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Nonlinear Fokker-Planck equatiofiSPES are derived as approximations to the master equation, in cases of
transitions among both discrete and continuous sets of states. The nonlinear effects, introduced through the
transition probabilities, are argued to be relevant for many real phenomena within the class of anomalous-
diffusion problems. The nonlinear FPEs obtained appear to be more general than some previously pvoposed
a purely phenomenological basines. In spite of this, the same kind of solution applies, i.e., it is shown that
the time-dependent Tsallis’s probability distribution is a solution of both equations, obtained either from
discrete or continuous sets of states, and that the corresponding stationary solution is, in the infinite-time limit,
a stable solution.
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[. INTRODUCTION By choosing conveniently the transition rates, both forms
of the master equatigrEgs.(1.1) and(1.2)] lead, under cer-
The master equation is one of the most important equatain approximation$l1,2], to the linear Fokker-Planck equa-
tions in statistical physics, with a wide range of applicability; tion (FPB),
essentially, it governs the dynamics of Markov processes,
which are stochastic processes with a very limited memory IP(x,t) a[F(x)P(x,t)]+D PPP(x,1)

- NG

of previous event$l,2]. The time evolution of a system of it o , (13

stochastic variables is characterized by transitions between

the various realizations of these variables, in such a way thafhereD is a constantusually known as the diffusion con-
the probability of finding the system in a given state changegany andF(x) represents an external force. For the case of
in time until it reaches a steady state, in which transitions dqjiscrete stochastic variables, the FPE above may be obtained
not produce changes in the probablity distribution. The masggm, Eq.(1.1), if one considers a random walk in which the
ter equation specifies how this probability distribution step size is given by\; defining
evolves in time due to such transitions between states.

For a system described in terms of discrete stochastic

1 D
\{ariables, the master equation for the _probabiFPt(yn,t) of Wy ((A)=— Kﬁk’HlF(kA)-i- — (Ski+1t i1,
finding the system in a state characterized by the variable A
at timet, is given by (1.9
JP(n,t) o and taking the limitA—0 [2], one gets Eq(1.3). In the
at' = > [P(M, )W n(t) — P(N, )Wy ()], continuous casgEq. (1.2)], if one definesy=x"—x and the
m=— transition rate
(1.7
wherew, (t) represents the transition probability rate from W(X|x+y)=y1(X%,Y)+ y2(x,y)D, (1.9
statek to statel [i.e., wy (t)At is the probability for a tran- where
sition from statek to statel to occur during the time interval
t—t+At]. The master equation may be written also for the F(X)
case of a continuous stochastic variakle Az if O=sy= \/EA,
r(xy)= (1.6a
IP(x,t) % )
P :j dx'[P(x",t)w(x’|x)—P(x,t)w(x|x")], 0 otherwise
1.2 and
wherew(y|z) represents the transition rate from stgtéo 1
statez ﬁ if —\6A<y<6A,
Ya(x,y)=1{ 2V6A
*Email address: evaldo@cbpf.br 0 otherwise,
TCorresponding author. Email address: nobre@dfte.ufrn.br (1.6b
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one may obtain Eql1.3), after the limitA—0 is taken2]. It ~ when the particle spends more time in a given posjtion
is important to mention that other transition rates, differentTherefore, it is reasonable to propose a transition rate be-
from the ones defined above, may be used in order to obtaifjveen two given states with a dependenceRgr,t).

the FPE in Eq(1.3); e.g., for the case of continuous stochas-  Surface growth in fractalsSince the growth of the surface
tic variables, any distribution with the first and second MO-in a fractal System occurs by add|ng new partidesy at ran-
ments given, respectively, by(x) and a constant, and with dom, in the existing surface, one has, like in the preceding
vanishing higher moments in the limit—0, will lead to Eq.  example, a distribution for the time that it takes for a new
(1.3). However, in these transition rates, the first contributionparticle to be placed in a given position of the growing sur-
[associated with the external forégx)] must be an asym- 506 | one define®(x,t) as the probability for a new par-

metric term, in order to yield the first derivative in the right- ticle to be placed at itior by th . f
hand sidgrhs) of Eq. (1.3), whereas the second contribution Iclé to be placed at a positionnearby the growing surtace,
at timet, one should expect a dependence of the transition

(associated with the diffusion constaBD) must be a sym- -
metric term, in order to lead solely to the second derivativeaté onP(x,t) as well. _ _

in the rhs of Eq(1.3) (with a cancellation of first-derivative ~Financial transactions Let us consider a simple case
terms. where the state of the system is characterized by the total

Although the linear FPE is very important for the descrip-amount of money, i.e., the budget, owned by an individual,
tion of many natural phenomena—mainly those within thewhereas transitions between states occur by means of finan-
class of normal diffusion—it is currently accepted that suchCial transactions. The probability for the individual to per-
an equation is not appropriate to describe more complicateffl)rm a certain financial transaction depends, of course, on his
diffusion processes, like those inserted in the class oPudget, in such a way that unprobable transactions may be-
anomalous-diffusion probleni8,4]. Among such processes, come possible as his budget mcreases._The. transition prob-
one may single out the transport of a fluid in porous medig@Pility between states should depend, in this case, on the
[5], the dynamics of surface growfls], diffusion of poly-  Probability for the individual to be found in a state charac-
merlike breakable micelleg6], correlations in heartbeat in- terized by a budget compatible with the transaction. Similar
terval increment$7], and financial transactiorf§]. Nowa-  arguments hold fqr other financial transactions, such as those
days, there is an increasing trend towards the use dietween companies and stock market exchanges.
nonlinear FPEs as good candidates for a proper description This paper is organized as follows. In the following sec-
of anomalous-diffusion processf3—6,9—16. Some of the tion we gon5|d_er the master equation for a system of d!screte
nonlinear FPEs proposed appear as simple phenomenologitochastic variables; by introducing transition rates with an
cal generalizations of the linear FPE in Ef.3) [9-12, and  €xplicit dependence on the probability of finding the system
their solution comes to be the powerlike probability distribu-in @ given state, we derive a nonlinear FPE. In Sec. Ill, a
tion that maximizes the entropy proposed by Tsallig—20. _S|m|lar procedure is given for th_e case of a system described

It is important to remind that it is also possible to describein terms of continuous stochastic variables. In both cases, we
anomalous transport processes within a linear theory, by inshow that the time-dependent Tsallis's power-law probability
troducing the anomalous nature of the process through Copilstn_bunon is _a_soll_Jtlon _of _the_z nonlinear FPEs obt_alned, and
relations expressed in nonlocal operators. Such an approaéhat in the infinite-time limit, it approaches a stationary so-
has been much considered recently, through the study of tHtion. Finally, in Sec. IV we present our conclusions.
fractional Fokker-Planck equatiofsee Ref.[21] for a re-
view), which may also be derive[22] from a generalized
master equatioh23,24]. Il. DISCRETE STOCHASTIC VARIABLES

In the present work, we derive nonlinear FPEs directly . )
from the master equation, by introducing nonlinear effects on L€t US consider the master equation of E.1) for a
the transition rates. Such nonlinear effects are expected tGndom walk in which the step size is given fy
appear in some processes within the anomalous-diffusion
class, as we argue below. .

Particle diffusion in a porous medid&he randomness in JP(NnA,t)
the media induces a distribution for the time that the particle gt :m;w [P(MA, )Wy n(A) = P(NA, )Wy m(A)].
spends in each position; one expects that such a distribution (2.1
should be related to the probability distributi®{x,t), de-
fined above. The probability for a jump between two givenAs argued before, we shall introduce a transition rate with a
states in phase space, in this case, should take in considelependence oR; we do that by modifying the transition rate
ation this time distributioritransitions become more unlikely of Eq. (1.4) to the form

1

Wy (A)= A

O1+1F (kA) + é(ﬁk,l+l+ Si-D[aP* H(kA D +DP (1A )], 2.2
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wherea andb are constants, whic.h may depend, in principle, IP(x,1) AFOP(xD]  dPPH(x,t)
on the system under consideration. The first nonlinear con =— +

tribution, P#~1(kA,t), corresponds to a dependence on the
probability of the state where the system is found, before the 2P(x 1
transition takes place; the motivation for this kind of contri- +bPYL(x,t) 1) —bP(x,t)
bution has been described, for several real systems, at the 2

end of the preceding section. For the sake of generality, we 2.4)
introduce, as well, through the second nonlinear contribu- '

tion, P*"1(1A,t), a dependence on the probabilities of thelt should be noticed that the equation above recoversb for
states near statk the relevance of this term will be dis- =0, the nonlinear FPE proposed, on a phenomenological
cussed throughout this section. It is important to remind thabasis, by many authors[9-14], whereas the term
the transition rate above reduces to the form of Eqg4) bP”~1(x,t) 3P (x,t)/dx? coincides with one of the terms in
either for @=D,b=0u=1) or (a+b=D,u=v=1); ob-  the nonlinear diffusion equation proposed by Bouchewal.
viously, the nonlinear FPE to be obtained will recover the(consideringy—1=— 6, in their notation, for the descrip-

X axz

PP L(x,1)

NG

form of Eq.(1.3) in these two particular limits. tion of the diffusion of polymerlike breakable micellgg].
Substituting Eq(2.2) in Eq. (2.1), carrying out the sums, This gives an example where the second nonlinear contribu-
and definingk=nA, one gets tion to the transition rate of E¢2.2) [term bP* " 1(1A,t)]

could be important.
In the Appendix we show that Tsallis’s probability distri-

JP(x,t) 1 .
=~ 1 [POXFADF(x+A) = P(X,DF (X)] bution,
. oa PO =B(B[£(x,H)]Y, (2.59
+ S [PHX+A D +PAX=A1)] = = P#(x1)
A A Ex,)=1+B1(a-Ix—x(H)]*  (1<q<3),
b (2.5b
+ va_l(x.t)[P(X‘*'A,t)‘*' P(x—A,t)] is a solution of Eq.(2.4), with the particular choicg.= v
=2—q, for the case of an external forégx) =k; —k,x (k;
b andk, constantsk,=0). It is shown that, if one considers a
— —PXO[P" Hx+A,t)+ P L(x—Ab)]. normalized probability distribution at some reference initial
A? time,t=ty, [/~ .dxP(x,ty) =1, the above solution preserves
2.3 the normalization condition for any arbitrary tinigt>t;).
Furthermore, the parameters of E¢a.5) satisfy differential
The limit A—0 leads to the following nonlinear FPE: equations that may be solved to yield
Ky Ky
Xo(t)= P Xo(to)_k— exf —ka(t—to)], (2.63
2 2
B(t)={(B*)973+{[B(to)]97— (B*)" *fex —ka(3— ) (t—t) }4~2), (2.6b
B(H)=p(t ){ iy r (2.69
- PVYUB(ty)) '
|
In the limit t—o, the above time-dependent parameters ap- * ]2
proach the stationary values, B* = B(to) Bty (2.79
r_fa 2.7
Xo _k_z' (2.7a which requirea(2—q)+bg>0. In the Appendix, we also
show that the above stationary solution is stable under small
) Y(3-q) arbitrary perturbations.
B* = ke[ B(to)] 2.7 With the choiceuw=v=2-q, mentioned above, the non-

2[a(2—q)+bq]B(to) linear FPE of Eq(2.4) becomes
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IP(x,t)  AFOOP(XD]  a*PPAx,t)
a X a2

PPP(x,t 9*PL9(x,t
R L
dIX

—bP(x,t) 5
X

(2.9

where one can identify the term relevant for the descriptio

of breakable-micelles difusiot,P~9(x,t) 9?P(x,t)/9x?, by
consideringfd=q—1, which yieldsq=5/2, for the typical
value 6=3/2[6].

It is important to remind that the above solution is valid

for 1<q<3 and, for stability, one must haxva{2—q) +bq

n

PHYSICAL REVIEW B7, 021107 (2003

where we have changed- —y in the first integral. Defining
7(X,y)=W(x|x+y) as the transition rate between states
andx+vy, Eq.(3.1) may be written as

JP(x,t)
ot

= fldV[P(x—y,t)r(x—y,y)— P(x,t) 7(X,y)].
(3.2

Considering7(x,y) sharply peaked aroung=0, one may
expand Eq(3.2) [26,27,7,

(_ Y)n an[ P(th) T(le)]
"X '

IP(x,t) (= ”
at :f dy{nzl ni

— o0

(3.3

>0. Besides that, each of the coefficients of the derivatives . . .

in Eq. (2.8) must change its sign, whenever the total power'-et us now define the transition rate for a transition between
of P(x,t) changes sign, leading @mb>0 for 1<q<2, and  Statesx and x+y; we shall do_ this by modifying the one
a,b<0 for 2<q<3. Without loss of generality, the deriva- USed for the derivation of the linear Fi&ee Eqs(1.5 and

tives that appear in the above equation may be rewritten ifiL-6] in such a way so as to introduce a dependencé®on
such a way so as to yield an analytic continuationSimilar to the one used in the case of discrete stochastic

throughq=2, e.g., the second term in rhs of EQ.8) is  varables[cf. Eq.(2.2)]. Let us consider

equivalent to, apart from a multiplicative constant,
[a/(2—q) ][ #%(P?9(x,t) — 1)/9x?], leading to
a{a°[In P(x,t))/ox%}, wheng— 2. The restrictions mentioned
above result in

7(X,Y) = y1(%,Y) + v2( X, y)[@aP* 1(x,t) + bP" Y(x+y,1)],
(3.4)

wherey;(x,y) and y»(x,y) are the same as defined in Egs.

2—q (1.6). Substituting the transition rate above in E8.3), ex-
b>_Ta (1<qg<2; a,b>0), (298 pandingP* Y(x+y,t) for y small, and taking the limit\
—0, one gets the following nonlinear FPE:
|b|<u|a| (2<q<3; a,b<0). (2.9 IP(x,1) JF(X)P(x,t)]  °PA(x,t)  8?PY(x,t)
q ot N X +a é’XZ (5’X2
The restrictiqn in Eq(2.99, for 1<q.<.2, is sf'itisfied for any aP(x.1) JP"I(x.1)
pair of coefficientsa andb (a,b>0); in particular, one can —2b
have systems for which the above solution may be valid, X X
with b>a, implying a behavior dominated by transitions 2P L(x t
with a dependence on the probabilities of the states near state —2bP(x,t) (x.1) _ (3.5
k [term bP”1(1A,t) in Eq. (2.2)]. On the other hand, the ax?

restriction in Eq.(2.9b), for 2<q<3, shows that, for the
above solution to be valid, transitions with a dependence oAlthough the equation above presents a few different terms
the probability of the state where the system is found, beforavith respect to the nonlinear FPE obtained in the preceding

the transition takes plagéermP*~%(kA,t) in Eq.(2.2)], are
always dominant, particularly a3—2 from above. In this
case, transitions with a dependenceRf 1(IA,t) become
more relevant ag moves away frong=2.

section[cf. Eq. (2.4)], the probability distribution of Egs.
(2.5 is also a solution in the present case, if one considers
the same external force, i.€&(x) =k; —k,x (k; andk, con-
stants,k,=0). Indeed, if one substitutes the derivatives of

In the following section, we shall derive a nonlinear FPEEQs.(A2) (see Appendixinto Eq.(3.5), considering the par-
from a master equation defined for a system of continuougcular choiceu=v=2—q, and comparing equal powers,

stochastic variables.

IIl. CONTINUOUS STOCHASTIC VARIABLES

Introducing the variablg=x—x’, the master equation of
Eqg. (1.2) becomes

IP(X,t o
o0 [ ayipoeyowoeyho

—P(x,t)w(x|x+y)], (3.

[£(x,1)]¢@=D[x—xq(t)]™, one finds, curiouslyexactlythe
same set of differential equations of the previous case, for
the parametersxg(t),B(t),B(t)) [cf. Egs.(A3) in the Ap-
pendix. It should be emphasized that the two nonlinear
FPEs derived herein present a solution with siaene func-
tional formif an external force of the kin&(x) =k; —kyXx is
considered in both cases. However, the parametensd b

that appear in such solutions have different meanings in each
case, since they may be associated with distinct coefficients
of the differential equations. Hence, the same analysis of the
preceding section applies for the present case.
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With the choiceu=v=2-q, Eq. (3.5 becomes more general than some nonlinear FPEs, introduced previ-
ously by many authors, in a purely phenomenological basis.
JP(x,t) I F(X)P(x,1)] PP279(x,1) The pertinence of the new terms was discussed, and it was
a IX +(a+b)T argued that, depending on the system, such terms may be-
come important, and even dominate the dynamics. The tran-
IP(x,t) aP179(x,t) sition rates employed, as well as the FPEs obtained, are ex-

—2b X X pected to be relevant for the description of many real
phenomena, specially those included in the anomalous-

2P 9(x ) diffusion category.
—2bP(x,t) 5 (3.6
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We have derived nonlinear FPEs directly from the mastePations-
equation. The master equation was considered for cases of
transitions among both discrete and continuous sets of states, APPENDIX
leading to two different nonlinear FPEs. The nonlinear ef-
fects were introduced through a dependence of the transitiogX
rates on both probabilities of finding the system on the state_
before and after the transition. We have shown that the prot{ﬂ
ability distribution that maximizes Tsallis’s entropy is a so-
lution of both equations; although the two nonlinear FPEs P(x,t)=B(t)[ &(x,t)]Y1-9, (Ala)
appear to be different from each other, the time-dependent
parameters that appear in Tsallis’s probability distribution — £(x t)=1+g(t)(q—1)[x—Xo(1)]? (1<q<3),
satisfy the same differential equations. We have found the (Alb)
stationary solution, and have shown that, in the infinite-time
limit, it represents a stable solution. Our FPEs appear to bis a solution of Eq(2.4). Substituting the derivatives

In this appendix we will solve Eq2.4) for the case of an
ternal force F(x)=k;—k,x (k; and k, constants,k,
0); in fact, we will show that the Tsallis’s probability dis-
bution,

JP(x,t dB(t dx(t dp(t
O BB L 0409 1 BOLEDTH0 9 280D o]~ [x-xo(D ]|, (A2a)
w == 2(ky = k) B(H[£(x,1) YD B(1)[X—Xo(t) ] — kB(H)[&(x, 1) ]* D, (A2Db)
W= —2yBY(O[E0 D] VD BO[x—xXp(D)], (A2¢)
P?P(x,t) B _ _ _
T=—278’(t)[§(x,t)](7 LI g(t) + 4yB7(t) (y— 1+ q)[£(x,1) ]~ 227D B2 1) [ x— x4 () ]2
X
(A2d)
|
into Eq. (2.4) and equating equal powerist(x,t)]*/* =[x dB(t)
—Xo(t)]™, one has, for the particular choige=r=2-q, T=sz(t)—Z[a(Z—q)+bq][B(t)]z‘q,B(t),
the set of differential equations (A3b)
dg(t
dxo(t) %)=2k2,3(t)—4[a(2—Q)+bQ][B(t)]lquZ(t)-
T =k; —koxo(t), (A3a) (A30)
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Comparing Egs(A3b) and (A3c), one concludes that

dp(t) _pB(t) dB(t)
dt  “B(t) dt ’

(Ad)

which is the equation that ensures the preservation of the ¢pt)

normalization condition foP(x,t) [9]. In fact, if one inte-
grates Eq(A4), one gets a relation betwegi(t) andB(t),

sof

B(to) (A5

B(t)=B(to)

wheret, is some reference initial time. If one chooses the

normalization constarf25]

B(to)(q—1)

Y2 T[1(g-1)]

B(to)= T[(3—a)/2(q—1)]

(1<q<3),
(A6)

the normalization condition at=ty, [~ . dxP(x,tg)=1,
may be expressed as

ﬁ” dxP(x,to)
- fj;de(to){1+,3(to)(q— 1)[x—Xg(tg) 21V 9

= B(to)[ﬁ(to)]’l’zfidy[u (q—1)y?JYa-a=1,

(A7)

where we have defined the variablg,=[B(to)]Yqx
—Xo(tg)]. Now, for an arbitrary time (t>t;),

f:de(x,t)

:fm de(t){1+,8(t)(q—1)[X_Xo(t)]2}1/(1—q)

= B(t)[ﬁ(t)]_”zf:dz[lﬂq— 1M 9=1, (A8)

where,z=[ B(t)]¥4 x—xo(t)]; the preservation of normal-
ization obtained above follows by using EGA5), when
comparing the last integrals of Eq#\7) and (A8).

PHYSICAL REVIEW B7, 021107 (2003

Let us now concentrate on the set of E¢s3); due to the
relation in Eq.(Ab), it is necessary to solve either one of
Egs. (A3b) or (A3c). Substituting Eq(A5) into Eq. (A3b),
one gets

B(to)

[B(t)]?
(A9)

—gr ~ keB()—2[a(2—q) +bq][B(1)]* "¢

Let us first analyze the stationary solutid®?, satisfying
(dB*/dt)=0,
ko[ B(to)]? vE-9)

| 2[a(2—q) +bq]B(to) !

which requiresa(2—q)+bg>0. In order to perform a sta-
bility analysis of the stationary solutidsi*, we will consider
a small arbitrary perturbationy(t) around B*, i.e., B(t)
=B* + 5(t); one gets from Eq(A9),

*

(A10)

dp(t) 3
g A7), A=k;—2[a(2—q)+bal(4—q)
_, B(to)
X[B*]¥ 4 ———. (A11)
& [B(to)]?

Stability requires\ <0; if one substitutes EqA10) into Eq.
(Al11), one gets that\ =k,(q—3), which is negative for
< 3. Therefore, the stationary soluti@¥ of Eqg. (A10) rep-
resents a stable solution of Eg\9), in the limitt—c. As a
consequence of this, the associated stationary solyédn,
obtained from Eq.(A5), is also an stable solution in the
infinite-time limit. A similar analysis follows trivially for the
stationary solution of Eq(A3a), x3 =k /k,.

The differential equation§A3a) and (A9) may be solved
easily[10]; one gets

k k
xo<t>=k—;+ Xo(to)_k_i ex —ky(t—to)], (A12a)

B(t)={(B*)9 3+{[B(tp)]9 3~ (B*)% 3}exd —k,(3—0)
X(t—to) J1@~3), (A12b)

which approach, in the limit—oo, the stationary solutions
(x3 ,B*) defined above.
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