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Symmetric linear kinetic theory
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Equilibrium time correlation functions are expressed by two Onsager-symmetric quantumlike operators
containing equilibrium distribution function. A model of dissipation for smooth interaction potentials is pro-
posed. Approximations leading to the mode coupling formula are clearly stated and the Green-Kubo prescrip-
tion for the calculation of the transport coefficients is reformulated.
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[. INTRODUCTION larger than certain lengtD. It turns out that this discontinu-
ity is enough to have nonpositive real parts of eigenvalues of

The main problem in the linear kinetic theory is to con- L as for hard spheres. Hence our theory includedtlieo-
struct a kinetic equation consistent with Onsager-symmetryem (decay of correlationsor smooth potentials similarly as
relations(OSR) for transport coefficients in nonequilibrium in the case of hard spher¢$9]. We are able to write an
thermodynamic$1]. Although time correlation functions are Enskog-like equation for smooth potentials. The Green-Kubo
evidently symmetric, it is by no means obvious whether aexpressions for transport coefficied@0] are reformulated
given equation is symmetric and obeys OSR. The problent'singQ andL. Due to theH theorem, the dissipative char-
was solved for the Enskog equatip®,3] and it allowed to ~ acter of transport is transparent. However, it cannot be
prove anH theorem for a hard sphere fluid both in linear andProved for smooth potentials that only energy and density
nonlinear regimd2,4]. It is possible to obtain a symmetric modes belong to the kernel &fin the truncated space. We
linear kinetic equation for a one-particle distribution function @lso discuss the derivation of the mode coupling formula,
also for a square-well potentif,6] and multistep potential though noH theorem can be proved there.

[7,8]. A more general linear theory of hard sphef@ksimi- The paper is organized as follows. We start by writing
larly as the Enskog theory consists in fact of two adjointdéefinitions in Sec. II. In Sec. Ill, the linear algebra necessary
kinetic equationd9—11]. In the kinetic theory for smooth in our description is introduced. The structure of the static
potentials, no irreversible equation that satisfies OSR i®peratorQ and dynamic operatdr is described in Sec. IV.
present except a smooth potential with a hard derpiare  The operatoiL for hard spheres is derived in Sec. V. The
well) [12]. mechanism of dissipation for smooth potentials is presented

On the other hand, we have a symmetric mode coupling Sec. VI and the Enskog-like equation is given in Sec. VII.
formula for calculation of time correlation functions and The Green-Kubo formulas are expressed in our formalism in
transport coefficientsl3—16. It is, however, derived rather Sec. VIII. The main result of the paper, the formula for time
intuitively and it is hardly known what is neglected. correlation functions, is presented in Sec. IX. An application

We present a different method to construct a linear kinetid® mode coupling is presented in Sec. X and Sec. Xl is de-
theory where OSR are natural. Instead of kinetic equationgoted to discussion and conclusions.
we rather propose an algebra of operators used to calculate
time correlation functions. It algebraically resembles quan-
tum mechanics because of using a Hilbert space and opera-
tors developed by Btawzdziewicz and Cicho¢kD,11]. We A system ofn particles is represented by a set of phases
construct the Hilbert space of fluctuations with a standard, . .. x,, where the phase = (r;,p;) represents the posi-
scalar product. Then two quantumlike operators are definedion r; and momentunp; of the particlei, respectively. We
The operatoQ [10,11 counts equal time equilibrium corre- shall consider systems with a floating number of particles, so
lation functions and the operatbi{6,17] counts infinitesimal n is not fixed. For the convenience, we shall wiitestead
time correlation function. Note that in the standard Mori ap-of x; andm to denote a set ah phases. If two different sets
proach[18], the operatoQ was included in the scalar prod- i andj appear then+ | is a set ofi +j phases, bui—j is a
uct. It may be convenient for one-particle functions butset ofi —1 phases without the phasg.
causes troubles when considering two-particle functions, be- The probability density of finding exactly particles in
cause correlations do not factoriges]. the phase space point={1, ... n} is p(n)=p,. Any per-

Our main result is a symmetric formula for the Laplace mutation of particles leads to the same state, since the par-
transform of a time correlation function. Moreover, we pro-ticles are identical. Therefoyg, must be a symmetrical func-
pose a mechanism of dissipation for smooth potentials whiclion of phases. The average of the phase functidn
can be interpreted as a coarse graining in the phase space{ 4(n);n=0} is given by
We cut correlations if considered particles are at the distance

II. BASIC CONCEPTS

(Ay=2 fdnp(n)A(n)EE fdnpnAn, (1)
n=0 n=0
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where dn=d1, ... dn/n! denotes integration over all ca- f(r,p)=nh327MkgT) *2exp— p?/2MkgT} (11)
nonical coordinates of phases, that is
with densityn=n(u,T). Functionsp,, and f,, without any

f di=h*3J' d3rif &, 2 ﬁddmonal indices will represent equilibrium distribution
ereafter.
whereh_ is the Planck’s_ constant. Arguments of and An _ Ill. LINEAR OPERATORS
are omitted whenever it is unambiguous. Reduced distribu-
tion functions are defined as It is convenient to work with a Hilbert space of ket vec-
. tors|uy={u,U,, ...} with infinite number of components,
_ whereu;(i) is a symmetric function of phases bparticles
f(m)—nz,o dnp(n+m). (3 (similar to Fock space for bosongL0,11. The adjoint bra
vector is (u|={uj,u3, ...}, where the asterisk denotes
The probability distribution must satisfy the normalization complex conjugation. The scalar product of two vectors
condition andw is defined as
o= 3 [ anp,-1 @ (ulhw)=3, [ dkuw. 12
n=0 -
Functionsf are useful in averages of cluster functions, We define linear operators in such a space. The opekator
acting on the vectou gives the vector
A(my=ag+ > a(i)+ > a(ij)+---=> am), (5 X|u)=|Xu) (13
ien i>] mCn
. with the components
(A)= Z_O f dmanfpy,. (6) =
" (XWie= 2, Xy (14

The above cluster decomposition will be frequently used in
the paper with small letters standing for cluster functions andind
capital calligraphic ones for whole functions.

When considering hard spheres of diameteone intro- . .=f [ Du(i
duces the overlap functiow defined as Xl di X(K[Du(i). (15)
1 - N 1 if rij=d The product of operator¥ andY is defined as
wim = LT Wi, Wi =otry=d)={ g 5 g .
IJen
: 7 (XY);ij :kgl XikYkj (16)
where rjj=ri—r;, ri=|[r;|. The equilibrium probability h
densityp of hard spheres of mad4 interacting with the pair where
potential ¢,(r;;) at the temperatur@ is given by
X'kYk':f dk X(i[K) Y (K[j). 17
pn=Wh eXp{(Q +np—Hy) kg T}, ® o
where the Hamiltoniari is defined as The adjoint of the operatoX is then defined by the equality
(ulXTw)* =(w|X|u) (18)
Ho=2, PI2M+ 2 (1)) 9 o o
ien i>] and the identity operatdris defined by
and u is the chemical potentiaf) = —pV is the grand ther- (ulllw)=(u|w) (19

modynamic potential, angd is the pressure of the fluid in a
volume V. The equilibrium distribution functions have al- for arbitraryu andw. It can be explicitly written as
ways the form

k
L(klk)=>, T 8G—a(i’)), 1m=0,m#n, (20
o i=1

m
f(m=g(ry,... ,rm)il;[1 f(i), (10
where
whereg,, is mpoint correlation function and; is a Max- o s
wellian distribution of velocities, o(i—j)=h"26(ri=r;)6(pi—p;) (21)
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and the sum is taken over all permutatian®f the setk’.

IV. OPERATORS QAND L

PHYSICAL REVIEW E67, 021201 (2003

dA=LA or d|a)=L|a). (32

The evolution of probability fluctuatiom differs from the
above by a minus sign,

A linear nonequilibrium state of the system is described

by a small deviation from equilibrium given by a vector
[11]1

pp(N)=p(nN[1+B(n)—(B)], (22
where
B(n)= n%n b(m) (23)

The average oBA* = A* —(A*) corresponding to a given

qguantity a in the nonequilibrium state represented by Eqg.

(22) is written as
(8A* )p=(8A* 6B)=(a|Q|b), (24

where the matrix elements & have the form

<a|Q|b>:ijEk f didj dk[fiy = diofifilal kb k-
(25)
The operatoQ is positive definite since

(alQlay=(|s8A*)>0. (26)

We introduce Liouville evolution operator for smooth poten-
tials,

d §¢2("ij). d

L= —, (2
=t = gk YCan & oy op @0
where{a, B} is a Poisson bracket defined as
da dB da IB
{a.8}=2 o ;. ap ar (28)

andv=p/M. We will use the operatof acting in our Hil-
bert space defined by

|W>=£|U>®W=£U, (29
where
ad’Z(rlj d .
W= LU -—u(k—j). 30
k=Ll 2 ar, P (k=1) (30)

The conjugate off is defined by equalitylu)= £ T|w),
where

Iba(Ti k+1) ' 9

d(k+1)>, i

iek

w(k+1).
(3D

The evolution of a phase functianis described by the equa-
tion

Ug=— Eka'f' f
I k+1

dB=—LB or d|b)=—L]|b). (33

The time evolution of an averadeA(t))p0)=(.A(0))p() is
governed by the equation

<-A>b

—gr —(LAwp=({AHD=keT{AB}). (34

The above observation leads to the definition of the operator
L [6,17] by its matrix elements,

(alL|b)=ksT({A*,B})

—kBTgJ didjdm i, m{als by m}-
(35
Note thatL=—-QL=L"Q.
If we introduce a functional
H=(|6B|%)=(b|Qlb), (36)
then
dH/dt=2ksT Re{{B* ,B})=2 Reb|L|b)=0 (37

so that there is no dissipatiofd (theoren in this picture.

V. HARD SPHERES

The operatoi must be defined in a slightly different way
for hard spheres because of singular interactions. It is a
pseudo-operatof21,22] depending on where the overlap
function W in Eq. (7) is placed,

Zkr_l:ki 2 ?:(U),
i>j=1
K
L+ /:k_IIZ_ T.(ij), (39)
where
T(ij)=8(r—d ")y -1y 0(F vy -1y (g — 1),
(39
T (ij)=TL=8(ry—d "oy - Tl{0(F vi; - 1)) g
—6(*vj-1yj)} (40)
andv;j=v;—v;, fjj=r;;/r;;, d" =d+|el with e—~0. The
operatorg;; turns velocities,
Gije( - iy, )= o)),
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v/ =0~ (vij- Tyl ,
A (41
vi=v;+ (v rijry,

Due to the relation
IW,(ij)

T (i) —T(ij)= O T 'Fij5(d+—fij),
ij

(42

we haveL.W=WL. . The operatoi.. is now defined by

lwy=L.|uyeW=_L.U, (43
where
wk=£k:ukri§j T.(ij)u(k—j)
dpa(rij) 0 .
- - —u(k— 44
7] Orij (?piu( ) (44)

and the conjugate operatdr’ is defined byju)= £ |w),

(3¢2(ri,k+1) A

U= — Li= Wi+
I

d(k+1)>

ek \ drik+1

=T (i,k+ 1))w(k+1). (45)

The time evolution of phase functiond and probability
fluctuationB are given fort>0 by

dA=L, A or dlay=L.|a), (46)
dB=—L_B or élby=—L_|b). (47)

We define
L=-QL_=£1Q. (48)

We shall evaluatéa|L|b) assuming thaa andb arecontinu-
ouswhen spheres overlap,

(alL|b)=—(A*L_B)=keT({A*.B})

A* 0B—BiA* .
+kaT - i 8(rii—dT
B <|§>:1 Ip;j fi ol —d )>
1
2

2, S(rij—d)rj vy 0(rij-vi))

i>]

x(A*B—ZA*B’+A*’B’)>, (49
where
d _1( d a) (50
op;  2\9p;  Ip;

andU’ =g;;U. The operatot. can be divided into three parts

PHYSICAL REVIEW E 67, 021201 (2003

L:LA+LB+LC1 (51)

whereL,, Lg, andL are Poisson term, hard core and en-
tropy production term, respectively, where

(@lLlb) =Ko 3 | Gk aman i, o@Dl
(52
i>]

>

iek+m
jek+n

(alLelb) ~koT 3 [ dkaman i,
k,m,n

a* abk+n aa:+m
B S L
KEM oy " ap;

xa(rij—dﬂﬂj-(

+keT > | didkdmdnfy s meny
k,m,n k

e

* abk-%—n
a —_—
k+m Zapl

><5(ri1—d+)Fi1‘(

1 i>]
<a||—c|b>:_§ > fdkdmdnfkﬂwn_ > S(rij—d*)
k,m,n iek+m

jek+n

- * *
XTij -0 0(Tij - vij) (A4 mbi+ n— 28K+ mPis n

+a*,., by )——1 2 Jdldkdmdn
k+m~k+n
2 k,m,n

Xf1+k+m+ni2k S(ry—d ™)y vy 6(rq;-vy)

X(a’kc+mbl+m_2a’lz+mbll<+n+a* I,<+mbll<+n)' (54)
It is important that Eq(37) holds for hard spheres if
Ba(ij)=By(i'j") (55

where other phases are omitted and only nonoverlapping
configurations are considered. This is generally true if the
dynamics is let for a period of time but not for a single time

point.

for r;=d,

VI. DISSIPATION

Our purpose is to change the action of the operatar

such a way that we get thé theorem
dH/dt=2 Regb|L|b)<0. (56)

In the case of hard spheres it is enough to cut the Hilbert
space of vectors so thatu,=0 for k>1. Equation(32) is
then no longer valid. Instead, the evolution of phase func-
tions a and probabilityb is given by equations

aQla)=Qdja)=—L|a),
(9tQ|b>:Q5't|b>:L|b>-

(57)
(58)
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The operatoQ commutes with time derivative because equi-

librium distribution is invariant in time. The operato,,, J didjdmfi,; m{ai ./ m

andL,,, are both truncated ten,n<I. Such a general de-

scription leads to thél theorem(56) as shown in Ref[19]. . "

TheH theorem follows immediately from the last term in Eq. :f didjdmfijsmialsm.bjemh,

(49). Note that we can reverse the inequalip) by chang-

ing £_ to £.. in Eq.(48), but then time must be reversed too. butm+i=m+j =1 and is a tricky term. We show in Appen-
Unfortunately, such a truncation is useless in the case diix A that we obtain fom=k=I-m

smooth potentials since we still obtain E§7). The trunca-

tion must be carried out more carefully. We introduce an- Tf dmdkdn f oy s p{an* bty b

other arbitrary parameter: the lendih which is larger than

the range of the potential. The componem¢sare equal to 0

for k>1 andu, is equal to zero ifr;;>D for every pair :kBTJ dmdn dkfm+k+{ H [1-IMij)6(D— rij)]

{i,j}Cl. We can define the characteristic functig¥ as =

(65

|Jem

w=1-T1 a(ry~D) (59 K@Dl +hoT [ dmakdn o
i
so thatu, =W\, , whereu, is a continuous function. In the X .E>J W(i[) (D =rij){as «,bmint +keT
casel =2, the truncation means tha}(12)=0 for r;,>D. ijem
However, forl=3 we haveu;(123)=0 if r{,>D, r,3>D _
andrz;>D simultaneously. It is important to take properly X J dm dkdnfm+k+n2 W(ij)é(rij—D)
i>]

into account the dlscontmwty of functiong atr;;=D. We
introduce shifted functions,” andu, defined as

- bpineak,—ak, b 1
B ><rij~ m-+n m+|; - m+k m+n_§f dmdkdn
=Wy, (60) Pi
where Xfmeicens ) (1 =PIy &b,
. [1 if r;<Dj andforany pair(ij) (66)
W= _ (61)
0 otherwise, where
and Djj=D*|€|rj-v;; with e—0. The functionu,” is ST
-D -D
shghtly stretched for;;-v;;>0 and squeezed fo; - v;; <0 )= (pqg(”) Brpaq )(pq:)l;'[(ij) 6rpg=D) (87
and vice versa fou, . All functions uy for k<I are not pqemtk pqem+n
affected byW. _ _ anddl dpy; is defined by Eq(50). It is apparent that the two
_ The _matnx elements d are independent of the choice of first, the third, and the fourth term correspondLli, Lg,
signs since and L for hard spheres, respectively. Thketheorem(56)
. . - . follows from the last, dissipative term f@=b. The equal
(a*[Q[b™)=(a"|Q[b~)=(alQ|b). (62 sign holds forb,=0 at the boundary of the region oV

=1. Hence, it is the discontinuity of vector component that
The key point of our construction is a proper choice of signsyives theH theorem just like the discontinuity of the poten-
in L, because it contains derivatives. The choice that leads tg| in the case of hard spheres.

the H theorem fort>0 is the following: We may ask what kind of vectokswith the group prop-
erty, i.e.,by—0 for rj;—co andi,j e k satisfy

£|by=0. (68)

(alL[by=(a”[L|b")=keT({A* ".B"}) (63

for everya andb. It can be written also in terms of distribu-

tion functions In the case of hard spheres, it can be proved bhaust be

an invariant of motiorj19], namely,

(alLlb)=kgT>, | didjdmfi,;,mla b, blem by(1)=C1pi/2M+Cp-py+C3, b =Ci by,

mij

(64) by=0 for k>2. (69)
However, the derivatives should be carried out very carefulljWe present the proof for hard spheres with a smooth tail in

since they act upomV=*. In the casem+i#l#m+j we  Appendix B. Although one can find that E@9) satisfies Eq.
have (68) in the case of smooth potentials, it is by no means clear
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that this is the only solution. The reason why it cannot be

n,=edmn,
simply proved is explained in Appendix B. Thus, we are left !
with an intriguing hypothesis that there may be other solu- Do=eltry,

tions of Eq.(68) than just Eq.(69).
El:eiq-rlei/Z,
VII. ENSKOG-LIKE RENORMALIZATION
A — Qg 12
The linearized Enskog equation for hard spheres is ob- €=l T 17 2g,(ryy). (79

tained by cutting the Hilbert spacelat 1. From Eq.(57), it ¢ js yseful to replace the energy mode by the heat mode:
reads in our formalism

- o~ e\ -~
&tQ11b1=Q11(9tb1=L11b1. (70) |t>:|e>_ (g_n) |n>’ (76)
T
We present a counterpart of linearized Enskog equation fognere
smooth interactions. We truncate the Hilbert spacé=a2
and takeD sufficiently larger than the range of interaction. de p T/[dp
The Enskog-like equation is then consisted of two equations, an T: n n\aT . (77)
Q1101+ 3 Qby= L1501 + L1505, ande, p, T, n denote energy per particle, pressure, concen-
(71)  tration, and temperature, respectively.
31Q2101+ 0;Q2by=L b1+ Lyob,. The following analysis applies both to hard spheres and
smooth potentials. In the case of smooth potentials, one may
The second equation is valid only fof,<D™ and all op-  just omit terms with diameter of spheres We first find
erations involving- must be carried out using E(4). If the expressions for currents up to the first ordegjn
potential ¢, contains a tail that should not be c{g.g., to _ _
keep energy strictly conservgdhe definition ofu™ may be L.|ny=ig-|j)=ig-|v),
modified as _ ) ~ .
L |v)=ig-ljy+), —(@|Li=(,-|-ia, (78
lu=)=Pluy+W=*(I-P)|u), (72
| o Lo[e)=ig[jes), —(elLl=(je-|-iq,
whereP is a Zwanzig projection operat¢23] onto the en-

ergy space and
-~ o ge\ -
_ d3q |eQ><eq|Q |Jt>:|]e>_ ™ |U>q:0- (79
=| T3 E A (73 ).
(2m) <eq|Q|eq>
Due to Egs.(27) and(38), the explicit expressions for cur-
and rents are
explig-ry}p/2M if n=1 Jo1=v107,

eng=1 expliq-(ri+r2)/2f¢a(ryy) if n=2 (74

. ]u,zi=dF12F12(F12'012)25(r12_d+)9(i"12'012)
0 otherwise.

_ T2 dpa(ri2)

The matrix elementQ11, Q12, Q22, L11, L1, andL,, con- M FIoR
tain up to four-point correlation functions. Therefore, calcu-
lations are much more complicated than in the hard sphere Mol
case. leam= 5 V1,
VIIl. TRANSPORT COEFFICIENTS joor =Mdryp(UypT12) (1 019)28(r1,—d ) O(£ 11 v1))
The Green-Kubo formulas for transport coefficients can Apo(r 1)
be reformulated in terms of our Hilbert spac@andL. We . “UgptUgagha(r1o), (80)

briefly outline the well-known derivation of the formulas for
kinematic shear viscosity, kinematic bulk viscosity, and  whereu,,= (v, +v,)/2 and we take the sigit or — in = in
kinematic heat conductivityc. For details see, e.g., Ref. ket or bra vector, respectively.

[20]. The Green-Kubo expressions for transport coefficients are
~ Let us~con5|der g set of five hydrodynamic modie?s, b= vkt Vo, E=Eakt £or K= Kaxt Ko, 81)

|v), and|e), depending on a wave vectqr corresponding

to density, velocity, and energy fluctuations with componentsvhere

021201-6
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_3(e-lQLT'Qlor) _ (RLIQL QI

VGK=

10<5|'Q|5>q:o VkgTn/M '
_ iy lQLQljp+) _ (Ju-1QL Qljys)
GK (0] Q[0)q-0 VkgTn/M :
o __ ol -QLTRll) _ (IEIQLTRI
ox 3(T|Q[T)q-0 VnkeT2

(82

wherecy is specific heat per particle anlis volume of the
system. The perpendicular currents are defined as

|\jlv>:|]\v>_’|\|jv>7
AN
Jv>_ § rlJv>7

. . 1 [(dp| ~ ap\ ~
I\ _ _ _| =
|Jv>_|Jv> nCV<(9T)n|t>q_O (&n)T|n>q_O/M’

p

T -
|Jt>:|]t>_ﬁ(ﬁ) |U>q:o- (83

If the tail of the potential is not cut, then formul&82) are
still valid since

Lleg==ia:Qljes), (egL=—iq-(je_|Q,

Llvg==ia-Qlj,+), (vdlL=—ia(j,-1Q, (89

PHYSICAL REVIEW E67, 021201 (2003

o]

FIG. 1. Decomposition o€ into Q, Q and Q.

It follows from the fact that under transformation- —r or
v— —v we have

1% d
vi'a_ri_)_vi'&_ri' T,—T_, Wi-w". (87

Suppose we would like to find the time correlation function
of two vectorsa andb (or 5.4 and 6B),
(8A*(0)8B(1))=(alQexptQ 'L)[b).  (88)
The Laplace transform of the time correlation function has a
little simpler form,
<a|G(z)|b>=f e 2Y{5A*(0)5B(1))dt
0

=(alQ(zQ-L) *Qlb) (89

or

G(2)=Q(zQ-L) Q. (90

where energy modéq are included in the truncated Space The diﬁerence betWeen th|5 and l\/lOI’i’S met”:d(B] iS that

by Eq. (73).

The bare coefficients,, &, andkg are equal to zero for

there the operatd is hidden in the scalar product. Here the
symmetry of time correlation functions, even with dissipa-

smooth potentials. However, they occur in the case of har§on included, is transparent. o )
spheres due to the hard core and they are obtained from the Let us introduce irreducible operato®, Q, and Q

second order terms d&|L|a) [20],
3@ILe)
(v|-Qlv)

ALY xop
{{Qrty v

— vo(1q%+qg/3) — &0,

(85

We stress thak is inverted in the reduced Hilbert space so

[10,11] defined uniquely by

Q=0QQ (9D
and
Q=0 if i#j, (92)

the truncation of the space not only leaves the Green-Kubo

formulas unchanged but also includes dissipation.

IX. TIME CORRELATION FUNCTIONS

It is important thatL satisfies two OSR1] even if the
Hilbert space is truncated:

(a(p)|LIb(p))=(b(—p)|L|a(—p))*,

(86)
(a(n|L]b(r)y=(b(—=r)|L|a(—r))*.

andQ=Q". The operatof is nonzero only if its left phases
are close to right phases. The graphical illustration of this
decomposition is presented in Fig. 1. For example,

611: Q11,
Q1= QuQit,

Q2= Q2o Q21Q11' Q1. (94)
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Some of these operators are expressed by well-known corre-

lation functions,

(61131)(1): fi(Da(1)+ f1(1)f d2 f,1(2)h,(12)a,(2),
(95

a;(1) B
f1(1)

whereh,=g,—1 andc, represent the pair correlation and
the direct correlation function, respectivelg4]. For more
detailed analysis of these operators, see Ref]. We also

defineL by

(Qitan)(1)= f d2¢,(12a1(2),  (96)

L=0QLQO. (97)
We remember from Eq$30) and(44) that£;; _ is equal to O

if i>j+1. Such a situation takes place whenever there is

only pair interaction. We have

L=-QQL.Q* (98)
and due to the definitiof@3) fij =0 if i>j+1 similarly as
L_. Taking into account the Onsager symmetB6) we
have

L;=0 for |i—j|>1. (99

The formula(90) can be rewritten in the form containiny
B, Q, andL:

(alG(2)|b)=(AIG(2)|B), (100
where capital vectors are defined as
[U)=Qlu) (101)
and
G(2=Q(zQ-L) 'Q. (102

Note that due to Eq(93) truncation of vectors denoted by

small letters is equivalent to the truncation of capital vectors.

The Enskog-like equatiofvl) can be written in the form
9:Q11B1="L11B1+L 1By,

3Q2By="L21B1+LosB,. (103

X. MODE COUPLING

We can construct one-particle Enskog propagator for har
spheres or hard spheres with a smooth tail usthg and
Lqq:

Sh(t) = exp{tﬁiffn} 61_1l

or its Laplace transform

(104
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S5(2)=(zQu—Ly) % (105

We define operatorX andX by
Los=Lop+ Loy,

Qo= Qoo+ Quo, (106)

Qz = Qa5 + Koo,
where
Q2a(1211'2")=Q15(1]1")Q15(2]2")

+Qu1(1]2")Qux(2|1"),
~—1 Y :_*1 -1 ’ (107)
Q2 (1211'2")=0Qq; (1]1")Qq; (2]2")
+Qu1(112/)Q51'(2[1"),

L2x(1201'2")=L15(1]1")Q11(2|2") +L11(2]2")Quy(1[1")
+1-2.
Due to the property

(a|L|by=0 (108

for a and b independent of velocities, that is, for density

modes and sinc§ stands at, one may neglect operatoks
andK for small z in the mode coupling formul@25]. The
most trivial self-consistent ring approximation for the full

propagatoﬁ is based on the ring operator

RV (1) = L1oS5At) Loy, (109
where
SA(12172";t)=SR(1]17;1) S (2|2";1)
+S(12;)s(215t) (110
and the propagatd?, is defined by
S(2)=[2Qu~Li-Ri(2)] (111)

The celebrated mode coupling formyE3—16 is recovered
for

G11(2)=Q1:.5%(2) Q. (112

In the case of hard spheres interaction is taken into account
by L4,, while in the case of smooth tdil,, can be needed.

dherefore, the mode coupling formula for hard spheres with

smooth tails should be corrected by interaction. The correc-
tion is based on the full two-particle propagator

Syt) =exp{tQq; L2g Qs

As shown in Appendix C theepeated ring correctioas the
form

(113
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and
RUCR() = | as LS LSt 5L )
IW*(12)

~T128(D* ~r1p). (A3)
dt — o s _ drio
+ 5t | 95 L12522(8) QoK 2:Q20525(t = S) L 2y - _ .
0 Hence, the second term on the right hand side of (Bd)
(114  can be written in the form
Finally, we have b,
- +
B - —r12 28(D" —rp) (D" —rlz)a2 s —28(D7—rqy)
Sf(2)=[2Qu-Lu—Ri“(2-RIT (@] " (119

*
This formula is solved by recurrence. One can take Enskog X 9(D——r12)52ﬂ} (A4)
approximationS?=SF andR}©=R}“R=0 to the first itera- P
tion. We emphasize that there is kbtheorem proven for here
mode coupling formulas. Therefore, the formula may not
work in some cases, especially at very high densities. 9 1( d d ) A
P12 P Ip2 (A5)

Xl. CONCLUSIONS

Wi th tit
We have presented an algebraic approach to the linear e use the identity

kinetic theory by introducing well defined Hilbert space and xdy=[ad(xy)+xdy—yx]/2 (AB)
two quantumlike operators. Only equilibrium distribution

functions are necessary to calculate matrix elements of opand

eratorsQ andL. Therefore, using standard techniques to de- 3 . . 3

termine distribution functionf26—29, it is possible in prin- (D" —r)0(D" —r1)+ (D7 1) (D" —ry)
ciple to find transport coefficients and arbitrary time =8(D—ry,) (A7)
correlation functions either for hard spheres or smooth po-

tentials. The discontinuity of the Hilbert space plays thein order to get

same role in dissipation as a hard core interaction. However,

contrary to hard spheres, it is much harder to prove thatonly [8(D*=r19)8(D™ —rp)—8(D" —r) (D" —r5)]
energy and density modes do not decay in the smooth case. . ~ .

We have constructed an extension of Enskog theory to P d(azb,) — S(D—T 1)1y a3 db,—byda;
smooth potentials, whereas OSR are natural consequences of 120 op, 12712 P12 '
our symmetric procedure. The Green-Kubo formulas are re- (A8)
formulated with dissipation included and a correction to the

mode coupling formula is found for interactions with a hard pye to the Maxwell's distribution of velocitie&l1), we get
core. The symmetric, algebraic approach may be helpful in

further analysis of linear kinetic theory. j _
—kgT | d2f,[S(D™ —r19)8(D —ry)— (D" —ryqp)
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APPENDIX A
This generalizes easily to the case2. Only the domain

We shall analyze only the case 2. From the definitions W=1 is affected by other particles. The result is Egp)

(61) and (28), we get

- b APPENDIX B
_ T ~ oD
{a;* bz }=Wa; 'b2}+§2 azw” arop For hard spheres the conditigo|L|u)=0 implies from
Eq. (55)

- awt oa . . . .

bW —— 2) (A1) u(k) +u(k—=1)+u(k—j)=u(k) +u(k=i")+u(k—j")
ar; apl (B1)

We have for k<I+1. Here, primes denote velocities after collision
. . given by Eq.(41). It is proven[19] that for u satisfying the
W=(12)=6(D~ —ryp) (A2)  group propertyu,=un(ry, . .. .r,) for n>1 and

021201-9
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u(r,v)=av2+b-v+f(|’), (BZ) W|+1=£|+1]|ui, szo for k>I1+1. (BlZ)

wherea andb are constants anfr) is an arbitrary function. We takea=v and get
Due to Eq.(44) and

(v|Qlw)+(v[Qlw)=0. (B13)

From the positive definiteness @ we obtain
wherec may depend on positions of all particles, a vector
|w)=L_|u) belongs to the same truncated Hilbert space like wlolwd — ~0 B14
e (w|Qlw)—(v]Qlv)>0. (B14)

T.(ij)a(vi+v3)+b-(v;+v,y)+c]=0, (B3

B B If u, does not depend on velocities then=0 and |v)

(wlQlw)=(w]L|u)=0. (B4) =L|u)=0 and the rest of the proof can be found in Ref.

From the positive definiteness @ we obtain [30]. However, there is no reason for that and a non-Gibbsian
solution is in principle possible.

L-|u)=L]u)=0. (B5) APPENDIX C

Forn>2, u, must be zero or otherwise free streaming will
spread it all over the space. For=2 we have

du, uy dp(rin)

Let us expand the propagat¢tld in a Taylor series
around the free propagator

v, a—rl+v2. a—rz—Zavlz —6’r12 . (B6) 8(2)2: eXp{th_zlez}Qz_zl (C1)
From the arbitrariness af, andv, we get with K, or L,, appearing only once. We obtain
My ad( oG
u r - . s~
Mo _00M112) (B7) Sy~ St 2, o 2 (Q'L)"Qp L,
ary - dryp n=o N! m=o
and finally u,=2¢, from the fact thatu,—o whenry, X (Qz'Ln)" ™ 1Qy
—oo, Similarly, forn=1 we obtain % hon-1
+> ar 2 (Qa'L2) ™K osk 2
5f(r) n=0 'l m=0
v or =0 (B8) ~N=1f yn-m-1~-1 0 ¢
X(QpL2) Q2 +S$Q2Kz,.  (C2)

and f = const. The result is Eq69).
We consider such vectotsthatu, vanish at the boundary
of the domainWw=1 and

Due to the identity

! k m'k! m+k+1
fods -9~ (©d
(alL|uy=0 for every a. (B9)

. ) _we have
Vectora must be the vector truncated in the way described in

Sec. VI. We can write the above equation in the form > gl o _
2 i 2 (QaL2)™Qar Lo Qo L) ™1 Q27
(a|Q|Lu)=0. (B10)
Note that£ contains elements pushing beyond our trunca- :f ds SAS) LSt —5). (C4
tion, e.g.,L;.1). Let us define vectors andw by
Similarly,
K
o -1
ve= > Ly for k<I, t " L e
i > - > QL) Kook pA Q2 L2)" ™ 1Q5,
n=0 N! m=o0
|
. d [t . .
U':Wi=|21 Litis ve=0 for k>1,  (B1D) +ngQ22K22:&JOdS DA(8) Q2K 22Q25S5(t—5).

[ (CH

Y :(1_W)i:I21 Libi, The formula(114) is obtained by replacing® by SR.

021201-10



SYMMETRIC LINEAR KINETIC THEORY PHYSICAL REVIEW E67, 021201 (2003

[1] L. Onsager, Phys. Re@7, 405(1931); 38, 2265(1931). [18] H. Mori, Prog. Theor. Phys33, 423(1965.
[2] P. Resibois, Physica 84, 1 (1978. [19] J. Blawzdziewicz, B. Cichocki, and H. van Beijeren, J. Stat.
[3] E.G.D. Cohen and I.M. de Schepper, J. Stat. PHs.949 Phys.66, 607 (1992.
(1987). [20] P. Resibois and M. de LeeneGlassical Kinetic Theory of
[4] P. Resibois, J. Stat. Phys9, 593 (1978, Fluids (Wiley, New York, 1977.
[5] J. Karkheck, H. van Beijeren, I. de Schepper, and G. Stell{21] M.H. Ernst, J.R. Dorfman, W.R. Hoegy, and J.M.J. van Leeu-
Phys. Rev. A32, 2517(1985. wen, PhysicgAmsterdam 45, 127 (1969.

[6] J.A. Leegwater, H. van Beijeren, and J.P.J. Michels, J. Phys{55] 3 piasecki, iffundamental Problems in Statistical Mechanics,

Condens. Mattefl, 237 (1989. _ edited by E.G.D. Cohen and W. Fiszdof©ssolineum,
[7] I.P. Omelyan and M.V. Tokarchuk, Physica2®4, 89 (1996. Wroctaw, 1978, Vol. IV,

[8] M.V. Tokarchuk, I.P. Omelyan, and A.E. Kobryn, Phys. Rev. E [23] R. Zwanzig, J. Chem. Phy83, 1338 (1960.

9] gz’viazégj(;?gr; and M.H. Ernst, J. Stat. Phgs, 125 (1979 [24] J. Percus, inThe Equilibrium Theory of Classical Fluided-
[10] J. Blawzdziewicz and B. Cichocki, Physica 27, 38 (1984. ited by H. Frish and J. LebowitzBenjamin, New York, 1964
[25] W. Gatze, inLiquids, Freezing and Glass Transitioedited by

[11] B. Cichocki, Physica ALl42, 245(1987. | h-Holl
[12] J. Blawzdziewicz and G. Stell, J. Stat. Phgs, 821 (1989. J.P. Hansewt al. (North-Holland, Amsterdam, 1991

[13] L.P. Kadanoff and J. Swift, Phys. Rel66, 89 (1968. [26] T. Morita, K. Hiroike, Prog. Theor. Phy23, 1003(1960; 25,
[14] K. Kawasaki, Ann. Phys(N.Y.) 61, 1 (1970. 537(1960.
[15] M.H. Ernst and J.R. Dorfman, J. Stat. Phgg, 311 (1975. [27] G. Stell, inThe Equilibrium Theory of Classical Fluidedited
[16] G.M. Mazenko and S. Yip, irStatistical Mechanics, Part B: by H. Frish and J. LebowitgBenjamin, New York, 1964
Time-Dependent Processesdited by B.J. BerngPlenum, [28] R.J. Baxter, Ann. Phy<N.Y.) 46, 509 (1968.
New York, 1977. [29] A. Bednorz, Physica 298 400 (2001).
[17] H.H.U. Konijnendijk and J.M.J. van Leeuwen, Physigan-  [30] B.M. Gurevich and Yu.M. Suhov, Commun. Math. Ph¥$,
sterdam 64, 342 (1973. 63 (1976; 54, 81 (1977); 56, 225(1977); 84, 333(1982.

021201-11



