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Self-consistent theory of collective Brownian dynamics: Theory versus simulation
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A recently developed theory of collective diffusion in colloidal suspensions is tested regarding the quanti-
tative accuracy of its description of the dynamics of monodisperse model colloidal systems without hydrody-
namic interactions. The idea is to exhibit the isolated effects of the direct interactions, which constitute the
main microscopic relaxation mechanism, in the absence of other effects, such as hydrodynamic interactions.
Here we compare the numerical solution of the fully self-consistent theory with the results of Brownian
dynamics simulation of the van Hove functi@ir,t) and/or the intermediate scattering functibgk,t) of
four simple model systems. Two of them are representative of short-ranged soft-core repulsive interactions
[(a/r)*, with u>1], in two and in three dimensions. The other two involve long-ranged repulsive forces in
two (dipolar,r ~2 potentia) and in thregscreened Coulomb, or repulsive Yukawa interactiatismensions. We
find that the theory, without any sort of adjustable parameters or rescaling prescriptions, provides an excellent
approximate description of the collective dynamics of these model systems, particularly in the short- and
intermediate-time regimes. We also compare our results with those of the single exponential approximation and
with the competing mode-mode coupling theory.
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[. INTRODUCTION vin equation(GLE) approach and the process of contraction
of the description, and complemented by a number of physi-
One of the most directly measurable dynamic phenomenaally or intuitively motivated approximations. In its recent
of a colloidal dispersion is the relaxation of the fluctuationspresentation in Refl3], this theory only referred to model
on(r,t) of the local concentratiom(r,t) of colloidal par-  monodisperse suspensions of spherical particles in the ab-
ticles around its bulk equilibrium value The average decay sence of hydrodynamic interactions, and its quantitative ac-
of én(r,t) is described1,2] by the time-dependent correla- curacy was tested through the comparison of its predictions
tion function({én(r,t) én(r’,0)), referred to as the van Hove for a specific idealized model system, with the corresponding
function G(|r —r’|,t). This property can be determined di- Brownian dynamics computer simulation data. The same the-
rectly by means of techniques such as digital video microseretical scheme is also being extended to describe colloidal
copy. Dynamic light scattering, on the other hand, measuremixtures, the effect of hydrodynamic interactions, and the
directly the Fourier transforni (k,t) of G(r,t), referred to ideal ergodic—nonergodic transition. A clear and simple dis-
as the intermediate scattering function. This property coneussion of these effects, however, will benefit from a system-
tains, in principle, all the relevant dynamic information of atic assessment of the intrinsic accuracy and limitations of
the equilibrium suspension. Thus, the development of conthe same theoretical scheme under the simplest possible con-
ceptually clear, and quantitatively accurate, statistical meeitions (model monodisperse suspensions of spherical par-
chanical theories is required for the fundamental understandicles with no hydrodynamic interactions
ing of this important dynamic property. For this reason, we have carried out a systematic compari-
With this aim, in recent work a self-consistent theory of son of the predictions of this theory and the corresponding
colloid dynamics has been developd3-5]. In the absence computer simulation data for four idealized model systems.
of hydrodynamic interactions, this scheme allows the calcuThe first two are two-dimensional systems with power-law
lation of F(k,t) and its self-diffusion counterparks(k,t), pair interaction,Bu(r)=A/r", with n=50 (strongly repul-
given the effective interaction pair potentia(r) between sive, almost hard-disk-like and with n=3 (long-range
colloidal particles, and the corresponding equilibrium staticdipole-dipole interaction The third one is the three-
structure, represented by the radial distribution functomn) dimensional weakly screened repulsive Yukawa potential
or the static structure factoS(k) [=F(k,t=0)]. This (whose two-dimensional version was studied in H&f).
theory, referred to as the self-consistent generalized Langd-he last system considered involves short-ranged soft-core
vin equation(SCGLE theory, is based on general and exactrepulsive interactions. The dynamic equivalence between
expressions foF (k,t) andFg(k,z), in terms of a hierarchy this and the strictly hard-sphere system allows us to discuss
of memory functions, derived within the generalized Lange-also the properties of the latter. For all these systems, we
calculated G(r,t) and/or F(k,t) from the self-consistent
theory, and performed Brownian dynamics simulations
*Permanent address: Instituto dsiEa Manuel Sandoval Vallarta, (without hydrodynamic interactiopgo carry out extensive
Universidad Autmoma de San Luis PotgsAlvaro Obregm 64,  quantitative comparisons.
78000 San Luis PotasSLP, Mexico. The aim of this exercise is to isolate the effects of the
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most important mechanism for the relaxation of the concenerties will also be provided by the computer simulations. All
tration fluctuations in colloidal liquids, namely, the nondissi- the simulation results reported in this paper correspond to
pative direct interaction forces between the colloidal par-Brownian dynamics simulation in the absence of hydrody-
ticles. The quantitative theoretical description of these effect§amic interactions, and at the beginning of Sec. Ill we sum-
constitutes by itself a demanding and relevant challenge. Waarize some relevant technical data of such simulations.
are interested, however, in a careful analysis of the predicSections Ill and IV contain the comparison of theory and
tions of this theoretical scheme under rather simple condisimulation for the two-dimensional systems with power-law
tions, in order to have reliable information to be used as &air interaction,Bu(r)=A/r", with n=50 and withn=3,
reference in the development of this scheme into a mor&espectively. In Secs. V- and VI we discuss, respectively, a
comprehensive theory that also includes the effects of hydrgiimilar  comparison for the three-dimensional weakly
dynamic interactions, or the extension to colloidal mixtures.Screened repulsive Yukawa potential, and for a soft-core
Let us mention that the theory discussed here is certainlgtrongly repulsive potential at very high concentrations. The
not the only proposal available of a fully self-consistente_qU'Vale”C_e of the latter with the hard-sphere system is also
scheme for the collective and self-dynamics of colloidal susdiscussed in Sec. VI. In Secs. V and VI, we also compare our
pensions. In fact, as early as in 1982, Hess and K6in results with thos_e of other competing theories, particularly
proposed the translation to colloids of the mode-couplingh® mode-coupling scheme of fiele and collaborators
self-consistent theory of molecular liquidg,s]. Although 12,13. The main conclusions are summarized in Sec. VII.
their proposal included an initial version of a fully self-
consistent scheme for colloidal systems, only until recently Il. SELF-CONSISTENT GLE THEORY

extensive calculations based on such a theory were reported ) . . .
in the literature9]. More recently, Ngele and collaborators _ 1he self-consistent generalized Langevin equation theory

have developed a more elaborate version of this modediscussed here, as originally presented in R&f. is explic-
coupling theory specifically devised to deal with colloidal Ity based on the formalization of two physically intuitive
liquids [10]. The resulting self-consistent scheme has beefotions, namely, that collegtlve_ diffusion should be related in
extended and applied in several interesting directids, a S|m_ple manner to self-diffusion, and that_ spac_e-dependent
although only until recently the level of its quantitative ac- S€lf-diffusion, in its turn, should be related in a simple man-
curacy at short and intermediate times has been document8§" 0 the mean squared displacemeot some other
[12,13. The present theory shares with such proposal a numf¢independent self-diffusion propejtyThe development of
ber of important features, such as the prediction of the ideaIP'S theor_y involved four distinct fundamental element_s. The
glass transitiori8] in a monodisperse system and the IOOSSi_f|rst consists of thg most genera! and exact expressions for
bility of extension to more complex conditions. This is a F(k.2) andFs(k,2) in terms of a hierarchy of memory func-
consequence of the similarity in the mathematical structurdions. The general method.e., the generalized Langevin

of the resulting self-consistent schemes. As it was discussefluation approacfil6,17) employed to derive such exact

in Ref. [3], however, the main difference of the proposal &XPressions has been explamed and |IIustrateo_I m_[lB}f.
analyzed here, with respect to the various mode-coupling- '!'he second elgment con§|sts of the formalization qf the
based theories, lies in the conceptual framework upon whicfotion that collective dynamics should somehow be simply
the former was built. Similarly, there is no direct relationship "¢/ated to self-dynamics. Vineyard's approximat{dg] is a
between the conceptual basis of the present theory and thg{mPe (although qualitatively and quantitatively rather

of other theories of colloid dynamics partially or fully based Primitive [19,20) implementation of this idea. This aspect
on kinetic-theoretical concepfd4,15. was also discussed in all detail separately; thus, in [éf.

In what follows, we provide a brief summary of the the general expressions fbi(k,z) andFg(k,z) in terms of
SCGLE theory for colloid dynamics. In order for this paper higher-order memory functions were employed to propose
to be reasonably self-contained, this will involve a certain@nd test a hierarchy of Vineyard-like approximations. Adopt-
degree of repetition with respect to R8]. For the reader N9 any of t.hese approxmatl'ons' reduces the problem 'of col-
interested in all the details and subtleties of the derivation of0id dynamics to the determination &fs(k,z) or any of its
this theory, however, this summary is not a substitute of thénemory functions. _
direct consultation of Ref§3-5], which describe the physi-  The third basic element of the present theory consists of
cal content and the rationale of each of the approximation§1® Proposal for the approximate determinationFafkt).
involved in the present theory, and which explicitly monitor This step is also based on a phy5|cal_ly intuitive expectation,
the quantitative accuracy of the most essential of them. ThBamely, that space-dependent self-diffusjeepresented by
numerical solution of the resulting SCGLE scheme for fourFs(k,t)] should be simply related to the properties that char-
specific model systems, and their comparison with BrowniarRCterize the Brownian motion of individual particlgs, 6],
dynamics computer simulation data, constitute the main relust like in the Gaussian approximation, which expresses
sults of this work, and are reported in Secs. Il through VI. InFs(k.t) in terms of the mean-squared displacemé(t) as
practice, the theory requires as an input the static structurdfs(k,t)=e V(. The present self-consistent theory intro-
properties|i.e., the radial distribution functiog(r) or the duces an analogous approximate connection between the
static structure factoB(k)] of the system. In order to avoid functionsFg(k,t) andW(t), but at the level of their respec-
additional approximations, such as those involved in the uséive memory functions. The memory function \8f(t) is the
of approximate liquid-theory integral equations, these propso-called time-dependent friction functid(t). Thus, a fi-
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nal ingredient in the development of the theory consists of ain these equation®,=kgT/° is the free-diffusion coeffi-
expression forA{(t) in terms of F(k,t) and Fg(k,t) that cient of each particlekgT being the thermal energyS(k)
results from the application of the generalized Langevinthe static structure factor, ang(k) the static correlation
equation formalism to tracer-diffusion phenomé¢hé]. Such  function of the fluctuations of the configurational component
a closure relation finally determines our fully self-consistentof the stress tensor of the Brownian fljidbtice that in Ref.
theory of colloid dynamics. In what follows, we summarize [5] x(k) andAL(k,z) carry a subindex YU" that we shall
the main results of Ref$3—5], which contain, respectively, drop systematically hetey(k) andL°(k), along with their
these four fundamental elements of the construction of thgelf counterpartsys(k) and LY(k), are static properties,
present theory. which can be written exactlysee Eqs(A1) through(A4) of

In Ref. [5], the GLE approach, and the concept of thethe Appendi} in terms of the two- and three-particle corre-
contraction of the descriptiofl6,17, was employed to de- |ation functions,g(r) andg®)(r,r'), which are assumed to
rive the most general time-evolution equation for the fluctuabe known. In practice, the use of Kirkwood’s superposition
tions on(r,t) of a monodisperse colloidal suspension in theapproximation allows us to write these properties in terms
absence of hydrodynamic interactions. In such a derivationgnly of g(r) [see Eq(A6)]. Thus, the only unknowns in the
the assumed underlying microscopi¢particle dynamics expressions fofF (k,t) and Fg(k,t) in Egs.(1)—(4) are the
was provided by the many-particle Langevin equafblAs  memory functionsAL(k,z) andALg(k,z).
a result, expressions are derived fofk,t) and Fg(k,t) [or We should mention that several authors, most recently
their Laplace transformg(k,z) andFg(k,t)] in terms of a  Nagele and collaboratorfd0,11], have derived the results in
hierarchy of memory functions, and of well-defined staticEqs. (1) and (2), using the projection operator formalism
structural properties of the Brownian fluj@]. In these ex-  within the N-particle Smoluchowski dynamic€(k,z) and
pressions, the Brownian relaxation timg=M/{° (or the  C((k,z) are referred to as the normalized irreducible
corresponding frequenagg= 75 ') appears, wherbl and(®  memory functions. The starting points of the approximate
are, respectively, the mass and the solvent-friction coefficientheory developed here are indeed these general results, but
of each particle in the suspension. In the absence of frictiogomplemented with the additional information contained in
(¢{°—0), these expressions correspond to those of a simplggs. (3) and (4), which expresses the irreducible memory
atomic liquid[20]. In the presence of friction, and in order to functions C(k,z) and Cg(k,z) in terms of the still higher-
“tune” these expressions to the time regime normally probedorder memory functiona L (k,z) andALg(k,z).
by dynamic light scattering experiments, or by Brownian dy- Neglecting AL (k,z) and ALg(k,z) in Egs. (3) and (4)
namics simulations, the limtt> 75, orz<zg must be taken. |eads to the so-called single exponent®EXP) approxima-
Taking this so-called “overdamping” limif6] requires a tion [21,22, that consists of Eqg1) and(2) with
careful analysis, which was the main subject of RBf. As
a result, one gets the most general expressiof f&rt) and k?Dox (k)
F(k,t) that describes the dynamics of the suspension in the C(k,2)=~Ck,z)= —————— )
diffusive regime(i.e., for timest> 7g). The resulting “over- 2+ x (kLK)
damped” expressions fol(k,z) and Fg(k,z) read, in

Laplace space, d%5] and
k?Doxs(k
S(k) Cs(k,2)~CE™Mk,2)= f—XS(O) (6)
F(k,2)= KD, X(K) (1) z+ xs (k) Lg(k)
1+C(k,2) This approximation is exact at short times and/or large wave

vectors, and constitutes a simple but nontrivial zeroth-order
level of approximation of the self-consistent theory discussed
Fs(k2)=——2p— (2)  here, which involves nonzero memory functions. (k,z)
74— 2 andAL(K,z).
1+Cs(k2) The second element in the construction of this theory is
the proposal of an approximate relationship betwEé€k,t)
and F¢(k,t). Vineyard’'s approximation consists of the sim-
plest of such relations, in whicR(k,t) is approximated di-
rectly by Fg(k,t)S(k). In Ref.[4], we performed a detailed
5 numerical study of alternative, more sophisticated manners
C(k,2)= k"Dox (k) 3) to refer collective dynamics to self-diffusion. Rather than
' z+ x HK)LO(k) + x LK) AL(k,2) relatingF (k,t) directly toFg(k,t), we proposed to approxi-
mate a given memory function &f(k,t) by the correspond-

where C(k,z) and Cg(k,z) are memory functions that, in
turn, can be written in terms of the higher-order memory
functionsAL(k,z) andALg(k,z) as

and ing memory function ofg(k,t). As an illustration, consider
Egs. (1)—(4). This suggests to relaté(k,z) to Fg(k,z)
k2Dgx<(K) through their highest-order memory functioas (k,z) and
Cq(k,2)= — 5 — . (4 ALg(k,2). The detailed manner in which this is done turns
z+ x5 (K)Lg(k) + x5 "(K)ALs(k,2) out to be important, as it was discussed in Réf, where it

021108-3



YEOMANS-REYNA et al. PHYSICAL REVIEW E 67, 021108 (2003

was shown that the most accurate and fundamental proposal Cs(k,z)zcgEXP(k,z)+[Ag(k)—C§EXP(k,z)])\(k),

for a Vineyard-like connection betweer(k,z) and (10)
F<(k,z) , among the ones that can be suggested by the gen-

eral results in Eqs.1)—(4), is defined through the following

L where N (k) is a phenomenological interpolating function
approximation:

such that\(k)—1 for k—0, andA(k)—0 for k—~. In

Ref. [3], a functional form of the general type(k)=[1
AL(k2) = ALi(k’Z) . 7) + (k/k.)"]~* was proposed, and the choice of the parameters
LO(k) Ls(k) k. and v was made by comparing the theoretical predictions

) . . . for various values ok. and v with exact(computer simu-
Taken together with Eq$1)—(4), this equation defines an |5¢eq) data for a particular model system, at a given state, and
approximate scheme that allows us to exprE¢k,z) and ¢ 5 given time. This led to the following prescription for
F<(k,2) in terms of a single normalized memory function, MK):

namely,ALS(k,z)/L(S’(k). One reason for the accuracy of
this Vineyard-like approximation is the fact that the use of
the exact results in Eq$1l)—(4) guarantees that, indepen-

dently of the value ofAL(k,z) andALg(k,z), the resulting k)= k \2 (D
expressions foF (k,t) and Fg(k,t) will satisfy exactly the 1+ Komin

first three(short-time moment condition$23,24l.

In practice, however, in Ref3] and in this work we ) N ] o )
employ a Vineyard-like relation betwe&i{k,z) andFg(k,z) wherek,i, is the position of the first minimum of the static
which is defined in terms of a simple connection between thétructure factoS(k) of the system.
memory functionsC(k,z) and C«(k,z), but which happens The self—conss?ent .scheme that results from all the_ argu-
to be just as accurate as the most sophisticated proposal f€nts and approximations above can then be summarized by
Eq. (7). This Vineyard-like approximation also preserves theEds: (1), (2), (8)=(11). In Ref. [3], it was shown that the
exact short-time behavior up to ordé? for F(k,t) and predictions of this scheme tuned out to be highly accurate for

F«(k,t), and is defined by the general results in Bd$.and other times and other states of the same model syé&igoi

(2), along with the following approximate relatiga]: dimensional repulsive Yukawa Brownian fliidmployed to
calibrate the parameteks and v of the interpolating func-
C(k,2) Cs(k,2) tion A(k). As we demonstrate now, the level of accuracy of
SBF = 5P , (8)  the same theory, with (k) now fixed by the same prescrip-
C>"k,z) Cs(k,2) tion in Eq. (11), continues to be equally accurate, at least

when applied to other representative model systems, like the
ones studied in the following sections.
In reference to the relatively arbitrary choice of a particu-

whereCSE*R(k,z) andC3¥*"(k,z) are given, respectively, by
Egs. (5) and (6). Just like the previous higher-order
Vineyard-like approximation, this scheme refers bb{lk, z) lar functional form for\(k), we may say that this corre-
andFg(k,z), through Eqgs(1), (2), and(8), to the knowledge  gnonds, for example, to the choice of a particular vertex
of a single memory function, namelfs(k,z). Thus, the  fnction in the self-consistent theories derived within the
remaining problem is to find some form of approximation for \ya|i-known mode-coupling approachf—13. Also in that
this memory function. _ theory, a sensible guess of the right vertex function must
In contrast to the previous elements of the construction Of:ompensate our otherwise fundamental ignorance of the de-
t_he present_ thet_)ry, whic_h are the str_aightforward formalizatajled manner in which the many-body microscopic dynam-
tion of two intuitive physical expectations, we do not have ajcs determines the macroscopic laws that describe the experi-
similarly transparent physical notion to guide us in the CON‘mentally observed behavior of our system.
struc_tion of an approximate expression f_or this memory The self-consistent scheme consisting of Eds.(2), and
function. We know, however, two exact limits th@g(k,z)  (8)—(11) has to be solved numerically. As an input, we em-
must satisfy. 51,_5%5’ for large wave vecto€s(k,2) is given  poy the computer-simulated radial distribution functipr)
exactly by C;="(k,z), whereas for small wave vectors, for the desired pair potential, and then calculate all the cor-
Cs(k,2) is given exactly by the Laplace transfort{(z), of  responding static propertigsS(k), x(k),L°(k), xs(k), and
a functionA{(t), referred to as the time-dependent friction LY(k)], as described in the Appendix. Equatidas, (2), (8),
function. ForAg(t), a .general approximate expression hasgng (10) are then written int space as a set of coupled
also been derived within the framework of the GLE approachptegro-differential equations involving the dimensionless
[16]. This expression is wave vector variable&ko and time variablet/ty, with t,
) =0?/D,, o being the particle diameter. The functionslof
AL(t)= kgTn f k[kzh(k)] F(kHFkD). (9 andt are then discretized in a mesh of points large enough to
(27)3¢° 1+nh(k) TS ensure independence of the solution with respect to the size
of the mesh. The solution of the discretized system of equa-
Thus, in Ref[3] it was proposed to interpolates(k,z) be-  tions is solved by a straightforward direct iteration method.
tween these two exact limits by means of the following ex-The corresponding numerical solutions are presented in the
pression: following sections.
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12

TABLE I. Simulation parameters. First column, soft disk system
(SD) (studied in Sec. Il dipole-dipole systeniDD), Yukawa po-
tential with Gayloret al. parameters @), Yukawa potential with
Hartl et al. parameters ), Soft sphere systeniSS, and hard
sphere systertHS). In each casél is the number of particles) the
volume fraction,At* the dimensionless time step, NC the number
of configurations for statistical properties, and TC is the total num-
ber of configurations.

®
3
-~
=
o
=
[V}

System N ) At* NC TC

SD 500 0.3927 48107 8.0x10° 1.615<1C°

DD 1000 0.0322 6.9810°° 8.0x10° 8.3x10°

G 800 0.00044 4.4810°* 4.0x10° 4.15x1C°

H 800 0.000524 1810°% 4.0x10° 4.15x1C°

SS 338 0.5146 1.63%710°° 55x10° 5.5x10° -

HS 305 0.465 7.3810" 9.2x10’ z
[0

IIl. TWO-DIMENSIONAL SYSTEM WITH STRONGLY
REPULSIVE FORCES

T
1.0

0.0 0.5 20

The first model system we consider is a two-dimensional
Brownian fluid system with strongly repulsive interactions,
determined by the pair potential

ric

FIG. 1. van Hove functiorG(r,t) of the Brownian fluid with
pairwise interactions given by Eq12) at n*=0.5 at (a) t/t,
=0.01 and(b) t/t;=0.06. SCGLE theorysolid line), SEXP theory
(dashed ling and Brownian dynamicgBD) simulation results
(symbols.

6

—_—. 12
(r/o)° (12

Bu(r)=

The reason we studied in detail this particular model sys-
tem is that it constitutes a reasonable representation of a 1]%to/4, with t;=0%/D,. Thus, for the system we are dis-
hard-core system by a steep, but continuous, pair potentiatussing,t./ty=~0.04. This is the time scale that defines the
For the latter, we can calculate some properfibg short- intermediate-time regime illustrated in Figsaland 1b),
time moment conditions df (k,t), for examplg, that do not  which presentsG(r,t) for two times, t/t;=0.01 andt/t,
exist for a discontinuous potential. In addition, exactly this=0.06. Figure 1a) illustrates the high degree of accuracy on
model system was found to fit the experimentally determinedhe SCGLE theory, which overlaps completely with the
structure of a real quasi-two-dimensional suspension studiesimulation data. This is indeed expected, since the SCGLE
by Santana-Solano and Arauz-L42b]. Here, however, we theory has built-in exact short-time behavj@i. In fact, for
only wish to compare the time evolution Gf(r,t), as pre- these early times, the SEXP, which is a much simpler theory
dicted by the SCGLE theory, with that determined by[21,27, is almost equally accuraféashed line in Fig. ®)].
Brownian dynamics computer simulations. For the longer time in Fig. (b), however, the differences

Our Brownian dynamics simulations follow the rather between the SCGLE theory and the SEXP approximation are
conventional approach based on the Ermak-McCammon ahow much more appreciable, mostly at small distances, and
gorithm with periodic boundary condition26—28. The  becomes negligible at longer distances. For all distances,
simulation results presented in this paper were produced aftérowever, the SCGLE theory virtually overlaps with the
we made a careful choice of the size of the cubic simulatiorsimulation data(at small values ofr, the accuracy of the
cell, the number of particles, the time step, the length of thesimulation results becomes increasingly poorer, due to poor
run, etc., so as to eliminate any artificial dependence on thestatistics, and this is the source of the deviations between the
parameters. In Table | we summarize the values of thes8CGLE theory and the simulation data near0).
parameters, corresponding to the simulation of the four sys- In order to illustrate the relaxation of concentration fluc-

tems considered in this paper.
Figure 1 exhibitsG(r,t) for the model system in Eq12)
at a reduced concentration* =no?=0.50 (¢=mn*/4

tuations for the same system, but now in Fourier space, in
Fig. 2 we compare the static structug¢k), which is the
initial value F(k,t=0) of the intermediate scattering func-

=0.3927) and for two times representative of the short- andion, with what remains after a timg'ty=0.06 [the time
intermediate-time regimes. For the system in Fig. 1, the onlyorresponding to Fig. (b)]. In general, we found for other

relevant length scales are the diameteand the mean inter-
particle distancd =n"'2, whose ratiol*=/¢o=(n*) 1?2
~1.4. Thus, the mean collision timg can be estimated
through the relationl- o)?~4Dt. (WhereDy, is the free
diffusion coefficient, and is given by te~[(n*) %2

times, and also for other concentrations studied, what is il-
lustrated in this figure, namely, that the predictegk,t)
matches the computer simulaté¢k,t) for all wave vectors,
and that the largest disagreements occurs at the pogitign

of the first peak of the static structure factor. Thus, a sum-
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1.8 35
3.0
25
% 204"
c Y
2 1s-
U]
1.0
05
0.0 r r ,
0 5 10 15 20
FIG. 2. Intermediate scattering functiéiik,t) for the system as ric
in Fig. 1 att=0 [ie., the static structure factd(k)] and t/to FIG. 4. van Hove functiorG(r,t) for the Brownian fluid with
=0.06. SCGLE theorysolid line) and BD resultgsymbols. pairwise interactions given by Eql4) with T=4.4 and n*

=0.041 att/t;=1.666. SCGLE theorysolid line), SEXP theory

mary of the comparisons discussed so far can be presented @shed ling and BD resultsymbols.
terms of a comparison of the time evolution of the maximum
F (Kmax,t) scaled withS(k,.,), as predicted by the SCGLE
theory, with the computer simulation data. This summary is
presented in Fig. 3. Notice that the predictions of the SCGLE In this section we discuss the results of the SCGLE theory
continue to agree quite well with the simulation data for allfor the dynamics of another two-dimensional system, this
times[Fig. 3 now includes times of the order of 2.5 times thetime with long-ranged repulsive interactions. This model sys-
mean collision time, at which there is almost no remnant oftem corresponds, as far as the interaction forces is concerned,
the initial structureS(k)]. to the quasi-two-dimensional system of paramagnetic colloi-
The results presented in Figs. 1-3 allow us to concludélal particles studied by Zahet al.[29]. We define this sys-
that the accuracy of the SCGLE theory is indeed quite goodem by the pair potential
for this model system involving a hard-disk-like, but con- 3
. ; . . Alr®, r>o
tinuous, potential. In the following section we perform a Bu(r)= (13)
similar analysis for a longer-ranged power-law potential. ©, <o

IV. TWO-DIMENSIONAL SYSTEM WITH DIPOLE-DIPOLE
(R™%) INTERACTIONS

and by its number concentratigper unit arean. The spe-
1.0 cific conditions that we shall consider correspond to a very
dilute suspension according to the reduced number concen-
tration n* =ng?, which will be n*=0.041 (¢==n*/4
os 3\ =0.0322). In contrast, the amplitud&/ o> of the dipolar

interaction at hard-core contact will be large enolighu(r

=0)~530], so that, in reality, hard-disk contact is pre-
vented by the strong dipole-dipole repulsion. Thus, the only
meaningful term in the interaction potential is the dipole-
dipole term, which can also be written as

ax:

—_
8 0.6

1) / S(k

max’

Fk

e pu(r)= (14

(r/H?®’

o I — wherel'=A/I3, with | =n~2. For the conditions considered
"o 1 2 5 4 5 & 7 8 9 10 herel'=44 _
/1 For this system we also calculated theoreticalyr,t)
0 and F(k,t) for short and intermediate times, and compared
FIG. 3. Intermediate scattering functiéi{k,t) normalized with ~ them with the corresponding simulation data. The scenario
S(K) at the positiork,,s, Of the main peak 08(k), as a function of ~ turns out to b_e quite _S|m|Iar to that described for the system
dimensionless timé/t,, for the same system as in Fig. 1. SCGLE of the preceding section, concerning the general a(_ICuraCyIOf
theory (solid line), SEXP theory(dashed ling and BD simulation the SCGLE theory. Thus, Fig. 4 illustrates a comparison typi-
results(symbols. cal of the intermediate-time regime/{,=1.666, withtg
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FIG. 5. Intermediate scattering functidn(k,t) for the same
system as in Fig. 4 @t=0 [static structure factdB(k), dotted ling, 0.2 -
t/t;=0.0833, and/ty=1.666. SCGLE theorysolid line), SEXP
theory (dashed ling and BD simulation resultésymbols.

=0?/Dy). This figure, as well as Fig. 5, also includes the

results of the SEXP approximation. For the conditions of Fig. 00 02 04 06 08 10 12 14 16
4, the limitations of this simpler theory are already quite
evident. Figure 5 includes the information of Fig. 4, but in t/to

Fourier space, as well as(k,t) for another, shorter, time

(t/t;=0.0833,). For reference, the static structure factors(k) at the positiork,.., of the main peak oB(K) as a function of

S(k)=F(k,t=0) is also included in this figure. Figures 4 t/t, for the same system as in Fig. 4. SCGLE the¢sylid line),
and 5 illustrate the high accuracy of the SEXP theory at Shor§exp theory(dashed ling and BD resultgsymbols.

times, and the excellent level of accuracy of the SCGLE
results forF(k,t) in the intermediate-times regime for all V. THREE-DIMENSIONAL REPULSIVE YUKAWA
wave vectors. In Fig. 6, we compare the theoretical predic- POTENTIAL
tions for the decay of the main peak &f(k,t) with the
simulation data for a longer time span.

This comparison indicates that although there are sma@
systematic differences with respect to the exaahulation

FIG. 6. Intermediate scattering functiér{k,t) normalized with

In this section we present a similar comparison, but this
ime involving a relevant three-dimensional system, namely,
he repulsive Yukawa potential,

data, these are not appreciable within the resolution of Figs. e Urlo-1)

4-6. Thus, the SCGLE theory continues to provide an excel- _ K/—), r>o

lent quantitative description of the relaxation of the concen- Bu(r)= (tfo (15
tration fluctuations for times well beyond the intermediate- *, r<o.

time regime. We may recall that the correspondingTh, ds 1o the electrostati tributi fth I
differences were also virtually negligible in the case of the IS corresponds to the electrostatic contribution of the weti-
known  Derjaguin-Landau-Verwey-Overbeek  potential

two-dimensional repulsive Yukawa system that was em—[30 31. Here we consider the regime of strong electrostatic
ployed in Ref[3] to illustrate the quantitative application of . 9 9

. repulsion K>1) and weak screeningz€ xo<1), so that
the SCGLE theory. That. system, however, was precisely thﬁwe hard-sphere diameter, as in the previous example, is only
system employed to calibrate the only element of the theor

. . € theorn arbitrary unit length of no physical significance.
that could not be determined from more basic principles, \ye have compared the theoretical predictions of our

namely, the interpolating functi_on(k). of Eq. (11). The theory with the corresponding Brownian dynamit8D)
SCGLE results for both two-dimensional model systems;omputer simulations for several values of the paramégers
studied in this and in the preceding section involve neither gndz of this system, and for various concentrations that we
different interpolating function nor additional or specific express in terms of the volume fractigr=7na>/6. In all
calibration procedures: here we employed the same interpghese comparisons, which we do not report in detail, we ob-
lating function determined in Ref3], namely, Eq(11). Our  serve the same scenario, which we illustrate here for two
present comparisons simply show that this continues to be aparticular sets of parameters, for which Brownian dynamics
excellent choice ofA(k) also for both of these additional simulations have been reported in the literature. The first
two-dimensional model systems. corresponds to the parametefs=556, z=0.149, andg
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FIG. 7. Simulated radial distribution functiog(r) for the re-
pulsive Yukawa potential. Open circle and solid line=556, z
=0.149, and¢=4.4x10* studied by Gayloret al. (Ref. [28));
open triangle and dashed ling=1002.74, z=0.222, and ¢
=5.24x 104 studied by Hal et al. (Ref.[32]).

=4.4x10 %, employed by Gayloet al.[28], and the second
to the parameters of the system studied bytHet al. [32], FIG. 8. Intermediate scattering functiéifk,t) for the repulsive
namely,K =1002.74,z=0.222, andp=5.24x 104, Yukawa potential withk =556, z=0.149, and$=4.4x10 % at t
As a matter of elementary routine checking of our own=0, 0.1, 0.6, and 1.6 ms. SCGLE theofolid line), our BD
BD simulations, in both cases we first reproduced the re§.|mulat.|on re§ult$open circley andF(k,t) data taken from Gaylor
ported simulation runs, and verified the full agreement be&t @ (filled circles.
tween the reported results f@(r,t) and our reproduction
run. We then performed a second run with a much largeconclude that our theory tends to relax somewhat faster than
number of particlegbut otherwise with the same parametersour BD simulation data at the main peak and at larger wave
as the original runs The new results foG(r,t), G4(r,t), vectors. If we were to compare with the digitized data of
and Gq(r,t) did not differ from those of the previous runs. Gaylor et al, we would conclude the opposite, i.e., that our
However, they extended the rangerimo improve the fit of theoretical results at the main peak relax more slowly than
the asymptotic tails, and hence, the accuracy of the Fourighe simulations. We should mention that Banchtal. [12]
transforms to get the intermediate scattering functions. Figeompared their mode-coupling thediMCT) results with the
ure 7 compares the results of both runs for the radial distridata of Gaylort al, with which they found complete agree-
bution functions of the two systems. This structural informa-ment. Hence, according to the comparison in Fig. 8, their
tion was also the static input in the calculation of the resultdVICT results relax faster than our SCGLE predictions, and
of the SCGLE theory. Similar agreement as in Fig. 8 waseven faster than our more precise BD data. These conclu-
observed between the results f8(r,t) of the two runs for  sions, however, should not be taken as a definitive assess-
all the nonzero times reported below. ment of the relative accuracy of the MCT and the SCGLE
In Fig. 8 we compare the theoretical and the simulationtheories, since the comparison is probably not fair for the
results for the intermediate scattering function for the systenMCT. This is because our SCGLE results involved the use of
of Gayloret al. Let us first say that we found a slight differ- the exact static input in Fig. 7, whereas Banchtal. em-
ence between our simulation data Fo(k,t) and the reported ployed the rescaled mean spherical approximation fit of the
results of Gayloret al,, particularly near the main peak. reported static structure factor of the data of Gagbal. for
These differences are illustrated in Fig. 8, where we als&(k) as the static input of their MCT results.
include the data of Gayloet al. (as digitized from Fig. 1 of Our current concern, however, is to learn and document
Ref. [12]), for the shortest and the longest nonzero timeghe virtues and limitations of our SCGLE theory. For ex-
considered in the figure. These differences are due to thample, we can compare separatelyk,t) andF4(k,t) with
different accuracy of the processing of the dataGgr,t) to  the corresponding BD data. This is done in Fig. 9. There we
getF(k,t). This must be considered in drawing conclusionsfind that the theoretical predictions féty4(k,t) match the
from a comparison of theoretical results with computer simu-simulation results with a high degree of quantitative accu-
lation data forF(k,t). The conclusions that concern us hereracy, whereas the results fér(k,t) clearly exhibit a faster
refer to the comparison of our theoretical results with ourrelaxation with respect to the BD data. Unfortunately, we
own, more precise, BD data fd¥(k,t). From Fig. 8, we cannot know if other theories will also exhibit similar quali-
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FIG. 9. Distinct and self parts ¢f(k,t) for the system as in Fig.
8 att=0.1, 0.6, and 1.6 ms. SCGLE theofyolid, dashed, and
dotted lineg and BD simulation resultéopen circles, squares, and 0.2

triangles.

tative features. In our case, however, this information could
be used if attempts were made to quantitatively finetune the
theory by means, for example, of a different prescription of
the interpolating function (k).
The system studied by Hh et al. is clearly more struc-
tured than the one in the previous example, as can be appre KD t
ciated from the comparison of the radial distribution func- 0
tions in Fig. 7. However, we observed essentially the same FIG. 10. Intermediate scattering functidf(k,t) normalized
scenario found for the system of Gayler al. for the inter-  with S(k) for ko=0.60 andke=0.69 as a function ok’Dt, for
mediate scattering functions. What we report here is only théhe repulsive Yukawa potential studied by tlaSCGLE theory
relaxation ofF(k,t) as a function of time at two fixed wave (solid lineg, MCT theory (dashed lings BD simulations taken
vectors ko=0.60 and 0.69, the latter corresponding to thefrom Hatl et al. (Ref. [32]) (open circle and our BD results
position of the main peak of the static structure fagtéor  (filled circles.
which Hatl et al. report BD data, and Banchiet al. report
MCT results. This is done in Fig. 10. Our BD data in this but strongly repulsive and short-ranged, pair potenta).
figure derive from the second, more accurate run. Comparingor our present purpose, the particular form of this potential
the SCGLE results with our data, we see that there is quite ai§ irrelevant. For concreteness, however, we choose to write
acceptable quantitative agreement. In Fig. 10 we also includi as
the MCT results and the BD data of Hiaet al., read from
Fig. 2(b) of Ref.[12]. Again, there are some discrepancies in 1 2
both sets of simulation data, particularly for the smaller wave pu(r)= v ;T (16)
(rlo)®  (tloy)
vector, and the MCT results are favored by our new, more
precise BD data at the main peak, but not at the other wavgy g<r <4, and assume that it vanishes for o. In this
vector. , o o equation,v is a positive integer. The only convenience of
In summary, the comparisons in this section indicate thaghis particular functional form is that this potential and its
our self-cor_13|stent theory pro_wdes a reliable deSCI’IptIOI’! Oferivative strictly vanish at, and beyond, and that this
the dynamics of the three-dimensional Yukawa Browniangamily of soft-core potentials is being investigated in the
fluid. The actual quant.|tat|ve_ accuracy is not as perfect as iRontext of a dynamic correspondence principle that allows
the case of the two-dimensional Yukawa system, or of thg,ne 1o simulate the properties of the hard-splfEi® system
other two-dimensional systems studied in this work. HOW-jy the absence of hydrodynamic interactions. In this section

ever, the idea here was to apply the same version of thGe only consider the specific case=18, at a soft-sphere
SCGLE to systems other than the specific two-dimensiona),;; me fractiong,= 7no-/6=0.5146
S S " "

system for which the theory was initially calibrated.

0.0

0 2 4 6 8

In Fig. 11 we present the static input employed in the
theoretical calculations of the dynamics of this system. The
radial distribution function in Fig. 1() is the result of the
Brownian dynamics simulation for the soft-sphere potential

In this section we consider a three-dimensional system ofibove. In Table | we provide the technical parameters of the
Brownian particles interacting through some form of soft,simulation procedure. This is also based on the conventional

VI. THREE-DIMENSIONAL SYSTEM WITH STRONGLY
REPULSIVE FORCES
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FIG. 12. Intermediate scattering functidgfn(k,t) for the soft
FIG. 11. (a) Simulated radial distribution functiog(r) for the ~ SPhere system as in Fig. 11tt,=0.006 559, 0.026 23, 0.052 47.

soft sphere potential in EG16) with »=18 and¢=0.5146(solid SCGLE_ theory(solid, dashed_, and dotted lineand BD results

line), and for a hard sphere system wigh=0.465(dashed ling (b)) ~ (OPen circles, squares, and triangles

static structure factor for the soft sphere system.

spond to about 90% of the freezing volume fraction of our
Ermak-McCammon algorithm, which applies without specialsystem, which is rather demanding for a theory that does not
difficulties for the system under consideration. Figuréall include any adjustable parameter or rescaling prescriptions
also includes the radial distribution function of the hard-of any sort.
sphere system at the same number concentratitut with Our theoretical scheme is, of course, open for improve-
an effective diameter,=0.9667, corresponding to a HS ment concerning its detailed quantitative accuracy, if such an
volume fraction of 0.465. This was obtained by means of araspect happens to be crucial. After all, there is nothing fun-
accurate Monte Carlo simulation, also described, in its techedamental in the specific interpolating functiarfk), which
nical details, in Table I. As we can see from Fig(dlthe we chose not to touch in the calculation of all the results
static structure of these two systems is identical, except for eeported in this paper. If the situation would justify it, how-
small region near the first maximum gf{r). These differ- ever, we can finetune this function through its specific cali-
ences, however, are virtually indistinguishable in the statidration for the system of interest. Nevertheless, at this point
structure factor, in the scale of Fig.(bl. The static structure the idea is to establish the virtues and limitations of our
factor was calculated from the Fourier transform of the solidself-consistent scheme in its most rudimentary version. The
curve in Fig. 11a), which is the fit of the actual simulation device of any improved version, however, will benefit from
data forg(r), extended to longer distances by the analyticthe comparisons that our present Brownian dynamic results
tail suggested by Hd et al. allow us to make.

With the static inputs in Fig. 11, we now solve our self-  For example, we can compare separately the self and the
consistent scheme to calculate the van Hove function and itdistinct parts of the intermediate scattering function. From
self and distinct parts for our soft-sphere system, as well asuch a comparison, we again discover that the theoretical
the (full, self, and distinct intermediate scattering function. predictions for the distinct part are far more accurate than the
In Fig. 12 we illustrate the comparison between our theoretself and the full intermediate scattering functions, and they
ical results and the Brownian dynamics simulations forvirtually superimpose on the corresponding BD data. The
F(k,t) at three different values of the correlation tifia  main source of the discrepancies seen in Fig. 12 for the full
units of 7= aﬁ/ DY%. We observe that our theory gives an F(k,t) then derives essentially from inaccuracies of its self
initially excellent description of the decay of the main peakpart, which is illustrated in Fig. 13. This figure exhibits the
of F(k,t), although at longer times this peak relaxes moresame trend inF4(k,t) as observed in Fig. 12 i (k,t),
slowly according to our theory, in comparison with the simu-namely, a faster decay at short times and large wave vectors,
lation data. For wave vectors beyond the first peak, on th@nd a slower decay at long times, for all wave vectors. Al-
other hand, the theoretical predictions are more inaccurate #ough the inaccuracies of the theoretical results for the
all times; they first relax faster than the simulation data, andF¢(k,t) could be removed to a large extent by ad hoc
later they relax more slowly. Just for coincidence, at somecalibration of the interpolating function, this is not the pur-
intermediate time the agreement actually looks impressivepose of the work reported here.

The sequence illustrated in the figure provides a precise as- More interesting is the fact that, upon a simple rescaling
sessment of the overall accuracy of our theory. A fair judg-of the data, all that we have said so far in this section also
ment of these comparisons, however, must take into accoumefers to a hard-sphere system at a volume fraction of 0.465.
the fact that the conditions illustrated in this figure corre-In a separate communication, this dynamic equivalence be-
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. FIG. 14. Intermediate scattering functida(k,t) normalized
tween soft- and hard-sphere systems is demonstrated apg, S(K) for koo=7.13 andk;0=9.92 as a function dk2D it

proposed as an alternative algorithm to simulate the dynamy q soft sphere system as in Fig. 11. SCGLE thésojid lines,
ics of a hard-sphere dispersion in the absence of hydrodys, 4 gp simulations result®pen circles

namic interactiong33]. Thus, in Fig. 14 we compare the
decay ofF(k,t) for the same system at two fixed wave vec-

tors corresponding to the position of the first maximum andgajled report of these comparisons, together with a discussion

the first minimum of the static structure factor. In terms of of their experimental relevance, will be given, however, in a
the dimensionless variables employed in Fig. 14, there is N@eparate communicatidi4].

need for any rescaling of the data in order for the same
figure, which corresponds to a soft-sphere systempat
=0.5146, to represent also the properties of a HS system at
¢,=0.465. As we can see from this comparison, our theory In this paper we have presented an extensive application
provides quite a good description of the overall decay of theof the SCGLE theory of colloid dynamics to a set of model
intermediate structure factor in the short- and intermediatesuspensions without hydrodynamic interactions. In its origi-
time regimes. We must say, however, that at much longenal presentation, this theory was applied to a particular
times, the slow relaxation of the self component leads to anodel system, namely, the two-dimensional repulsive
poorer comparison, particularly at the main peak. This beYukawa Brownian fluid. That application, however, also
comes more severe as the volume fraction is increased fuserved to determine one element of the theory that could not
ther. In fact, we also performed the same comparison as eXe determined from more fundamental principles, namely,
plained in this section for the soft-sphere volume fraction ofthe interpolating functior\ (k) of Eq. (10). Thus, the doubt
¢<=0.5534, which corresponds to a HS systempat=0.5  was left concerning the usefulness of that specific prescrip-
(slightly above freezing We find that our results for the tion for other systems, with the same or different dimension-
decay ofF (k,t) at the minimum of the structure factor are in ality. The results presented in this paper illustrate the fact
reasonable agreement with our own simulation data. We alsthat this aspect of the theory should be of little concern.
checked that our BD data are also in agreement with thoséhere are, indeed, small systematic deviations, particularly
reported by Cichocki and Felderhof. Bancleioal. compared in the relaxation of (k,t) near its main peak, and these were
their rescaled MCT with such data and found very goodillustrated in Figs. 3, 6, and 8. These deviations, however,
agreement. Unfortunately, in neither of these works informa-only reflect the approximate nature of the theory, and exhibit
tion is given for the decay at the position of the main peak ofthe magnitude of the intrinsic accuracy of the approxima-
S(k). In our case, we find that for such a case our theoreticdions involved. One of them is precisely the particular func-
results depart considerably from our BD data. A more detional form of the interpolation function (k).

VIl. SUMMARY AND DISCUSSION
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There is certainly na priori reason to expect that the ACKNOWLEDGMENTS
simple expression in Eq10) should have any form of uni-
versal character. However, the expectation that a given Pras
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posal forA(k), calibrated with a given model system, will

work well for other systems turns out to be fuifilled to a \ oyie0) ‘through Grants Nos. G295589-E and NC0072: Ma-
satisfactory degree,. according to_ the resuilts reported in thlrQériaIes ’Biomoleculares. L.Y.R. and H.A.C. acknowledge the
paper. Let us mention that, besides the model systems req, o4 of the Proyecto FOMES P/PIFI2001-26-FO-07 and
p_orted he_re, we a_llso p_erformed similar EXErcIses with aqd'from the Area de Cmputo de Alto RendimientéACAR) of
tional pair potenpals,_ |n_clud|ng systems with an attractlve,[he Universidad de Sonof@NISON, Méaxico). M. Medina-
potential well, with similar conclusions as those reportedNoyola acknowledges the kind h(;spitality of the Departa-
here. mento de Rica del Centro de Investigacioy de Estudios

'We may say, In summary, that the SCGLE theory of COI'Avanzados del Instituto Polit@ico NacionalCINVESTAV-
loid dynamics seems to be one of the most accurate quantisy Mexico City)

tative theories for which extensive calculations have been
performed for the collective diffusion properties of monodis- APPENDIX: STATIC PROPERTIES

perse suspensions in the absence of hydrodynamic interac-

tions. Real suspensions exist for which hydrodynamic inter- For immediate reference, in this appendix we quote the
actions may indeed be neglected, and for which the SCGLEXpressions for the static propertjegk), L°(k), x°(k), and
theory should be directly applicable. The idea is, however, td.g(k) associated witlr (k,z) andFg(k,z) [see Eqs(1)—(4)]
employ what we have learned from the present exercise im terms of the two- and three-particle correlation functions,
the attempts to extend this theory to include the effects o§(r) andg®)(r,r’). For the details of their derivation, we
hydrodynamic interactions. The results of such attempts wiltefer the reader to the original source, namely, R&l.

This work was supported by the Instituto Mexicano del
trdeo, through Grant No. FIES-98-101-1, and by the Con-
sejo Nacional de Ciencia y Tecnolagi(CONACYT,

be reported separatel@4]. These expressions are
kgT)\? d?Bu(r) [ 1—cogkz) 1
K)y=|— 1+nf drg(r - , Al
x(K) (m 90— % 59 (A1)
FBu(r Don? F?Bu(r 2
MZBZLO(k)=nDOJ d3rg(r) Au( )[1+2 coskz] — — derg(r) Aul )(1—coskz)
ria k? Ky
2Don [ . apu(r) 2Don [ . aV Bu(r)?
+t fd rg(r) e sinkz+ 2 fd rg(r)(1—-coskz) 0
Don? oV pu(r)]| aV'Bu(r’
+ =2 fd3rd3r’g(r,r’){1—2coskz+co$k(z—z’)]} AU Aul )1, (A2)
k? Jz 9z
S, (KeTIM)? F*Bu(r)
X =——5— nfdrg(r) 1. (A3)
k Jz
|
and aV Bu(r
+D0n2f d3rd3r’g(r,r’)[ﬂ—()
Jz
d?Bu(r oV Bu(r’
k2M2B2LE(k)=k?Dg nfdrg(r) '62( )] | LY PU) )]. (A4)
Jz az'
2pu(r)]?
—Dgn? derg(r) 5 . . . . .
9z In the equations abovel(r) is the effective interaction pair
) potential between colloidal particles. Finally, we should re-
2D nj Era(r) Vv Bu(r) peat that in this paper we have systematically dropped the
0 9 9z subindex ‘UU” employed in Ref.[5], wherex(k), x(k),
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L%k), and L%(k) are denoted, respectively, byy,y(k), by
XGU(K), Lyy(k), andL{ (k).

The integral involvingg®(r,r’) in the last term of Eq.
(A2) was evaluated, in practice, introducing the use of Kirk-

wood’s  superposition  approximation, g®)(r,r’) 3) :“ _ _ . 2
~g(r)g(r")g(Jr—r’]), plus the additional simplification of Am= (k) drg(r[1=cogk-rJ(k-V)Vau(n]I*
approximatingg(|r —r’|) by its asymptotic value of 1. This (A6)
leads to replacing the integral
Am(3)(k)zf dr'drg(r,r')(1—2 cogk-r) The corresponding approximate expressions for the case of
self-diffusion are identical, ignoring the term involving
+ Ko (r—r"TO(k-V)(k-V’ cosk-r) in these two equations. Thus, within these approxi-
codk- (r=rIh( ) ) mations, the only static input needed by the SCGLE theory is
X(V-V")Bu(r)pu(r’) (A5)  g(r).
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