the configuration keeping the particles density constant. The corresponding
space in slice¢C;}. The time spent by the particle within the heat flux(for a density of one particle per unit lengtis J
slice in thejth visit is denoted by; and the total number of =|j wherej is the flux computed with a single particle
crossings of a slic€; during the simulation i#/. The tem-  simulation. In Fig. 3, we plot the heat flukas a function of
perature is defined by the system siz&\. For the irrational case, the best fit gives
J=AN"7, with y=0.99+0.01 andA=0.015. The coeffi-

EM: LE(C) cient of thermal conductivity is therefore independent\yn
T R which means that the Fourier law is obeyed and its numerical
Te=—w— (2)  value isk=—(J/VT)=0.225.
2 t The point under discussion here is very delicate and nu-

] merical experiments must be very accurate and reliable in

order to reach clear conclusions. We have therefore checked

whereE;(C;) is the kinetic energy at thigh crossing of the the validity of our result by an independent approach, via a
sliceC; . Since the energy changes only at collisions with theGreen-Kubo type formalism, by studying the diffusive prop-

heat baths, we define the heat flux as erties of our model isolated from thermal baths.
1 e
i — 10 100
j(te) T IZl (AE)x, 3 1073 - . . 102
~

where AE),=E;,—E,: is the change of energy at th¢h
collision with the heat bath anll; is the total number of
such collisions which occur during tinte.

For sufficiently long integration times>10% time unit)
both the internal temperature field and the heat flux reach a
stationary value. We have checked that the temperature pro- a
file obeys the law given in Ref10]. For small temperature 107 ¢
differencesAT, it is a linear function, as illustrated in Fig. 2,

10 - 1(I)0 —
_ TR_TL (4) N

VT
FIG. 3. Scaling behavior of the stationary heat fluas a func-

tion of the system size for the irrational case of Fig.@)(and for

In the calculation of the temperature profile shown in Fig.the rational caséA) (see later in the text N is the number of

2 and heat flux shown in Fig. 3, the total simulation times areundamental cells. The best-squares fit gives a sloe99+0.01
larger than 1.X 10 units for system sizeN<100, and for the irrational case and 0.78+0.01 for the rational one.
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FIG. 4. () Initial temperature distributiorB(x)=1/T(x) with
B(0)=1.18(*L/2)=0.9. (b) The rescaled heat flow
(AQ(t))/2T?V g versus time for different values of chain lengt

for the irrational case. The dotted line has slope 0.225.

In our numerical calculations, we follow Ré8], namely,

we consider the system with periodic boundary conditions

and with an initial temperature distributiofi(x) given in

Fig. 4@). Then we calculate how the heat flows from the half ~
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FIG. 6. Diffusive properties of our model isolated from thermal
baths. In the irrational cagéeft scalg, (Ax?)=0.308%%7 (0); in
the rational case(right scalg, (Ax?)=0.0821178(A). Ax2
=[x(t)—x(0)]2. In the numerical calculation,410° particles are
used. The particles are initially at=0 (in the center of the chajn
and the initial velocities obey the Maxwell-Boltzmann distribution
at temperaturd=1.

value of the normalized velocity autocorrelatioB(t)
(v,(0)v(t))/(v2(0)) for the irrational case. This function

hotter part (/4<|x|<L/2) of the system to the half colder decays asC(t)[~t™« with a~3/2.

part (—L/4<x<+L/4). Attimet=0 we take a Maxwellian
distribution of velocities, namely, P(vyy)

=exp{—vZ J[2T) /27 T(x). If we denote byQ(t) the en-

ergy contained in the cold half part of the chain then, if the

system obeys the Fourier law, the quanti{dAQ(t))
=(Q(t)—Q(0)) must increase linearly with timet,
(AQ(t))=(2«T2VpB)t. Clearly the linear increase takes

places only for times smaller than the sound transit time

across channel. The numerical results are shown in Fim. 4

where the dotted line, which fits the initial linear increase of

the curve forN=40, has slopec=0.225 thus indicating a
very good agreement with simulations with thermal baths.

Another important characteristic which is relevant for
transport properties is the decay of the velocity autocorrela-
tion function. In Fig. 5 we show the decay of the absolute
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In Fig. 6 we show the diffusive behavior of our model
isolated from thermal baths. A clear diffusive behavior
(Ax?)=2Dt for the irrational case is observed with diffusion
coefficientD=0.15.

In fact, in our model, we can establish a connection be-
tween the thermal conductivity and the diffusion coeffi-
cient D. Indeed, the average time a particle takes to travel
from the left to the right bath and vice versa is

LZ
<tLR>:<tRL>:E; (5

then according to Eq.3), we can write the heat current as

wp?
Jo ?[P(U,TL)_ P(U,TR)]dU

1= (tLr) +(trL) '

whereP(v,T) = (4/(27T)*?)v2exp(—v?/2T) is the distri-
bution for the modulus of velocity of particles coming out
from the bathsg[see Eq.(1)]. The thermal conductivityx
—Lj/VT is thus

(6)

KZED.

7

We have numerically tested this formula. The thermal
conductivity calculated from Figs. 2 and 3 4s=0.225. On
the other hand the diffusion coefficient calculated from Fig. 6

FIG. 5. The absolute value of the velocity autocorrelation func-iS D= 0.15 which, according to the above relation, gives

tion |C(t)| averaged over 8 10° orbits initially with unit velocity
amplitude but random directions. The solid line has slep&?2.
The dotted line shows the statistical errors.

=3D/2=0.225.
As expected, a completely different behavior is obtained
when the angle® and ¢ are rational multiples ofr. The
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case withd= /5 and¢ = /3, is shown in Fig. Gtriangles, Fourier law.

and leads to a clear anomalous diffusive behavior indicating One may argue that the model considered here is some-
the absence of the Fourier law. Correspondingly, the simulahow artificial and far from realistic physical models. How-
tions with the heat batholid triangles in Fig. Bindicate a  €ver, the problem discussed here is quite delicate and contro-

divergent behavior of the coefficient of thermal conductivity versial and our main purpose is to understand which
x~N0-22 dynamical properties are necessary and sufficient to derive

In conclusion, when all angles are irrational multiples ofthe Fourier law. In this respect billiards like models are very

o the model shown in Fig. 1 exhibits the Fourier law of heatCONvenient, since they are more suitable for analytical and
conduction together with nice diffusive properties, and theUmerical analysis.
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