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Derivation of nonlinear Fokker-Planck equations by means of approximations
to the master equation
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Nonlinear Fokker-Planck equations~FPEs! are derived as approximations to the master equation, in cases of
transitions among both discrete and continuous sets of states. The nonlinear effects, introduced through the
transition probabilities, are argued to be relevant for many real phenomena within the class of anomalous-
diffusion problems. The nonlinear FPEs obtained appear to be more general than some previously proposed~on
a purely phenomenological basis! ones. In spite of this, the same kind of solution applies, i.e., it is shown that
the time-dependent Tsallis’s probability distribution is a solution of both equations, obtained either from
discrete or continuous sets of states, and that the corresponding stationary solution is, in the infinite-time limit,
a stable solution.
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I. INTRODUCTION

The master equation is one of the most important eq
tions in statistical physics, with a wide range of applicabili
essentially, it governs the dynamics of Markov process
which are stochastic processes with a very limited mem
of previous events@1,2#. The time evolution of a system o
stochastic variables is characterized by transitions betw
the various realizations of these variables, in such a way
the probability of finding the system in a given state chan
in time until it reaches a steady state, in which transitions
not produce changes in the probablity distribution. The m
ter equation specifies how this probability distributio
evolves in time due to such transitions between states.

For a system described in terms of discrete stocha
variables, the master equation for the probabilityP(n,t) of
finding the system in a state characterized by the variabn
at time t, is given by

]P~n,t !

]t
5 (

m52`

`

@P~m,t !wm,n~ t !2P~n,t !wn,m~ t !#,

~1.1!

wherewk,l(t) represents the transition probability rate fro
statek to statel @i.e., wk,l(t)Dt is the probability for a tran-
sition from statek to statel to occur during the time interva
t→t1Dt]. The master equation may be written also for t
case of a continuous stochastic variablex,

]P~x,t !

]t
5E

2`

`

dx8@P~x8,t !w~x8ux!2P~x,t !w~xux8!#,

~1.2!

wherew(yuz) represents the transition rate from statey to
statez.
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By choosing conveniently the transition rates, both for
of the master equation@Eqs.~1.1! and~1.2!# lead, under cer-
tain approximations@1,2#, to the linear Fokker-Planck equa
tion ~FPE!,

]P~x,t !

]t
52

]@F~x!P~x,t !#

]x
1D

]2P~x,t !

]x2
, ~1.3!

whereD is a constant~usually known as the diffusion con
stant! andF(x) represents an external force. For the case
discrete stochastic variables, the FPE above may be obta
from Eq. ~1.1!, if one considers a random walk in which th
step size is given byD; defining

wk,l~D!52
1

D
dk,l 11F~kD!1

D

D2
~dk,l 111dk,l 21!,

~1.4!

and taking the limitD→0 @2#, one gets Eq.~1.3!. In the
continuous case@Eq. ~1.2!#, if one definesy5x82x and the
transition rate

w~xux1y!5g1~x,y!1g2~x,y!D, ~1.5!

where

g1~x,y!5H F~x!

D2 if 0<y<A2D,

0 otherwise

~1.6a!

and

g2~x,y!5H 1

2A6D3
if 2A6D<y<A6D,

0 otherwise,
~1.6b!
©2003 The American Physical Society07-1
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one may obtain Eq.~1.3!, after the limitD→0 is taken@2#. It
is important to mention that other transition rates, differe
from the ones defined above, may be used in order to ob
the FPE in Eq.~1.3!; e.g., for the case of continuous stocha
tic variables, any distribution with the first and second m
ments given, respectively, byF(x) and a constant, and with
vanishing higher moments in the limitD→0, will lead to Eq.
~1.3!. However, in these transition rates, the first contribut
@associated with the external forceF(x)] must be an asym-
metric term, in order to yield the first derivative in the righ
hand side~rhs! of Eq. ~1.3!, whereas the second contributio
~associated with the diffusion constantD) must be a sym-
metric term, in order to lead solely to the second derivat
in the rhs of Eq.~1.3! ~with a cancellation of first-derivative
terms!.

Although the linear FPE is very important for the descr
tion of many natural phenomena—mainly those within t
class of normal diffusion—it is currently accepted that su
an equation is not appropriate to describe more complica
diffusion processes, like those inserted in the class
anomalous-diffusion problems@3,4#. Among such processes
one may single out the transport of a fluid in porous me
@5#, the dynamics of surface growth@5#, diffusion of poly-
merlike breakable micelles@6#, correlations in heartbeat in
terval increments@7#, and financial transactions@8#. Nowa-
days, there is an increasing trend towards the use
nonlinear FPEs as good candidates for a proper descrip
of anomalous-diffusion processes@3–6,9–16#. Some of the
nonlinear FPEs proposed appear as simple phenomeno
cal generalizations of the linear FPE in Eq.~1.3! @9–12#, and
their solution comes to be the powerlike probability distrib
tion that maximizes the entropy proposed by Tsallis@17–20#.

It is important to remind that it is also possible to descr
anomalous transport processes within a linear theory, by
troducing the anomalous nature of the process through
relations expressed in nonlocal operators. Such an appr
has been much considered recently, through the study o
fractional Fokker-Planck equation~see Ref.@21# for a re-
view!, which may also be derived@22# from a generalized
master equation@23,24#.

In the present work, we derive nonlinear FPEs direc
from the master equation, by introducing nonlinear effects
the transition rates. Such nonlinear effects are expecte
appear in some processes within the anomalous-diffu
class, as we argue below.

Particle diffusion in a porous media. The randomness in
the media induces a distribution for the time that the part
spends in each position; one expects that such a distribu
should be related to the probability distributionP(xW ,t), de-
fined above. The probability for a jump between two giv
states in phase space, in this case, should take in cons
ation this time distribution~transitions become more unlikel
02110
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when the particle spends more time in a given positio!.
Therefore, it is reasonable to propose a transition rate
tween two given states with a dependence onP(xW ,t).

Surface growth in fractals. Since the growth of the surfac
in a fractal system occurs by adding new particles, at r
dom, in the existing surface, one has, like in the preced
example, a distribution for the time that it takes for a ne
particle to be placed in a given position of the growing s
face. If one definesP(xW ,t) as the probability for a new par
ticle to be placed at a positionxW nearby the growing surface
at time t, one should expect a dependence of the transi
rate onP(xW ,t) as well.

Financial transactions. Let us consider a simple cas
where the state of the system is characterized by the t
amount of money, i.e., the budget, owned by an individu
whereas transitions between states occur by means of fi
cial transactions. The probability for the individual to pe
form a certain financial transaction depends, of course, on
budget, in such a way that unprobable transactions may
come possible as his budget increases. The transition p
ability between states should depend, in this case, on
probability for the individual to be found in a state chara
terized by a budget compatible with the transaction. Sim
arguments hold for other financial transactions, such as th
between companies and stock market exchanges.

This paper is organized as follows. In the following se
tion we consider the master equation for a system of disc
stochastic variables; by introducing transition rates with
explicit dependence on the probability of finding the syst
in a given state, we derive a nonlinear FPE. In Sec. III
similar procedure is given for the case of a system descri
in terms of continuous stochastic variables. In both cases
show that the time-dependent Tsallis’s power-law probabi
distribution is a solution of the nonlinear FPEs obtained, a
that in the infinite-time limit, it approaches a stationary s
lution. Finally, in Sec. IV we present our conclusions.

II. DISCRETE STOCHASTIC VARIABLES

Let us consider the master equation of Eq.~1.1! for a
random walk in which the step size is given byD,

]P~nD,t !

]t
5 (

m52`

`

@P~mD,t !wm,n~D!2P~nD,t !wn,m~D!#.

~2.1!

As argued before, we shall introduce a transition rate wit
dependence onP; we do that by modifying the transition rat
of Eq. ~1.4! to the form
wk,l~D!52
1

D
dk,l 11F~kD!1

1

D2
~dk,l 111dk,l 21!@aPm21~kD,t !1bPn21~ lD,t !#, ~2.2!
7-2
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wherea andb are constants, which may depend, in princip
on the system under consideration. The first nonlinear c
tribution, Pm21(kD,t), corresponds to a dependence on
probability of the state where the system is found, before
transition takes place; the motivation for this kind of cont
bution has been described, for several real systems, a
end of the preceding section. For the sake of generality,
introduce, as well, through the second nonlinear contri
tion, Pn21( lD,t), a dependence on the probabilities of t
states near statek; the relevance of this term will be dis
cussed throughout this section. It is important to remind t
the transition rate above reduces to the form of Eq.~1.4!
either for (a5D,b50,m51) or (a1b5D,m5n51); ob-
viously, the nonlinear FPE to be obtained will recover t
form of Eq. ~1.3! in these two particular limits.

Substituting Eq.~2.2! in Eq. ~2.1!, carrying out the sums
and definingx5nD, one gets

]P~x,t !

]t
52

1

D
@P~x1D,t !F~x1D!2P~x,t !F~x!#

1
a

D2
@Pm~x1D,t !1Pm~x2D,t !#2

2a

D2
Pm~x,t !

1
b

D2
Pn21~x,t !@P~x1D,t !1P~x2D,t !#

2
b

D2
P~x,t !@Pn21~x1D,t !1Pn21~x2D,t !#.

~2.3!

The limit D→0 leads to the following nonlinear FPE:
ap
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]P~x,t !

]t
52

]@F~x!P~x,t !#

]x
1a

]2Pm~x,t !

]x2

1bPn21~x,t !
]2P~x,t !

]x2
2bP~x,t !

]2Pn21~x,t !

]x2
.

~2.4!

It should be noticed that the equation above recovers, fob
50, the nonlinear FPE proposed, on a phenomenolog
basis, by many authors@9–14#, whereas the term
bPn21(x,t)]2P(x,t)/]x2 coincides with one of the terms in
the nonlinear diffusion equation proposed by Bouchaudet al.
~consideringn2152u, in their notation!, for the descrip-
tion of the diffusion of polymerlike breakable micelles@6#.
This gives an example where the second nonlinear contr
tion to the transition rate of Eq.~2.2! @term bPn21( lD,t)]
could be important.

In the Appendix we show that Tsallis’s probability distr
bution,

P~x,t !5B~ t !@j~x,t !#1/(12q), ~2.5a!

j~x,t !511b~ t !~q21!@x2x0~ t !#2 ~1,q,3!,
~2.5b!

is a solution of Eq.~2.4!, with the particular choicem5n
522q, for the case of an external forceF(x)5k12k2x (k1
andk2 constants,k2>0). It is shown that, if one considers
normalized probability distribution at some reference init
time, t5t0 , *2`

` dxP(x,t0)51, the above solution preserve
the normalization condition for any arbitrary timet (t.t0).
Furthermore, the parameters of Eqs.~2.5! satisfy differential
equations that may be solved to yield
x0~ t !5
k1

k2
1Fx0~ t0!2

k1

k2
Gexp@2k2~ t2t0!#, ~2.6a!

B~ t !5$~B* !q231$@B~ t0!#q232~B* !q23%exp@2k2~32q!~ t2t0!#%1/(q23), ~2.6b!

b~ t !5b~ t0!F B~ t !

B~ t0!G
2

. ~2.6c!
all

-

In the limit t→`, the above time-dependent parameters
proach the stationary values,

x0* 5
k1

k2
, ~2.7a!

B* 5H k2@B~ t0!#2

2@a~22q!1bq#b~ t0!J 1/(32q)

, ~2.7b!
-
b* 5b~ t0!F B*

B~ t0!G
2

, ~2.7c!

which requirea(22q)1bq.0. In the Appendix, we also
show that the above stationary solution is stable under sm
arbitrary perturbations.

With the choicem5n522q, mentioned above, the non
linear FPE of Eq.~2.4! becomes
7-3
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]P~x,t !

]t
52

]@F~x!P~x,t !#

]x
1a

]2P22q~x,t !

]x2

1bP12q~x,t !
]2P~x,t !

]x2
2bP~x,t !

]2P12q~x,t !

]x2
,

~2.8!

where one can identify the term relevant for the descript
of breakable-micelles difusion,bP12q(x,t)]2P(x,t)/]x2, by
consideringu5q21, which yieldsq55/2, for the typical
valueu53/2 @6#.

It is important to remind that the above solution is va
for 1,q,3 and, for stability, one must havea(22q)1bq
.0. Besides that, each of the coefficients of the derivati
in Eq. ~2.8! must change its sign, whenever the total pow
of P(x,t) changes sign, leading toa,b.0 for 1,q,2, and
a,b,0 for 2,q,3. Without loss of generality, the deriva
tives that appear in the above equation may be rewritte
such a way so as to yield an analytic continuati
through q52, e.g., the second term in rhs of Eq.~2.8! is
equivalent to, apart from a multiplicative constan
@a/(22q)#@]2(P22q(x,t)21)/]x2#, leading to
a$]2@ ln P(x,t)#/]x2%, whenq→2. The restrictions mentione
above result in

b.2
22q

q
a ~1,q,2; a,b.0!, ~2.9a!

ubu,
q22

q
uau ~2,q,3; a,b,0!. ~2.9b!

The restriction in Eq.~2.9a!, for 1,q,2, is satisfied for any
pair of coefficientsa andb (a,b.0); in particular, one can
have systems for which the above solution may be va
with b@a, implying a behavior dominated by transition
with a dependence on the probabilities of the states near
k @term bPn21( lD,t) in Eq. ~2.2!#. On the other hand, the
restriction in Eq.~2.9b!, for 2,q,3, shows that, for the
above solution to be valid, transitions with a dependence
the probability of the state where the system is found, bef
the transition takes place@termPm21(kD,t) in Eq. ~2.2!#, are
always dominant, particularly asq→2 from above. In this
case, transitions with a dependence onPn21( lD,t) become
more relevant asq moves away fromq52.

In the following section, we shall derive a nonlinear FP
from a master equation defined for a system of continu
stochastic variables.

III. CONTINUOUS STOCHASTIC VARIABLES

Introducing the variabley5x2x8, the master equation o
Eq. ~1.2! becomes

]P~x,t !

]t
5E

2`

`

dy@P~x2y,t !w~x2yux!

2P~x,t !w~xux1y!#, ~3.1!
02110
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where we have changedy→2y in the first integral. Defining
t(x,y)5w(xux1y) as the transition rate between statesx
andx1y, Eq. ~3.1! may be written as

]P~x,t !

]t
5E

2`

`

dy@P~x2y,t !t~x2y,y!2P~x,t !t~x,y!#.

~3.2!

Consideringt(x,y) sharply peaked aroundy50, one may
expand Eq.~3.2! @26,27,2#,

]P~x,t !

]t
5E

2`

`

dyH (
n51

`
~2y!n

n!

]n@P~x,t !t~x,y!#

]nx
J .

~3.3!

Let us now define the transition rate for a transition betwe
statesx and x1y; we shall do this by modifying the one
used for the derivation of the linear FPE@see Eqs.~1.5! and
~1.6!# in such a way so as to introduce a dependence oP
similar to the one used in the case of discrete stocha
variables@cf. Eq. ~2.2!#. Let us consider

t~x,y!5g1~x,y!1g2~x,y!@aPm21~x,t !1bPn21~x1y,t !#,

~3.4!

whereg1(x,y) andg2(x,y) are the same as defined in Eq
~1.6!. Substituting the transition rate above in Eq.~3.3!, ex-
pandingPn21(x1y,t) for y small, and taking the limitD
→0, one gets the following nonlinear FPE:

]P~x,t !

]t
52

]@F~x!P~x,t !#

]x
1a

]2Pm~x,t !

]x2
1b

]2Pn~x,t !

]x2

22b
]P~x,t !

]x

]Pn21~x,t !

]x

22bP~x,t !
]2Pn21~x,t !

]x2
. ~3.5!

Although the equation above presents a few different te
with respect to the nonlinear FPE obtained in the preced
section @cf. Eq. ~2.4!#, the probability distribution of Eqs
~2.5! is also a solution in the present case, if one consid
the same external force, i.e.,F(x)5k12k2x (k1 andk2 con-
stants,k2>0). Indeed, if one substitutes the derivatives
Eqs.~A2! ~see Appendix! into Eq.~3.5!, considering the par-
ticular choicem5n522q, and comparing equal powers
@j(x,t)#a/(12q)@x2x0(t)#m, one finds, curiously,exactlythe
same set of differential equations of the previous case,
the parameters (x0(t),B(t),b(t)) @cf. Eqs. ~A3! in the Ap-
pendix#. It should be emphasized that the two nonline
FPEs derived herein present a solution with thesame func-
tional form if an external force of the kindF(x)5k12k2x is
considered in both cases. However, the parametersa and b
that appear in such solutions have different meanings in e
case, since they may be associated with distinct coefficie
of the differential equations. Hence, the same analysis of
preceding section applies for the present case.
7-4
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With the choicem5n522q, Eq. ~3.5! becomes

]P~x,t !

]t
52

]@F~x!P~x,t !#

]x
1~a1b!

]2P22q~x,t !

]x2

22b
]P~x,t !

]x

]P12q~x,t !

]x

22bP~x,t !
]2P12q~x,t !

]x2
~3.6!

in such a way that Tsallis’s probability distribution is a sol
tion of the nonlinear FPE above, with its validity restricte
by the constraints of Eqs.~2.9!.

IV. CONCLUSION

We have derived nonlinear FPEs directly from the mas
equation. The master equation was considered for case
transitions among both discrete and continuous sets of st
leading to two different nonlinear FPEs. The nonlinear
fects were introduced through a dependence of the trans
rates on both probabilities of finding the system on the s
before and after the transition. We have shown that the p
ability distribution that maximizes Tsallis’s entropy is a s
lution of both equations; although the two nonlinear FP
appear to be different from each other, the time-depend
parameters that appear in Tsallis’s probability distribut
satisfy the same differential equations. We have found
stationary solution, and have shown that, in the infinite-ti
limit, it represents a stable solution. Our FPEs appear to
02110
r
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-
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more general than some nonlinear FPEs, introduced pr
ously by many authors, in a purely phenomenological ba
The pertinence of the new terms was discussed, and it
argued that, depending on the system, such terms may
come important, and even dominate the dynamics. The t
sition rates employed, as well as the FPEs obtained, are
pected to be relevant for the description of many r
phenomena, specially those included in the anomalo
diffusion category.
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APPENDIX

In this appendix we will solve Eq.~2.4! for the case of an
external forceF(x)5k12k2x (k1 and k2 constants,k2
>0); in fact, we will show that the Tsallis’s probability dis
tribution,

P~x,t !5B~ t !@j~x,t !#1/(12q), ~A1a!

j~x,t !511b~ t !~q21!@x2x0~ t !#2 ~1,q,3!,
~A1b!

is a solution of Eq.~2.4!. Substituting the derivatives
]P~x,t !

]t
5

dB~ t !

dt
@j~x,t !#1/(12q)1B~ t !@j~x,t !#q/(12q)F2b~ t !@x2x0~ t !#

dx0~ t !

dt
2@x2x0~ t !#2

db~ t !

dt G , ~A2a!

]@F~x!P~x,t !#

]x
522~k12k2x!B~ t !@j~x,t !#q/(12q)b~ t !@x2x0~ t !#2k2B~ t !@j~x,t !#1/(12q), ~A2b!

]Pg~x,t !

]x
522gBg~ t !@j~x,t !# (g211q)/(12q)b~ t !@x2x0~ t !#, ~A2c!

]2Pg~x,t !

]x2
522gBg~ t !@j~x,t !# (g211q)/(12q)b~ t !14gBg~ t !~g211q!@j~x,t !# (g2212q)/(12q)b2~ t !@x2x0~ t !#2

~A2d!
into Eq. ~2.4! and equating equal powers,@j(x,t)#a/(12q)@x
2x0(t)#m, one has, for the particular choicem5n522q,
the set of differential equations

dx0~ t !

dt
5k12k2x0~ t !, ~A3a!
dB~ t !

dt
5k2B~ t !22@a~22q!1bq#@B~ t !#22qb~ t !,

~A3b!

db~ t !

dt
52k2b~ t !24@a~22q!1bq#@B~ t !#12qb2~ t !.

~A3c!
7-5
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Comparing Eqs.~A3b! and ~A3c!, one concludes that

db~ t !

dt
52

b~ t !

B~ t !

dB~ t !

dt
, ~A4!

which is the equation that ensures the preservation of
normalization condition forP(x,t) @9#. In fact, if one inte-
grates Eq.~A4!, one gets a relation betweenb(t) andB(t),

b~ t !5b~ t0!F B~ t !

B~ t0!G
2

, ~A5!

where t0 is some reference initial time. If one chooses t
normalization constant@25#

B~ t0!5Fb~ t0!~q21!

p G1/2 G@1/~q21!#

G@~32q!/2~q21!#
~1,q,3!,

~A6!

the normalization condition att5t0 , *2`
` dxP(x,t0)51,

may be expressed as

E
2`

`

dxP~x,t0!

5E
2`

`

dxB~ t0!$11b~ t0!~q21!@x2x0~ t0!#2%1/(12q)

5B~ t0!@b~ t0!#21/2E
2`

`

dy@11~q21!y2#1/(12q)51,

~A7!

where we have defined the variable,y5@b(t0)#1/2@x
2x0(t0)#. Now, for an arbitrary timet (t.t0),

E
2`

`

dxP~x,t !

5E
2`

`

dxB~ t !$11b~ t !~q21!@x2x0~ t !#2%1/(12q)

5B~ t !@b~ t !#21/2E
2`

`

dz@11~q21!z2#1/(12q)51, ~A8!

where,z5@b(t)#1/2@x2x0(t)#; the preservation of normal
ization obtained above follows by using Eq.~A5!, when
comparing the last integrals of Eqs.~A7! and ~A8!.
m
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Let us now concentrate on the set of Eqs.~A3!; due to the
relation in Eq.~A5!, it is necessary to solve either one
Eqs. ~A3b! or ~A3c!. Substituting Eq.~A5! into Eq. ~A3b!,
one gets

dB~ t !

dt
5k2B~ t !22@a~22q!1bq#@B~ t !#42q

b~ t0!

@B~ t0!#2
.

~A9!

Let us first analyze the stationary solution,B* , satisfying
(dB* /dt)50,

B* 5H k2@B~ t0!#2

2@a~22q!1bq#b~ t0!J 1/(32q)

, ~A10!

which requiresa(22q)1bq.0. In order to perform a sta
bility analysis of the stationary solutionB* , we will consider
a small arbitrary perturbationh(t) around B* , i.e., B(t)
5B* 1h(t); one gets from Eq.~A9!,

dh~ t !

dt
5Lh~ t !, L5k222@a~22q!1bq#~42q!

3@B* #32q
b~ t0!

@B~ t0!#2
. ~A11!

Stability requiresL,0; if one substitutes Eq.~A10! into Eq.
~A11!, one gets thatL5k2(q23), which is negative forq
,3. Therefore, the stationary solutionB* of Eq. ~A10! rep-
resents a stable solution of Eq.~A9!, in the limit t→`. As a
consequence of this, the associated stationary solution,b* ,
obtained from Eq.~A5!, is also an stable solution in th
infinite-time limit. A similar analysis follows trivially for the
stationary solution of Eq.~A3a!, x0* 5k1 /k2.

The differential equations~A3a! and ~A9! may be solved
easily @10#; one gets

x0~ t !5
k1

k2
1Fx0~ t0!2

k1

k2
Gexp@2k2~ t2t0!#, ~A12a!

B~ t !5$~B* !q231$@B~ t0!#q232~B* !q23%exp@2k2~32q!

3~ t2t0!#%1/(q23), ~A12b!

which approach, in the limitt→`, the stationary solutions
(x0* ,B* ) defined above.
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