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Fractional dynamics from the ordinary Langevin equation
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We consider the usual Langevin equation depending on an internal time. This parameter is substituted by a
first passage time of a self-similar Markov process. Then the Gaussian process is parent, and the hitting time
process is directing. The probability to find the resulting process at the real time is defined by the integral
relationship between the probability densities of the parent and directing processes. The corresponding master
equation becomes the fractional Fokker-Planck equation. We show that the resulting process has non-
Markovian properties, all its moments are finite, the fluctuation-dissipation relation and the H-theorem hold.
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I. INTRODUCTION process of temporal steps. Using properties of the stochastic
time clock, in Sec. Il we write the corresponding master
The Langevin equation is a powerful tool for the study of equation with the fractional derivative of time. To know the
dynamical properties of many interesting systems in physicssolution of the usual FPE with a time-independent kernel,
chemistry, and engineerinfll,2]. The success of the ap- one can find immediately the solution of its fractional gen-
proach rests on the description of macroscopic quantitiegraﬁzaﬁon via the integral relation. The ordinary Langevin
starting from microscopic dynamics, where the effect of fastequation has a stationary state. The same feature remain
degrees of freedortheat bath in statistical physics and solid valid, when passing to the stochastic time clock. For this
state physics, short wavelength modes in meteorological anease, Sec. IV is devoted to the fluctuation-dissipation relation
climate models, etg.can be often taken into account by and theH theorem. The randomization of time clock can be
noise[3—6]. Gaussian noise leads to normal diffusion with aalso applicable for the general kinetic equati&ec. \J. The
mean square displacement that grows linearly in time and téact is illustrated on a concrete example, the relaxation in a
an exponential relaxation. Equivalently, the phenomena cakwo-state system. We end the paper with a short summary in
be also described by the ordinary Fokker-Planck equatioec. VI.
(FPE for the time evolution of the probability density of the

random processes. - o ll. STOCHASTIC TIME ARROW
However, many systems exhibit anomalous behavior in ) i o i )
their transport and relaxation propertifs,8]. Anomalous The main feature of time is its direction. Time is only

diffusion has the mean square displacement increasing as'#nning from the past to the future. In our consideration we
(nonlineay power law in time, and anomalous relaxation intend to save the property of time. For the ordinary Lange-
shows a slow power law decay in the long-time limit. The Vin equation the time variable is deterministic. Now set this
attempt to state a dynamical foundation in statistical physicsvariable as an internal parameter The motion of a point
as well as the great interest in understanding the physicdiarticle of velocityV(7) in a thermal bath is determined by a
mechanism leading to anomalous diffusion or relaxationViscous frictionyV and random collision$V(7), by means
calls into being the generalized Langevin equatiphd0].  of
The generalizations affect either the equation form it€elf
example, via the memory kernar/and the character of cor- dV(7)=—yV(7)d7+dW(7). 1)
relations in the fluctuating forcel1-13. The way to the
description of anomalous diffusion or relaxation is notAs usual,W(7) is a Wiener process with zero mean and
unique. In this paper we show that the ordinary Langevirvariance per unit of time equal ta® Let us randomize the
equation can result in anomalous diffusion or relaxation owlime clock of the procesg( 7). Not every random process is
ing to the fact that the temporal degree of freedom becomesuitable for our goal. First of all the appropriate process must
stochastic. The approach clarifies a microscopic derivatiofye strictly nondecreasing. Assume that the time variable is a
and interpretation for the fractional FPE. The ordinarysum of random temporal intervals. Let T; be independent
Langevin equation is a particular case of the new model. identically distributed variables. It is not necessary to know
The paper is organized as follows. In Sec. Il we introducethe exact form of their probability distribution. Their belong-
the concept of the stochastic time clock. The new clgek-  ing to the strict domain of attraction of @-stable distribu-
dom processgeneralizes the deterministic time clock of the tion (0<a<1) is quite enough. The parameter restriction
ordinary Langevin equation and governed by the randon®<a<1 arises from the need to keep the random time steps
process described by the stochastic differential equation. Thg as non-negative random variables. The sum of random
directing process arises from a self-simitarstable random variablesn™Y¢(T;+-.-+T,),ne N converges in distribu-
tion to the a-stable one. As has been shown in Ref4],
there exists the limit of the following proces3*7(7)
*Electronic address: alexstan@ira.kharkov.ua ={|7/A7|+ 1}’1’“2¥;’%TJ“Ti underAr—0, wherer is the
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internal time separated on discrete values with a step 10
and|a| denotes the integer part af Let us now make use of

the limit passage from “discrete steps” to “continuous
d

ones.” The new process satisfies the relatidiir)=
d

/2T(1), where= means equal in distribution. The position
vector of a walking particle at the true timés defined by
the number of jumps up to time This discrete counting
process iN;=maxneN|={_,T;<t}. The continuous limit

of the discrete counting proce$hl},~q is the hitting time
processS(t) =inf{x|T(x)>t} [14]. The hitting timeS(t) is
called also a first passage time. For a fixed time it represent:
the first passage of the stochastic time evolution above this
time level. The random proces{t) is just nondecreasing ol
and depends on the true tihéWe choose it for a new time
clock (stochastic time arroyy assuming its statistical inde-
pendence on the random variable 0

Although the random procesX(t) is self-similar, it has FIG. 1. Single realization of a continuous time random walk

neither stationary nor independent increments, and all its MQgjty random waiting timed; between successive random jumps of
ments are finit¢14,15. This process is non-Markovian, but yejocity v, .

it is inverse to the continuous limit of a Markov random

process of temporal stepg7), i.e., S(T(7))=r. The ana- completely monotonic forx=0, if 0<a<1. Moreover,
lytical form of the probability density of the random variable E.(—X) is an entire function of order &/ for «>0 [16].
S(t) can be calculated as follows. According to Réf4], the  Hence, by Fellef16], one can conclude that the function
expectation(ef”s(t))zfﬁdx e " pS(t,x) is equal to the Fa(2) is non-negative ire>0. Taking into account the nor-
Mittag-Leffler functionE,(—vt®). After the Laplace trans- Malization relationf F ,(z)dz=1, the functionpS(t,7) is
form of the Mittag-Leffler function with respect to the  just a probability density. Itx=1/2, from serieg3) it is easy
expectation can be easily inverted analytically with respecto recognize the well-known Gaussian functidf,(z)

to v. Then the probability density of the procesét) is =m “2exp(-Z/4).

—

Velocity (m/sec)

-
-~

N

Time (sec) 10

written as
Ill. FRACTIONAL FOKKER-PLANCK EQUATION
ps(t,r)=i.f gut-7uya—lqy, 2 The Langevin equation directed by the stochastic time
2 J gy clock S(t) can be written in the form
where Br denotes the Bromwich path. This probability den- dV(S(t))= — yV(S(1))dS(t) + dW(S(1)). 4

sity characterizes the probability to be at the internal time
on the real timet. After the variable transfornut—u and
denoting z= 7/t the function pS(t,7) takes the form

The statement is quite justified. The procags(t)) is a
continuous martingale, and the directing proc&g¢s is a
continuous submartingale with respect to an appropriate fil-

—a p— 1 - * a—1
t7Fo(2), whereF ,(2)=1/2mi[g,e" *" u*""du. On de-  ati0n[15]. All the moments of both parent and directing
forming the Bromwich path into the Hankel path, we find the processes are finite. The same concerns the prat(&gs)).

Taylor series of the functioft,(2), i.e., Now the random walk of a particle is defined by two Markov
© K processes, random waiting timég(r) between random

F.(2)= 2 (-2 3) jumps V(7). The discrete example of such a walk is shown

“ K=o KII'(1-a—ka)’ in Fig. 1. A similar approach, i.e., the modeling of anomalous

diffusion by two independent random processes indexed by a
wherel'(x) is the usual gamma function. Since the radius ofcommon continuous parameter, has been already suggested
convergence of the power seri€3) can be proven to be in Ref.[17]. However, the inverse process to the time evo-
infinite for 0<a <1, the functionF ,(z) is entire inz. Thus,  |ution was not completely defined. It was not recognized as a
the exchange between the series and the integral in the cdlrst passage process. No direct relationship between(Egs.
culations of the Taylor serie€3) is quite legitimate. The and(4) was found. This is also a main difference between the
Laplace image of the functiof,(z) is expressed in terms of subject of Ref[18] and our paper.

the Mittag-Leffler function The resulting proces¥(S(t)) is subordinated tov(t),
called the parent process, and is directedsft), called the
fxe’nga(z)dz= E.(—¢), z>0. Qir_ecting proces§16]. Thg hit_ting time procesS(_t) ju_st sat-
0 isfies necessary properties imposed on any directing process

(independent, positive and non-decreaginbhe directing
Feller conjectured and Pollard proved in 1948 that theprocess is often referred to as the randomized time or opera-
Mittag-Leffler functionE, (—x)==;_o(—x)"/T'(1+nea) is  tional time. In other words, the subordinated procéé3(t))
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is obtained by randomizing the time clock of a random pro-The formula is especially useful for some particular cases
cessV(t) using a random proces¥{t). In compliance with whose exact solutions of the ordinary FPE have a closed
Ref. [16], the probability density of the random procass form (for example, the harmonic potential leading to a linear
=V(S(t)) is expressed by the integral relation force field in FPE. It is interesting also to observe the inte-
gral representation of the fractional FPE solution in R27]
v Y s [see expressiof2.32]. Now clearly, that formula is nothing
poH(V,t) = o P (V,m)p(t,)dr, (3  else as a consequence of the subordination relaBpfior
(7)]. In this connection it should be noted that relati®his

wherep¥(V,7) represents the probability to find the random Not of convolution type, so the derivation of B), having
value V on the internal timer. Recall thatpS(t,7) is the the fractional integral of time, from the ordinary FPE is not

probability to be at the operational timeon the real time. ~ €ntirely trivial. o
It is well known that the stochastic differential equation of Many paperg21-27 have focused on the derivation of
type (1) is equivalent to the corresponding FPE. In particular,the fractional FPE with different potentials and its solution.

the probablllty densit)pV(V,r) Obeys the standard FPE Starting with REf[28], the continuous time random walk
approach is very popular for that goal. However, only re-

vV, 7). cently it has been shown that the solutions are density func-
=LepV(V,7), tions of a stochastic procef29]. We support the latter point
of view: the problem of anomalous diffusion should be ana-

~ ) ] lyzed with the exact definition of the corresponding random
where Lgp is a time-independent Fokker-Planck operatoryocess. The density function and the master equation are
whose exact form is not important here. The Laplace transgerived from this process.

form of the functionp”t(V,t) with respect to timE replaces

integral relation (5) by the algebraic one,p“(V,u) IV. FLUCTUATION-DISSIPATION RELATION AND ~ H
=u*"1pY(V,u®). Acting the operatoi_gp on the Laplace THEOREM

image, we obtaif Lep?t](V,u) =up?t(V,u) — Q(V)u® 1,
where Q(V) is the initial condition. The inverse Laplace v
transform gives the fractional FPE

aT

According to Eq.(1), the variance of the random variable
is

D
2 — 2 a=2yT — (1 _a2yT
BV = Q) s [t (v, ), R
I'(a) Jo

(6) wherev; g is the initial condition. Since the random pro-
cessesV and S(t) are independent, we average expression

This equation has also the equivalent form (8) on the internal variable so that
apU(V,t) QT v e j‘” 2 e
_ _ v Vi(t))y=| F(2){(Vi(t*z))dz (9)
at® INl-oa) Leep™(V1), (Vi 0 Vi )

where the line over a variable denotes the average over the

where 9%/ 9t* denotes the Liouville-Riemann fractional dif- . . . S
internal variabler. Calculating the following integral

ferential operator of ordew [19]. Our analysis generalizes
the mathematical treatment of R¢L8] and shows that the o
Fokker-Planck operator can have a more general form rather f Fa(z)e*Z“aZd z=E_ (—2yt%), (10
than only with a temporally constant force field. Another 0

approach to the description of anomalous transport in exters- . . . .
nal fields is developed in Ref20]. The consideration is the exponential functions in Eq8) are replaced with the

based on a generalization of the classical Chapma Mittag-Leffler function for Eq.(9). The stationary state of

Kolmogorov equation. An interesting justification of the gen-nEq' (4) is finite so that

eralized Chapman-Kolmogorov equation is that trapping
events are superimposed on the Langevin dynamics, with a
waiting-time distribution with infinite mean. By the choice of
special forms for the transfer kernel and the probability denThe constant® and y are interpreted as generalized diffu-
sity function of the waiting time between any two successivesion and damping coefficients, respectively. The mean
jump events in the generalized equation, one can recovgky (1)) is zero as well agV;(7))=0. The boundary case

im(VZ(t))=D/y. (11)

I
t—o

some models d_|§cussed.|n the I|te_rature. . a=1 may be also included in the study, 8t)=t. The
If the probability densityp”(V,7) is known explicitly, the  probability densitypS(t, 7) reduces to the Dira@ function,
solution of Eq.(6) can be calculated by means of and Eq.(1) becomes the ordinary Langevin equation in the
true timet.
pU(V,t) = foa(z)pV(V,t”‘z)dz. (7) _ O.n the other hand, the energy of a classical system is
0 distributed equally among all degrees of freedom. We get the
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fluctuation-dissipation relatio®/y=kgT/m for the given and leads to

temperature of a bath and the mass of a particte, andkg L _

is the Boltzmann constant. The expression is very similar to Wp(s)=sp(s)—p(0).

the Einstein relation, but the constamsand y are general- ) _ N

ized. It should be pointed out that the stochastic time arrovNOW we determine a new process with the probability equal
does not break this equal distribution law and influences only©®

on the character of relaxatigelow power decay Therefore, .

in this case the concept of temperature is valid, i.e., the sta- pa(t):f pS(t, 7)p(7)d7.

tionary state of the fractional FPE is defined by the tempera- 0

ture T. The difference of entropies of equilibrium and arbi- o

trary states gives a Lyapunov functional(t)=0. No InLaplace space the probabilitieg(t) andp(t) are related
wonder that its temporal evolution confirms tHetheorem. by p,(s)=s*"1p(s%), where

Although the law of relaxation toward thermal equilibrium
changes, it remains monotonic, and the equilibrium state has
the most entropy due to the Gibbs-Boltzmann distribution.
The fact, that no modifications of the Boltzmann thermody-
namics for anomalous diffusion described by the equation ofs the Laplace image qf ,(t). By the simple algebraic trans-
type (6) are required, was already noted in Re¢f5,27,3Q. formations we find

However, the true cause of the result was not established.

Now it is clear that both processés$) and (4) are closely Wp,(s)=s""*Wp(s*)=s*"Hs%p(s%) — p(0)}
connected and have a common ground.

Pals)= f;e*‘pamdt

=5p,(s)—p(0)s* L, (14)

V. GENERAL KINETIC EQUATION WITH THE

STOCHASTIC TIME CLOCK Thus, the fractional extension of E(L3) reads

For a general type of a Markovian process the general B 1 [t Ce1n
kinetic equation is Pa(t)=p(0)+ a) 0dr(t N Wp,(7). (15
dp,(t) For «=1 we recover Eq(13). For a system with discrete
dt :go {WhiPi(t) = WinPn(D)}, (12 states the generating function is of the form

whereW,,, are the transition probability rates from statéo
statek. This equation defines the probabilipy, for the sys-
tem to be in state. The termW,,p, describes transitions
into the staten from statesk, and W,,p, corresponds to Wwhere the restrictiof{|<1 is imposed to ensure conver-
transition out ofn into other statek. The continuous version gence of the series. With the help of the generating function,
of Eq. (12) takes the form one can find the moments by taking the derivative with re-
spect tof and then setting=1. The generating function of

G(g,t>=k20 Mpi(t),

dP(y,t) , , , , the process governed by the stochastic time clock is given by
dt :f{w(y|y )P(y 't)_W(y |Y)P(y,t)}dy the relation
with the initial conditionP(y,0). Let us represent both these G.(L1)— J'wF (2)G(£,t2)dz (16)
equations as o o “ ’ '
dp(t) - Thus, the generating function for a discrete Markov process
dt =Wp(1), (13 directed by the proces3(t) can be obtained from the appro-

priate generating function of the parent process by immedi-

whereW denotes the transition rate operator. It is importan@t€ integration.

to emphasize here that this operator is time independent. AS @n example, we consider the relaxation in a two-state
Equation(13) can be written in the integral form system. LetN be the common number of objects in this

system. IfN; is the number of objects in the state N, is

t the number of objects in the stateso thatN=N;+N, .
p(t)=p(0)+ deTWp(T)- Assume that fot=0 the state§ dominate, i.e.,
- N;(t=0) N, (t=0)
The Laplace transformp(s) with respect ta is given by - PO=1 ——=p(0)=0,
B(s)= fwe—stp(t)dt, wherep; andp, are the p_robabilities to find the system in
0 the states] and |, respectively. Denote the transition rates
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by w. In the case the general kinetic equation with the sto- 1
chastic time clock15) is written as

w ! a—1
pi(t)=p;(0)+ mfo(t_ﬂ {p (1) —py(7)}dr,

w t 1
pl(t)=p1(0)+mfo(t—7)“ {pi(7)—p (7)}d7. o b T

From the linearity of these equations it follows

P () +p ()=p;(0)+p(0), pi(t)—p(t)=p;(0) '

2w [t w1
—pl(o)—mjo(t—ﬂ {p(7)

_pl(T)}dT- 2w)'ey 5
Consequently, we obtain FIG. 2. The relaxation of the probabilitigs [Eq.(17)] andp,
1 1 [Eq. (18)] plotted as a function of time. The dotted line corresponds
_ 4= _ @ to the equilibrium state.
py(t) 5 + 2Ea( 2wt?), (17)

11 cesses described by E@) are non-Markovian at the true
p()=2 — ZE.(—2wte). (18)  time, they are Markovian with regard to the internal time. So
2 2 the strange kinetics results in the randomization of time

The steady state of the system corresponds to equilibriumCIOCk of a Markov process. In the probability theory the op-

0. (%)= p, () = 1/2 (Fig. 2). The transition ratev is defined ération is called the subordination of one random process by
b)T/ microslcopic properties.of the systeffor instance, from another[16]. As has been stated above, the subordination
the given Hamiltonian of interaction and Fermi’s’ goldendoes not break the fluctuation-dissipation relation andHhe

rule). The value ()Y may be interpreted as a general- theorem. The stochastic time clock has a clear physical

ized relaxation time. The randomization of time clock essenS€nsé—a particle interacts with a bath in random points of

tially changes the character of relaxation in such a two-statime so that there are memory effects. It should be noted that
system. If onlya# 1, the relaxation has an algebraic decay.th® memory is a direct consequence of the random time steps
In this connection it should be mentioned here that the exP€longing to the strict domain of attraction of anstable

perimental relaxation curves of glasses show just the algedistribution. One and only one indexcharacterizes both the
braic decay[31]. correspondingy-stable process and its hitting time process.

The stochastic differential equatidd) describes a random
V1. SUMMARY velocity field dirgcted by a r.andom Mgrkov process. In thﬁs
case the dynamical foundation of statistical physics is valid.
We have shown that the fractional FPE can be derived byrhe procedure of the randomization of time clock extends
using the ordinary Langevin equation. Although the pro-the domain of applicability for the general kinetic equation.
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