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Application of minimal subtraction renormalization to crossover behavior
near the He liquid-vapor critical point
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Parametric expressions are used to calculate the isothermal susceptibility, specific heat, order parameter, and
correlation length along the critical isochore and coexistence curve from the asymptotic region to crossover
region. These expressions are based on the minimal-subtraction renormalization scheme witAimtue!.

Using two adjustable parameters in these expressions, we fit the theory globally to recently obtained experi-

mental measurements of isothermal susceptibility and specific heat along the critical isochore and coexistence
curve, and early measurements of coexistence curve and light scattering intensity along the critical isochore of
3He near its liquid-vapor critical point. The theory provides good agreement with these experimental measure-

ments within the reduced temperature rahje2x 102,
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[. INTRODUCTION ceptibility, specific heat, coexistence curve, and correlation
length from previous work1,6—8. In addition, we derived
It is well known that thermodynamic quantities exhibit within the MSR framework RG functional expressions for
singularities asymptotically close to the critical point. Thethe asymptotic critical amplitudes of the susceptibility and
power-law behavior of these singularities, characterized bgoexistence curve as well as the first coefficients in a Wegner
critical exponents and the concept of universality and scal€Xpansion for susceptibility, specific heat, coexistence curve,
ing, has been successfully described by renormalization@nd correlation length. From these expressions, universal
group (RG) theory. Away from the asymptotic region, ther- amplitude ratios for th&©(1), .three—d|menS|onaI system are
modynamic quantities of real physical systems deviate fronflculated and compared with the most recent values from
simple power-law behavior. However, RG theory can stjilBagnulset al. [S] and Fisheret al. [9].

provide insight in understanding critical crossover behavior.f T?.e se;c;_)tndtpart of the pflpler includes th? relsults of MSR
There are two main field-theoretical renormalization- - coonal its 10 €xperimental measurements. mn our previ-

o . ous work, we analyzed the isothermal susceptibility>blie
group schemes to treat critical-to-classical crossover phe

nomena. Dohm and co-workers developed the minimal_along the critical isochore abovie, using theoretical expres-

; e X sions based upon the minimal-subtraction sch¢id®. In
e renor_m_ahzauon(MSR) schemr—_z [1] while .__this work, we combine that analysis with susceptibility mea-
Bagnuls and Bervillier developed the massive renormaliza

X X surements along the coexistence curve and specific heat mea-
tion (MR) schem¢ 2]. Both of these theories used the Borel g\ ,ements along the critical isochdit]. Measurements of
resummation technique to describe the crossover behavior

_ : X ' @bexistence curve and the light scattering intensity near the
the ¢* model in anyO(n) universality class and in three critical point of 3He [12,13 are also analyzed.

dimensions. The difference between the two schemes was
discussed in Refl]. These field-theoretical crossover theo-
ries were improved over the years as asymptotic theories
became more accuraf8]. Recently, Larinet al. improved The Hamiltonian for theg* model in three dimensions
the MSR expressions for the specific heat and compared thefd = 3) is

results with the superfluid heliumE&2) system[4]. Bag-

nuls and Bervillier have also improved their theory to match

the recent asymptotic values for exponents and leading am- H¢=f d3x{2roda+ 3(V o)+ Ugdy), 1)
plitude ratiog5]. Both renormalization schemes can provide

crossover functional forms for thermal properties with awhereqﬁ is the order parameter field, whose statistical mean
minimal set of fluid-dependent adjustable parameters. How- 0 P '

ever, a direct comparison between these recent theoreticgfjllue is the physical order parameter of a given system. The

predictions and different experimental measurements ne r:%aer?eertfmﬂslsrg}zt(fa?jurttg-?aierrggsggggtg?nnsé?;‘tt@;h(?r pa-
the liquid-vapor critical pointif=1) has been lacking. 0 P

II. THEORETICAL EXPRESSIONS

In this paper we will present a direct comparison between To)/Te by
the MSR field-theoretical crossover functions and various
experimental measurements near the liquid-gas critical point ro—roc=3aot, 2
of 3He. The comparison using the MR theory will be pub-
lished elsewhere. wherea, is a nonuniversal constant amg. is the value at

The paper is divided into two parts. In the first part, wethe critical point forr. It is important to note that the total
briefly summarize the MSR functional expressions for susHamiltonian is the sum oH=H ,+H, whereH, is the
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analytic background free energy. Since the liquid-vapor criti-the five-loop expansions. The function values over the range
cal point has a single component order parameter and b&<u<u* were obtained using up to two-loop order expres-
longs to theO(1) universality class, we have=1. sions with extrapolation terms added in order to reproduce
The dimensionless bare order parameter figjdand the the values at the fixed poifit]. For a system of dimension
bare coupling parameteug andr, are renormalized tfEgs. d=3 and single component order parameterl, one ob-

(S2.10 and (S2.13 of Ref. [6]] tains
p=Z4(u,€) Vg, 3) £, (u)=12u—120u%+ a,ud— a,u*, (12)
u=u"'Zy(u,e)"1Z4(u,€)*Azu, (4 £ 4(U) = —24u’+agu’, (13
r=at=2z.(u,e) Yro—roc), (5) Bu(u)=—u+36u%(1+a,u)/(1+asu). (14)

_ 1 . A a_ - .
where A;=(4m) " is a geometric factor and=4-d=1 05 throughas are the coefficients for the extrapolation
for dimensiond=3. TheZ factors are associated with their {o,ms with values listed in Appendix A. Using these func-
respective field-theoretic functiofs] tions and the flow equations, thermal properties along the
critical isochore and coexistence curve can be calculated
&r(u)=pd,lIn Z(u,e)" Yo, (6) from the asymptotic to crossover regions using the initial
values for Egs(9) and (11), u=u(l=1) anda=a(l=1),
. _1 .
£4(U)= I Z¢(u,e)*1|o, @) and the arbitrary length scaje™ ~ in Eq. (10).

A. Reduced temperature

d -1
d—ln(uZuZ(bZ)} , Within the MSR scheme, the expression for the reduced
u . .
) temperature in terms of the flow parameteran be derived
as follows. The reduced temperattii@nd the flow parameter
where the index 0 means differentiation at fixed ¢o, and | can be linked using EqsS4.25 and(S4.26 Ref.[1] and
Uo. Eq. (H2.9 of Ref.[7], together with the solution of Eq11),
By introducing a flow parametdr the effective coupling
u(l) satisfies the flow equation

Bu(w)=u[ =1+ ud,(Z,Z3)|o]= -

Lodl’ rodl’
((h=r(exp| & Tr-altlexn| & =b.wu?

1T ). © 49
with
The flow parameter is related to the correlation length by
b (u(1)=Q(u(l)), (16)
EN=(uh™4 (10)
with »~! being an arbitrary reference length. The flow pa- b_(u(h)=3-Q(u(1)). (17)
rameterl =0 corresponds to the Ising fixed poiafl =0) Here “+"is for T>T, and “—"is for T<T.. Krauseet al.

=u”, which is determined frong,(u*)=0. The effective g} determined a one-loop expression plus a higher-order ex-

couplingr (1) satisfies the flow equation trapolation forQ(u) given by[Eq. (K3.5]
'd;(||) =r()Z (u(l)). (11 Q(u)=1+bgu?n(cqu), (18)

_ ) ) wherebg andcq are the extrapolation coefficients with the
The flow parametef=1 is an arbitrary reference point, at ya|yes given in Table Il in Appendix A.
which the nonuniversal initial values argl=1)=u and By adding and subtracting’ = £,(u*) in the integrand of
r(l)=r=at. Eq. (15) and using the identity ~*=2—¢* , wherev is the

The field-theoretic functiong, (u),£,(u), andBy(u) in  qritical exponent of correlation length one arrives at
Egs.(6)—(8) are known up to five-loop order in perturbation

expansions around=0 [1]. However, the expansions do not
converge away fronu=0. Hence Borel resummations were
used on the expansions to calculate the values of these func-
tions over the rangeQu<u*. For most investigations, see
for instance Refd.6—8], only the function values at the fixed By rearranging Eq(19), one obtains the following expres-
point u* were calculated using the Borel resummations orsion for the reduced temperature:

!

' dl
altlexpfl(gr—g;* |—,=b¢(|)M2|l/”- (19

021106-2
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lt|=b.(Dtol Yexd —F.(1)], (200 and
with
qu
to="ex F,(1)] (21)
and

uh g g(u") =g g(u*)
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dl’
TrLsu" )= Ey(u™)]

s du (28)

Using Eq.(10) and y=v(2— 7), Eq. (26) can be rewritten

as

dl’
P = [ e

:J'u(l)gr(u )_gr(u )dU,. (22)

u* By(u")

. el CI(1))
+ = 0 T Ny

N0) 9

Thus, in the asymptotic regiméd-(,— 0),

B. Susceptibility

1. General expression

The following expressions for the dimensionless suscepwith
tibility x%*=yx. were given in Refs[7,8], respectively, for =yxou?" 7§71 (u*).

T>T, [Eq. (K2.7)] and T<T, [Eq. (H2.16)]:

nonuniversal

Xx==D&7, (30

proportionality  constantD

2. Critical Amplitudes
Within the pure¢? model, the standard Wegner expansion

Z4(u) Lodl
X+:mexpfI e (23)  for the susceptibility is given by

The amplitude functionsf.., were expressed to two-loop
order plus a higher-order extrapolatigi&gs. (K3.1) and

xe=Tglt| Y A+TTtA+T5 %2+, (3D

(H4.2)], to give wherel' are the leading asymptotic critical amplitud€s,
are the first Wegner expansion amplitudes above and below
92 the transition, and\ is the correction-to-scaling exponent.
filul=1- §u2(1+ bu  (T>Ty), The details of the derivations of the leading and first Wegner
critical amplitudes are given in Appendix B. Here we list the
derived expressions for the critical amplitudes,

f_[u]=[1-18u+159.5@%(1+d u)] * (T<T,),
(24)

whereb, andd, are the extrapolation coefficients with the
values given in Table Il in Appendix A.

The minimal renormalization factoZ, in Eq. (23) is
given by[Eq. (K A12)]

{p(u’)
Bu(u’)’

u
Zd,(u)*lzexpf0 du’
The expression

exd —F ,(u())]

Xi:XOFY fi(u(l)) (26)

can be obtained by adding and subtractiffg={ 4(u*) in

(250  with A=vw andw=dg,/du| .

The total specific heat is usually separated as

= %
C. Specific Heat

1. General expressions
C*=Cg+Cy, (34)

the integrand of Eq(23), and using the relations;=—7  \yhere the termCy>0 represents an analytic “background”
[1] and y= (2~ ), wheren is the critical exponent of the  contribution from the analytic background free enetdy,

fluctuation correlation at the critical point andis the criti-
cal exponent of susceptibility. In EG26)

and Cf/, represents the critical contribution from order pa-
rameter fluctuations. Here+" is for the specific heat above

T. along the critical isochore, " is for below T in coex-

Xo=n 2Zy(u)exdF,4(1)] (270 isting phases.
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derived from the Hamil-
two representations within

The critical specific heaC;
tonian expressed in Eql) has

the MSR scheme. These two representations are derived via
multiplicative and additive renormalization as detailed in

Ref. [6]. The most recent work by Lariat al. [4] used the

representation via additive renormalization that we will use

in this paper.
The critical specific heatli:jS per unit volume neafl; is
expressed byEq. (52.36 or (L3.3)] [4,6]

(?2
+_ 2oy
C,=TeV 1W'”J D¢ exp—H,

a2 uh2g(u)-1
78w AsKi(U(I))eXlOfu ) du’.
(35
The amplitude function& .. (u) are given by
K (u)=F.(u)—A(u). (36)

The functionsF .. (u) for n=1 can be expressed by a two-
loop calculation plus a higher-order extrapolatipRgs.
(K3.4) [8] and (H4.9) [7]],

—1-6u(1+bgu)
(2u)"1—4(1+dpu)

(T>To),

Falul= (T<To),

37

wherebg anddg are the extrapolation coefficients with the
values given in Table Il in Appendix A. The functiof(u)
in Eq. (36) is governed by

ldA(u(I))

S = 4B(U()+{1-24,(u()

YAu(D), (38

with A(u=0)=—-4B(u=0). The functionB(u) has been
calculated taO(u®) for any givenn [Eq. (L2.21)] [4]. How-
ever, the five-loop Borel resummation B{u) was only per-
formed forn=1 atu*. Hence a new extrapolation term with
a coefficientbg is added to the two-loop expressip] in
order to satisfyB(u*,n=1),

B(u)=3%+9(1+bgu)u?. (39
At the fixed pointu=u*, IdA(u(l))/dl=B,(u)dA(u)/du

=0 sinceB,(u*)=0, and Eq.(38) leads to

A* =AU = — BT

(40)
o
where 27 —1=—alv [1] is used witha being the critical
exponent for specific heat at constant volume.
The integral in the exponential of EB5) can be rewrit-
ten as

PHYSICAL REVIEW E 67, 021106 (2003

Id |’

using 27 —1=—alv. The expression for the specific heat
from the additive renormalization can now be rewritten as

Idl’
—v=2| S g
1l

2
C"b 167
=Cyl _D‘/VeXF[ZF,U)]KJ_,(U(U),

——K. (D)~ *"exd 2F,(1)]exd — 2F,(1)]

(42

whereF (1) is given by Eq.(22) andC,, is defined as

2 3

7’
Tomy O —2F(D]=

Co= .
o 16mt2

(43

2. Critical Amplitudes

The standard Wegner expansion within the pgifemodel
for specific heat can be written as

C = ASIHI (L AL+ A U2+ - )+ B+ Ca,

(44)

whereB,, is a constant background induced by long-range
correlations between the fluctuations. The experimentally
measured constant background is the sunBgf and the
analytic backgroun®y .

The expression for the Wegner expansion of the specific
heat via multiplicative renormalization was derived and
given in Eqs(S4.23 and(S4.24 of Ref.[6]. In Appendix C,
we derive the expressions for the critical amplitudes and the
critical backgroundB,, for the representation via additive
renormalization, using the technique that is consistent with
the one used for susceptibility. The results of these deriva-
tions are

o = Co(bLto)“(FL—A¥), (45
A= AF F,;(FQ—A—(ZB' A*ir'))
) g bl u*—u 46
I N TSR
—C—O—A(U) A*+A—(ZB’ A*g“,’)(u*—u).
(47)

The variables with a prime in Eq§46) and (47) are deriva-
tives with respect tal. The right-hand side of Eq47) is
negative for any giveru. Hence one ha8.,<0 sinceCg,
>0 from Eq.(43).
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D. Coexistence curve E. Correlation length

1. General expressions Using Eq.(20) to express in terms of|t|, the expression
for dimensionless correlation lengtii ! is taken dimen-

In the liquid-vapor coexisting phases beldw, the den- sionless is derived from Eq(10) as

sity differenceAp, y=p v/p.—1 is the statistical mean of
the order parameter field$). There is no asymmetry be-

tween Ap, and Ap, within the ¢* model. Schloms and Elt]"=p ™ b (u()to]"exd — vF (1)]. (56)
Dohm have given an expression for the square of the physi- ) .
cal order parametdiEq. (S3.10] [6], An expansion of Eq.(56) around u(l)~u* to O[(u
—u*)?] leads to
(P=AsZ )ty e e[ 2,5 e G b\ w-u
- — — ;" v_ -1 * v _r_ _t A
[ | §:|t| M (bttO) 1+V w b+> *(bitO)A“'
Here Z4(u) is given in Eq.(25. The amplitude function (57)

f4(u) is expanded in one loop with an extrapolation term

[Eq. (H4.1)] [7] to yield This equation is identical to Eq¢S4.9 of Ref.[6]. By com-

paring Eq.(57) to the standard Wegner expansion form,

f4(u)=(8u) " Y(1+d,u). 49 S .

oW =B (1+dyu) 49 £t =5 (1+ £51t%), (58)
The correlation length below, is linked to the flow param-
eter byl _=(ué_)"1. By combining these expressions and
following the derivation of Eq(26), one has

one obtains the leading amplitudes and first Wegner correc-
tion amplitudes of the correlation length,

(8= 652 4l ~F (1], (50 b =n (B2 59
where 1+ »=2p/v is used and . (Zr’ b;) u* —u
S0 T g (60

bo=(4m) " TuZ (u)exd F4(1)], (51)

with B being the critical exponent of the order parameter. F. Universal amplitude ratios

Even though the leading amplitude and subsequent Weg-
2. Critical Amplitudes ner expansion coefficients are fluid dependent, certain com-
281v bination ratios of these amplitudes are universal. From the
B equations for the first Wegner amplitudes of the specific heat,
susceptibility, coexistence curve, and correlation length, one
notices that the system-dependent part,{ u)/(to)?, is the
same in every expression. Therefore the ratio of any of these

Using Eq.(20) to replacd in Eq. (50) and the scaling
relationsy=v(2— ), a=2—3v, anda+2B8+y=2, one
has

&)=+ oty PItIPTb_(1 )] P f 4(1_)]"? first Wegner amplitudes is universal based on the MgR
¢
model. These universal ratios have been given for the spe-
x exd BF(1-)]exd —F 4(1-)/2]. (52 (ific heat in Ref[4] [Egs.(63), (64), and(68)]. In this paper

we derive the other universal ratios based on the MSR

Expandingo (1), f4(1-), Fr(I-), andF (1) inthe same  odel. From Eqgs(32) and (33), one has the universal am-
manner as described in Appendix B, one obtains the Wegngjjiyde ratios for susceptibility,

expansion for coexistence curve,

Lg [b*\7f_(u*)
ApL y==£B|t|A(1+By|t|*), (53 T, \br f+(u*)=4.94, (61)
with the leading critical amplitude and the first Wegner am-
plitude being, respectively, §_r'_ %+§—:/’+ E
ry (b*\* Y% 7o, e 1,
Bo= dolb™to) A(15)"2, (54) T\t o bog, |, e
Yo b e T
b” &ty 4 u*—u . , )
B,= ,Bb— - B—— o +— Y (55 From Egs.(45) and(46), one obtains the universal amplitude
- e 2fy 0 20/, (b*ty) ratios for specific heat,
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A;  [b%\¥4vB* +aF*

A, \bF| @Braarr 09 (89
Al
1

Use of the scaling relation+ 28+ y=2 and the combi-

nation of Eqs(32), (45), and(54) leads to a universal ratio

aAgT§  aCoxo(F%—A*)(b*tg) ™
Bj B3(0* to) ~2PEA %

c

_a(b) T (bY) PR - A%)
a3 fx

—0.0580. (65)

From Egs.(59) and (60), the universal amplitude ratios

for the correlation length are

§=(£)V=142 (66)
& %) T
&by
& (b*)Aw b,
— =\ S =1.10. 6
fl b+ é_b; u* (7)
®w b_
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TABLE I. The values of various universal amplitude ratios. The
calculation for this work uses the values of the amplitude functions
at the fixed poinu* given in Table IV and the values of the critical
exponents given by Guida and Zinn-Judi#j.

Amplitude
ratios This work Ref[5] Ref.[9]
Tyl 4.94 4.7%0.10 4.95-0.15
AjlA, 0.535 0.53%0.019 0.523-0.009
&l& 1.42 1.89-0.015
Re 0.0580 0.05740.0020  0.058%0.0010
alg (£4)° 0.0206 0.01960.0001  0.0188& 0.000%
ahg (&)° 0.0134 0.0053 0.0002
rimwy 0.228 0.215:0.029
ATIA] 1.07 1.36-0.47
el 1.10
B./TT 0.76 0.40-0.35

Table | lists the various universal amplitude ratios derived
from the minimal-subtraction renormalization scheme, Bag-
nuls and Bervillier's massive-renormalization schefig,
and other methods, such asexpansion, summarized by
Fisher and Zin{9]. The values given by Bagnuls and Ber-
villier are closely matched to the values given by Guida and
Zinn-Justin[ 3] after the readjustment of the Borel resumma-
tion criteria [5]. Noticeable differences exist in Table |
among various theories. In attempting to explain these dif-
ferences, two factors are important to note. First, we are

From Egs.(45) and (59), one has the universal relation unable to evaluate the uncertainties of the universal ratios
between the amplitude of specific heat and correlatior?ince the uncertainties on the Borel resummations at the

length,
ahg (£9)°=p Co(blit)* " *(4vB* + aFY)
1
=E(b’;)2(4v8* +aF¥)

0.0206 (T>T,),

“|0.0134 (T<Ty), €8)

where the scaling relation+3v=2 has been used. Equa-

tion (68) is identical to Eq.S4.22 of Ref.[6]. The evalua-

tion of the right-hand side uses the constants given in Ap-

pendix A. A natural extension of E468) is the universal

fixed pointu* for most of the amplitude functions were not
given in previous studies. Second, E33), (46), and (60)

use the derivatives of Eq$12), (13), (18), (24), (37), and
(39), which could have sizable systematic uncertainties.
These equations were only obtained from two-loop calcula-
tions and extrapolated to the five-loop fixed point values with
adjustable constants. Hence it is desirable to have these de-
rivatives calculated at the fixed point with Borel resumma-
tions. Then the extrapolation coefficients can be more accu-
rately reconstructed, leading to the estimates of the first
Wegner coefficients with less uncertainties.

Ill. FIT TO EXPERIMENTAL MEASUREMENTS

relation between specific heat and the correlation length The expressions within the MSR model are parametric for

throughout the crossover region. Using E(KD), (20), and
(42), and the scaling relation+3v=2, one has

3
por

bZ(HK(1)

69
16]t|? 69

susceptibility, specific heat, coexistence curve, and correla-
tion length along the critical isochore and coexistence curve.
We made a variable change lof exp(—Xx) in solving those
expressions numericallk was discretized with 1000 data
points over the range of «o<x<e to obtain the solution

for u(x) over the range of &u(x)<u*. For each thermal
property versus reduced temperature, gayst, 1000 data

Since there are no fluid-dependent parameters appearing @oints were calculated for a look-up tablef (x;) vst(x;)

the right-hand side of Eq69), the product of the critical

with i=1,...,1000. The intended property was then ob-

specific heat and the cubic of the correlation length is unitained for a given reduced temperattitesing a cubic spline.
versal for any given temperature throughout the crossover This MSR model has three system-dependent parameters,

region.

u, u, anda, which fix the scales fou(l), &(1), andt(l) in

021106-6
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Egs.(9), (10), and(19). Hereu(l), &(1), andt(l) are defined 0.20p T T T T e

implicitly as functions of the RG flow parameterSincel is [ T} = 0.150 £ 0.007 2= 1.05034 ]

eliminated in final solution, it is clear that one of the three [ r7=098:008 , .

amplitudes is redundant. This should not be mistaken as 0.15 e

minimal number of three fitting parameters for a complete *

equation of state, while we only fit the thermal properties -+ T>T, T, = 3.315533 £ 0.000006 K

along the critical isochore and coexistence curve. In this pazldroof 8 ulu” = 0.999

per{u,a} are chosen as fitting parameters for a prefixed i & H=(2.14£0.17) x10

because their combination only appears in the amplitude o [ a=0.138 +0.004

the parametric expressions, suchtgs xo, Co, etc. Theu o0sk Ty =0.0303 £ 0.0015 . © 5 ]

value is chosen based on the consideration that the expre: L T =429+ 034 o ;

sions for the first Wegner amplitudes were derived by ignor- [ . °

ing higher-order terms ipu(l) —u*]. Therefore an accurate - 1

determination of the first Wegner amplitudes requirds be 0‘00’_6 sl ol

close tou* . 10 10 10 10 10 10
I7/T,— 11

Besides{u,a}, the critical temperature can also be a fit-

ting parameter. Another adjustable parameter is required for FG. 1. Fit of the MSR$* model to®He susceptibility measure-
the analytic background contribution to specific heat. In fit-ments for botiT>T, and T<T,. u/u* is fixed to be 0.999, while

ting the experimental datge,,, to theory, we minimize T., w, anda were adjusted. The solid line is the best fit. The
dot-dashed straight lines represent the asymptotic predictions from
N -\ 2 the fit.
Xi)— Xj,a)
Xzzzl (yexpl( i theor)( i ) . (70)
1= i

The critical specific heatj per unit volume(divided by

. Boltzmann’s constarkg) nearT. is given by Eq.(42). The
Here a is an array of fitting parameters with the standardvolume scaling factor iso=kgT./P., thus the length scal-
error o given by ing factor is

2
02=a§+(g_y) o (71) lo=v5 = (kgTc/Po) "™ (73
X

- X
a

_ o . . ~ For ®He, one ha$,=7.36 A. It is assumed that is dimen-
The partial derivative in Eq(71) is evaluated numerically in  gjonless in the MSR* model expressions With;l being
each fitting iteration. The in Eq. (70) is temperature. In our  hq scaling factor, one defing& = ¢/1,,.

experiment, the sample temperature was determined from a
resistance measurement having an approximatelyKQn-

certainty, i.e.,o,=1x10"° K. In fitting the measurements A. Fit to susceptibility measurements
of isothermal susceptibility and specific heat, we assign The susceptibility along the critical isochore= p.) was
=kXxy/100, assuming &% uncertainty in the measurement. determined usingPVT measurements from both sides
The goodness of a fit is characterized by the value aroundp.. The susceptibility along the coexistence curve
was also determined usinBVT measurements. For ex-
Y2 ample,)('T'“I was obtained fromPVT measurements fop
Xo= N=M" (72 >pid,, and x4 was obtained fromp<pU2P, .

Since x¥ varies sharply ap—p. and p— pgoex, the

whereN is the number of data points aMlis the number of dominating uncertainty iryy comes from the uncertainty in
fitting parameters. locating eitherp. for measurements abovie. and p=pcgex
All the experimentally measured quantities were made difor measurements beloW, . Above T, the inflection point
mensionless by expressing them in units of appropriate comvas well confined by the data from the both sidespef
binations of the®He critical temperatur@,=3.315 K, criti-  BelowT¢, p=pcoexWas determined from a kink iR versus
cal density p.=0.04145 g/c, and critical pressure®?, P curve. However, this kink becomes less pronounced as
=1.14X10° Pa. —T.. Based on our observation, we assigned the suscepti-
The experimental susceptibility; = p(dp/dP)+ is scaled  bility uncertainties to ber, (T>T;)=0.02x+(T>T,) and
by pﬁ/PC to obtain the dimensionless susceptibilify O'XT(T<TC):0.1)(T(T<TC).
=x1P./pZ. The physical order paramet&p=p/p.—1 is The result of fitting the susceptibility measurements for
already dimensionless. The measured heat capacity had unieth T>T, andT<T, to the MSR expression in E6) is
of [C]=JI/K. It was then divided by the fluid volume to have shown in Fig. 1. The susceptibility was scaled fj in
a unit of [pCy]=J/(cn? K). Since the energy unit i§J] order to provide a more sensitive representation of the cross-
=[P][V], a dimensionless specific heat was obtained asver behavior and the fitting quality. The dot-dashed straight
Cy=pCyT./P. with P./T,=0.034 63 J/(criK). lines represent the asymptotic predictions from the MSR fit.
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) L0504 F T T g 10F T T T —
Xy 105035 d T, f 3.315668 * 0.000025 K A; =6.97 +0.83
40F ] ui” =0.999 AT=11%01
,u/y"/A 3.0k h gk #= (1.51 £ 0.17) x104 ]
2.0F ] =0.122 +0.005
0 = ¢ iy
2v-1y/A 2 ] > =
v=ia s o0k o Q
aly 48f° ] l o OF Cp=3.8510.05 4
2.0 g S Ag=3731045 B,=-55+08
l‘O/yl/A i ] TN At=12101 M
0.5k, . ~ al s e J
I 0.1498} ] i
0 ¢ ]
0.1496 = 1193 ——|
r+ 0.8 2 PR | PR | PR | 5
! oor 10* 10” 102 10"
P s S E T Ir/T,—1l
10* 10° 10 10"
y=1-u/u* FIG. 3. The dimensionless specific heat at constant volume ver-

sus reduced temperature. The symbols represent the experimental
measurements. The solid line is the best fit. The dot-dashed straight
lines represent the asymptotic predictions from the fit. The arrow
indicates the fitting rangh|<2x102.

FIG. 2. The susceptibility fitting quality(ﬁ, scaled adjustable
parameterg anda, the resultant temperature scaling fadtgrand
critical amplitudesI'y andT; , versus fixed & u/u*.

S . B. Fit to specific heat measurements
The uncertainties in the amplitudes were deduced from the P

uncertainties ofx anda in the fit. The specific heatCy, near the®He critical point was
Figure 2 showsy? versus (1 u/u*). The goodness of measured using a heat pulse method. The temperature
the fit remains un;;hanged over the entire range(D change could be measured very accurately using a magnetic

* hi i h | f the th susceptibility thermometer with 1-nK resolution. Far
—u/u*)<1. This verifies that only two out of the three — 1 “temperature equilibration was very fast due to the

fluid-dependent parameters are relevant fitting parametersyision effect” [14], and the uncertainty in the measui@g
There was no change ig2 whenu/u* was also free to be \as~ 1%, ie.,oc (T>Tc)=0.01C\(T>T,). For T<T,,

adjusted in the fit. equilibration underwent critical slowing down as the fluid
Once the initial valuei=u(l = 1) for solving the effective  approachedl,. The slowing down was due to the mass
coupling u(l) is chosen, the remaining two adjustable pa-transfer at the meniscus between liquid and vapor. Since the
rametersu anda are obtained from the fit, and the tempera- sample cell was not perfectly adiabatic due to its mechanical
ture scaling parametey is calculated from Eq(21) using a  support and electrical wires, there was some heat loss from
given set of{u, u,a}. EquationsgD5) and (D7) in Appendix the cell to the surrounding during the long equilibration. The
D give the power-law dependencgsanda on (1— u/u*) uncertainty in measurin@,, was typically 5%, |.e.,aCV(T
near the fixed pointi*. As a result, the temperature scgje < 1) =0.0Cy(T<T,).
depends on (% u/u*)¥* nearu*, as given in Eq.(D8). Irj.flttmg C?v measurements to the MS@4 model, an
Figure 2 showsu, a, andty scaled, respectively, by their addlt_lonal adjustable para”.‘e@s’ appears in Eq42). By
power-law dependence on €u/u*). The scaleda varies treatingCg as a constant within a small reduced temperature

. range aroundl., the true crossover behavior described b
less than 2% over the entire range of{(/u*). The scaled thegMSRqS4 mcc>del can be revealed. Figure 3 shows a fit 0)1/‘

—3

wn andto vary less than 2% for (% U/U*)<4X+10 -, theCy measurements for boffi>T; andT<T, to the MSR

Also shown in Fig. 2 are the calculatddy , andI';  expression in Eq(42). The fit was limited to the reduced
versus (1-u/u*) using Egs.(32) and (33) for each set of temperature rangg|<2x 10 2, as indicated by an arrow in
{u,u,a} from the fit. Using the methods given in Appendix the figure. The agreement between the experimental mea-
D, all the leading critical amplitudes can be demonstrateggurements and the theory is good. The uncertainties in the
analytically to be independent of (u/u*) nearu*. As critical amplitudes and fluctuation-induced background were
expected, Fig. 2 shows numerically tHa§ is independent €'Tor propagated from the uncertainties,ofanda.
of (1—u/u*) in the entire range (% u/u*). Since the ana- The fluctuation-induced background specific hBgtwas

. : - Iculated from Eq(C16) in Appendix C. Its absolute value
lytical expression forl'; , Eq. (33), was derived by only ca .
keeping the linear term (Zu/u*), this equation is only is close to that ofCgz . As a result, the combined background

valid as (1-u/u*)—0. Figure 2 helps to visualize how specific heat is close to zero fdHe as first demonstrated

small (1—u/u*) should be to accurately determine the Cor_experlmentally by Brown and Mey¢t5].
rect value of I';. Since I'j reaches a plateau for (1

—ulu*)<4x 10—3, we fix the value ofu/u* =0.999 in this C. Fit to coexistence curve measurements
work solely for the purpose of calculating the first Wegner The best data for théHe coexistence curve were com-
coefficients using derived analytical expressions. piled in a recent paper by Luijten and Meyé2]. We apply
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L30p T T e ™ value is also unity. Our empirical expression, satisfying this
MSR ¢* fit only limiting behavior, is
125} wu'=0999 By = 1.020 £ 0.006 .
p=(1871005)x10“4 B, =0911002 [ wr¥
120F a=0.134£0002 1 F Appy=(¢)exp—[t|/ty) =b[1—exp —|[t|/ty)]. (74)
A
«Q )
S ousk saturation background ? 4 In fitting the expression in Eq74) to the experimental data,
= t,=1.56 005 ‘g; only t, is adjusted Whi|dz andb, are solved for a givem,
S MO =456 Expt.Data %] through the constr'a'lntspszz +1 and dAp,T’V/dtIO' at
= b,=0921 +ovapor |t|=1. Near the critical point, the exponential dampings of
105 O liquid the first and second terms on the right-hand side of(E4.
. . B g .
Look "e: are negligibly small as evidenced by the large best fit values
' 2= 1692 fit range t1=l.56_,_t2=4.55, and32=_0.921. As can be seen in Fig. 4,
|' " the addition of the saturation backgrouthshed lingonl
0.95h ! . . ) : . : . CKQrC y
10 0% 10 103 102 107! 10° slightly improves thfa systematic dn’“ferencia2 between the
\T/T, -1 theory and the experimental data féf<<4x 10, although

it represents the data quite well flif>4x10"2.
FIG. 4. Application of the MSRp* model to the data of théHe

coexistence curve. The solid line is the best fit witha} adjusted.
The dashed line includes the empirical background contribution
with {u,a} fixed from the fit without the background. The dot-  The good individual fit of the MSR* model to isother-
dashed straight line represents the asymptotic prediction from thenal susceptibility y, specific heatC,,, and coexistence
fit. curve |Ap, y| has been demonstrated. A joint fit of all the

three thermal properties leads to a complete test of the MSR
the MSR¢* model to the coexistence curve using these datap® model with a minimum set of the parameters,
as shown in Fig. 4. The fit was limited to the range 6{u.a,T;,Cg}. Here no order parameter saturation was in-
x10 4=|t|<4x10°2. The lower bound was so chosen cluded since its correction over the fitting range was small.
since the measurements were affected by the gravity effect To make sure that no particular measurement dominates
for [t|<6x 10 * due to a large cell heigh#.3 mm) used in  the joint fit, a proper weighting is needed to balance uneven
that experimenf16]. The upper bound was so chosen sincenumbers of the experimental data. We chose the following
the ¢* model was developed for critical phenomena and didweighting in order to normalize the? by the number of data
not include analytic behavior associated with a system appoints:
proaching absolute zero temperature. The standard deviation
for |[Ap_ | was approximated based on the percentile devia-

D. XT» CV y and |Ap|_’v| jOInt fit

2 2 2
tion in Fig. 5 of Ref.[16], namely, 1% att|=6x10"* and ,_N Xy +XC$ XapLy -
0.2% at|t|>1Xx10 2. The standard deviation for reduced XT3 N Nex Nap o/’ (79
temperature was 6T=1x10"°K divided by T, al v oY
=3.3155 K.

iAi 1 * *

The solid line in the figure represents the best fit with onIyWhereN: NX? + NC\*/+ NAPL,v' In the joint fit, x7 and Cy
{u,a} adjusted. The predicteB,=1.02 is consistent with Were fit against temperatufewhile [Ap, \| was fit against
the reportedB,=1.02 in Ref.[12]. The agreement between reduced temperatutél, andu,a,Cg, andT. were adjusted.
the model calculation and the experimental data is satisfacLhe joint fit results are shown in Fig. 5 and Table II. We note
tory over the fitting range. The systematic difference betweefhat in the joint fit the uncertainties ip anda are much
the MSR ¢4 model calculation and the measurements oveﬁma”er than in the individual fitS, even thOUgh the overall
the fitting range also exists from other theoretical model calgoodness of fit is worse in the joint fit. These improved un-
culations[12]. certainties inu anda also lead to the improved uncertainties

The Systematic deviation between the M$ﬁmode| cal- in the critical amplitudes and the fluctuation-induced back-
culation and the experimental data over the fitting range maground for specific heat.
be due to the fact that there was no proper background con- Shown as dashed lines in Fig. 5 are the Wegner expan-
tribution included in the analysis. We attempt in this paper tcsions to first order with the critical amplituddsg andI';
include the effect of the order parameter saturation as a po#, andA; , B, andB,, calculated from the MSR* model.
sible background contribution. The saturation of order paBagnuls and Bervillief2] have argued that the validity range
rameter at absolute zero temperature has been studied by any ¢* model is upper bounded when the difference be-
Povodyrevet al. [17] for an ideal Ising model. We propose tween the calculations of the model and the Wegner expan-
an empirical expression that is consistent with that study fosion to first order becomes significant. Based on this argu-
the limiting behavior att|=1. Not only does the order pa- ment, the validity range of the MSR* model is |t|=1
rameter saturate to a constant value but its slope also ap<10 2. However, it is interesting to see that the MR
proaches zero dt|=1. In the case of the liquid-vapor sys- model provides a good fit beyorjt|=1x10"2 to the ex-
tem where the physical order parameter is the normalizegerimental measurements of the isothermal susceptibility
density difference from the critical value, the saturationboth above and belowW, and the specific heat abovg .
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HL L LR AL TABLE Il. The dimensionless system-dependent parameters for
0201 1 _ 0,146 £ 0.001 2= 1426 3I;|e. The adjustable parameters are obtained from thesjoint fit of the
r- L3001 ¢* model to the measuregfs , CY, and|Ap, | data of °*He.
0155 pieak 7 T, (fit) 3.315546- 0.000005
= + T>T, u/u* (fixed) 0.999
& oaof ; lvi;lu(i)cr' - wX10* (fit) 1.82+0.02
I3 = 0.0296 + 0.0002 P s a (fit) 0.132+0.001
005k TT=495+005 o O i o (+fit) 3.74+0.02
[ Iy 0.146+0.001
e Iy 0.0296+ 0.0002
0.00L ---- Wegner expansion to first order - FI 1.13+0.01
r; 4.95+0.05
or Al 3.77+0.05
sb A,=70510.09 Ay 7.05+0.09
% A7=094£001 Af 1.010.01
= = A7 0.93+0.01
. B., —5.39+0.08
g o Cy=3742002 o T<T. 7 B, 1.019+0.002
*I> sk A;= 3.77 £ 0.05 B, =-5.39+£0.08 + T>T, ,,/: Bl 0.93+0.01
= AT=1.01£001 - % 0.368+0.002
4 & 0.732£0.007
& 0.259+0.001
o —— ¢ 0 Gandlap, Jjoimly 3] 0.665+0.006
T 121 By=101920002 5 5;1;:)? %% shown'in Fig. 5. The slight gravity effect on the experimental
= i} B1=0932001 . measurements for 10 4<|t|<6Xx 10 * can be clearly
gf ; seen in Fig. 5.
= 10F = = > 7 We mention that in Ref.18] earlier measurements of the
[ o S a1  susceptibility of3He, both above and beloW,, were com-
10° 10* 10 107 10" pared with the present data. Also in Table 1 of that reference,
IT/T,—1l the amplitudes of susceptibility and coexistence curve data

and their ratios, such d3; /B, andI'] /T'] , obtained from
FIG. 5. Ajoint fit (solid lines to the susceptibility, specific heat, individual fits, were presented.

and coexistence curve. The fit used all the sho@ndata and the
data ofC{, and|Ap_ y| over the indicated range. The dashed lines
are the Wigner expansion to first order with the listed amplitudes in
Table 1. The dot-dashed straight lines represent the asymptotic pre-
dictions from the fit. By usingu/u*, w, anda given in Table II, the dimen-

sionless correlation length can be calculated for any gjtlen

Close toT,, the susceptibility data fof>T, and the using Eq.(56). Figure 6 shows the dimensionless correlation

specific heat data for bofi<T, andT>T, deviate slightly length versus calculated from the MSR* model for *He.
from the theoretical prediction. These deviations can be atThe length scale to recover the dimensioggis |y, given by
tributed to a gravity-induced density stratification. Since theEq. (73). Thus one has a dimensiongh=£51,=2.71 A.
specific heat was measured as an average of the whole cdlhis value can be directly compared witg=2.6 A mea-
while the susceptibility was measured locally across a densured in an acoustic experiment REE9]. Considering that
sity sensor, there was a stronger gravity effect in the meathe experimentak, had 10% uncertainty, the agreement is
suredCy, than y1. The gravity effect onyt(T<T,) is about  very good.
a factor of 5 smaller than that op(T>T.) because of the The correlation length can also be determined from a light
difference inyr magnitudes. Wheifl, is used as an adjust- scattering experiment. Miura, Meyer, and Ikushima mea-
able parameter, the individual fits of susceptibility and spesured the intensity of scattered light éHe fluid near its
cific heat tend to skew . such that the difference between critical point [13]. The intensity scattered per unit beam
the experimental measurements and theoretical prediction length per unit solid angle in the fluid, is given by
minimized because of the shift in reduced temperature for
the measurements. Thi, determined from the fits of the I =1,AxrSitbg(kE), (76)
specific heatFig. 3) and susceptibility datéFig. 1) tends to
be higher and lower, respectively, than it should be. Thisvherel, is the beam intensity in the scattering regignis
tendency was approximately cancelled out in the joint fitthe angle between the electric field of the incident light and

E. Predictions for correlation length and light scattering
intensity
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osok T T between the experimental data and theoretical calculation is
reasonably good.
045} T>T,
&' = 0368 +0.002 IV. DISCUSSION
040} &' =0.732:£0.007 _ . .
v In this paper we have used parametric expressions to cal-
g culate the isothermal susceptibility, specific heat, coexistence
0351 T curve, and correlation length along the critical isochore and
_<TC coexistence curve from the asymptotic region to the cross-
030 & =025920.001 over region. All the critical leading amplitude ratios were
&~ =0.665 + 0.006 contained in the model, as listed in Table I. Using only two
0.2s5E _ adjustable parameters in these theoretical expressions for the
L L wl L L critical contributions, we fit the theory to recently obtained

10° 10° 10* 10° 10° 10" 10° experimental data for the isothermal susceptibility, specific
T~ 1 heat, and early experimental data of the coexistence curve

. . . nd light scattering intensity. The agreement between the
FIG. 6. The dimensionless correlation length versus reduce heory and experimental measurements is good

3 - . . . . B
temperature calculated from the MSR model for °He. The dot Further improvements to the minimal renormalization

dashed straight lines represent the asymptotic predictions from the . . .
fit 9 P ymp P scheme are desired, especially the five-loop Borel resumma-

tions throughout the whole range ou=<u*. More accu-
S o rate Borel resummations at the fixed point should also lead to
the wave 2\/eCt0r 0; the gca}tered ||gb{ﬂi; IS the Susceptlblllty, improved.(.:a|cu|ations Otd)(u*) and gr(u*) so that the re-
andA=mkgT(dn“/dp)7/\y. Herenis the index of refrac-  sultant critical exponents can be compared with other pub-
tion of the fluid, and\, is the vacuum wavelength of the lished valuegsee Appendix A Theoretical insights on non-
incident light. The functiorg(k¢) is, for ké=<10, very accu-  critical contributions are also needed in order to formulate
rately given by the Ornstein-Zermike approximation (1 more accurate analytical expressions for the background con-
+k2£2) "1t 72 wherek is the scattering wave vectof, is  tributions.

the correlation length, ang is the critical exponent of the While the present minimal-subtraction renormalization
fluctuation correlation at the critical point. In Rdfl3], k model describes quite well experimental measurements
=5.64x10" cm 1. At t=1x10"®, the value of correlation along the critical isochore and coexistence curve, there exist
length can be estimated frome=2.71 A 253=1.63 other alternative approaches to the crossover problem. One
X 10" % cm, hence the conditiokRé(t=1x10 6)=9.2<10  of them is the Landau crossover modeCM) that has been
was satisfied fot=1x10"°. SinceB=I,Asir’¢ is essen- reviewed by Anisimowet al.[20]. This LCM model was re-
tially a constant for the experimental condition, one can use&ently tested against the numerical simulation of the three-
the knowledge ofyt and&, based on the MSR* model, to  dimensional Ising lattice gas modg21]. The LCM model

fit experimental data of the scattered intensity, wltlas an  was also empirically improved in a phenomenological cross-

adjustable parameter. As can be seen in Fig. 7, the agreementer parametric modelCPM) [22]. There is a good agree-
ment between the CPM model and tRele experimental

data of susceptibility and specific heat given in Appendix E.
NASA supported microgravity flight experimerjta3,24,

which are under preparation, will take experimental data of
the susceptibility, specific heat, and coexistence curve in the
asymptotic region. Combining these microgravity measure-
ments in the asymptotic region with ground-based measure-
ments in the crossover region should permit a rigorous test of
the predictions of recent renormalization theories.

10" ¢ s 3

10° 3 R 3

I (arb. units)

ACKNOWLEDGMENTS

1-n/2

N 2 £2
B/ +k2eH We are indebted to Dr. R. Haussmann and Professor J.

E Rudnick for supporting the early development of this work
I and for many stimulating discussions. We are also grateful to
Professor H. Meyer for a critical reading of the manuscript
and to Dr. M. Weilert for his contribution in performing the
FIG. 7. The intensity of light scattered BiHe versus reduced €xperiments. The research described in this paper was car-
temperature. The theoretical calculatedsing the MSR$* model,  ried out at the Jet Propulsion Laboratory, California Institute
is adjusted with a constant amplitude fgA while u/u*, u, anda  of Technology, under contract with the National Aeronautics
were fixed from the values given in Table II. and Space Administration.

10 107 10
TIT,-1

021106-11



ZHONG, BARMATZ, AND HAHN PHYSICAL REVIEW E 67, 021106 (2003

APPENDIX A: THE MSR ¢* MODEL CONSTANTS vr=0.6304+0.0013, (A9)
The field-theoretic functions,(u), {,(u), and g,(u),
and the amplitude function®, (u), Q(u), f.(u), FL(u), 7=0.0335+0.0025, (A10)
A(u), andB(u), are known up to five-loop order from ex-
pansions aroundi=0. However, these expansions do not w=0.109* 0.004 (A11)

converge. To overcome this difficulty, these quantities were
expanded to two-loop order and then extrapolation terms

were added to have the functions agree with the calculations B=0.3258-0.0014, (A12)
of high-order Borel resummations at the fixed pdib} All
these functions have at least one extrapolation term to match y=1.2396+ 0.0013, (A13)

the function’s value at the fixed point*; some functions
also have a second extrapolation term in order to match the

value of their derivative at the fixed point. Listed in this 0=0.799+0.011, (A14)
appendix are the values of these extrapolation coefficients,

their origins, and recent improvements. The effects of these A=wv=0.504+0.008. (A15)
coefficient values on the critical exponents and the fitting

quality in this work are discussed. A clear difference exits for the value of the critical exponent

The extrapolation coefficients for the field-theoretic func- y which warrants further efforts from the theoretical commu-
tions £, (u), {4(u), and By(u) in Egs. (6)—(8) are a; nity for improvements in the MSRy* model calculation.
=3075, a,=30390, a;=37.5, a,=14.10, anda;=31.85. The amplitude functio@(u(l)) for reduced temperature
They are taken from Table 2 of RdfL]. is expressed as

The fixed point value fou* =0.040 485 is solved from

the conditiong,(u*)=0 using the given values fa, and ul)  P.(u’) o 2—£,(u")
! * _ . — ! "
as. The latest published* value forn=1 is[4] Q(u(l)) ZJu* du B0 exp u(l)du B
(A16)
u* =0.0404+0.0003. (A1)

o ) At the fixed pointu*, there is an identity 1=2—¢* that
The asymptotic critical exponents are linked to the exponenéimp"ﬁes Eq.(A16) and leads to

functions{,, ¢4, andg, by

*=20P% AL7
7= —{4(U*)= — {5=0.0367, (A2) Q=P (ALD

Krauseet al. [8] obtained the expressidicq. (KA28)]

v=[2—¢(u*)] T=(2—¢F) 1=0.629,  (A3)
dP| | dg
aul, " aul,

- wt+v 1 ’ (A18)

_ dQ
w=—dﬁ“(:’: 2 =0.797. (A4) qu

u*
Once the critical exponentg, v, and w are known, the With @=dB,/duly. They also provided a one-loop expres-
remaining important critical exponents can be obtained fron$ion for P(u) using a higher-order approximatiofEg.

u*

scaling using K3.2)] [8]

a= T =0.112, (A5) _ _ .
2=¢7 The latest calculation by Lariat al.[4] for n=1 gives
1- g;; P* =0.7568+ 0.0044. (A20)
(2=47) If the theoretically calculated critical exponentfor n=1,

given by Guida and Zinn-Justir8], is used 4], one has

2+

Yo =1.235, (A7) b, =2vP* =0.9542+ 0.0059, (A21)

A=vw=0.502. (A8) b_=3/2—2vP* =0.5458+ 0.0059. (A22)

For n=1, the latest theoretically calculated critical expo- For the extrapolation coefficients in the expressionQ¢u),
nents given by Guida and Zinn-Jusf{i8] are Eqg. (18), Krauseet al. [8] determinedby=28.2 andcq
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TABLE lIl. The values of the various extrapolation coefficients ~ TABLE IV. The values of the various amplitude functions at the
for the amplitude functions in the MSR* model. fixed pointu*. These values are used in the calculation of the
leading critical amplitude ratios witbh* =0.040 485 .

Coefficient Value Appeared in
Coefficient Value Appeared in
a, 3075 £ (u) for Z,(u)
a, 30390 ¢ (u) for Z,(u) b% 0.9542+0.0059 t(1) in Eq. (20)
as 375 L (u) for Z,(u) b* 0.5458+0.0059 t(1) in Eq. (20)
a, 14.10 Bu(u) for Z,(u)Z4(u) f* 0.9767 I’y for x5 in Eq. (32
as 31.85 Bu(u) for Z,(u)Z 4(u) f* 2.413 I'y for x1 in Eq. (32
bo 20.32 Q(u) for t(1) —Uu*F* 0.0483-0.0076 Ag for C in Eq. (45)
Cq 6.24 Q(u) for t(l) u*F* 0.3687-0.0040 A, for C 4 in Eq. (45)
b, 9.68 f.(u) for ¥ B* 0.5024+0.001 A* for C3 in Eq. (40)
d, -11.18 f_(u) for x1 1 3.175 B, for Ap_ vy in Eq. (54)
be —5.0726 F.(u) for Cy
de —4.6736 F_(u) for Cy
bg —20.6817 B(u) for Cy Table Il lists the values of the various extrapolation co-
d, 0.702 f4(u) for Ap, y efficients for the amplitude functions in the MSE model.

Table IV lists the values of the various amplitude functions at
the fixed pointu*.
=7.66 such that Eq9A17) and (A18) were satisfied with Equations(20) and (26) provide a clear identification of
the then calculate®’ . The values of the extrapolation co- the leading critical divergence and crossover contribution in
efficientsby=20.32 andc,=6.24 have been readjusted to a multiplicative form. In the original expressions, the critical
agree with the newQ(u*)=0.9542. There is no value for divergence is contained implicitly in the integrals &§f and
dP/dul,«, so the newdQ/duly« has been fixed to its old ¢, in Egs.(15) and(23). The calculated,(u*) and{,(u*)
value[8]. using Borel resummations at the fixed point lead to the criti-
For the amplitude functiof. (u) in the expression of the cal exponentsy and # that are slightly different from the
susceptibility, Eq(26), b, =9.68 comes from Table 1 of Ref. latest values given by Guida and Zinn-Justin. Because of the
[8] andd,=—11.18 comes from Table 4 of Rdf7]. expressions in Eq€19) and(26), the critical exponent val-
For the amplitude function in the expression of the spe-ues given by Guida and Zinn-Justin are used for the leading
cific heat, Eqs(42), (36), and(37), the five-loop approxima- divergence. The inconsistency is only in the crossover parts
tion with a Borel resummation gived] in the integrands of £, (u)— ¢, (u*)] and[4(u) = {4(u*)]
that go to zero as the fixed point is approached.

u*F_(u*)=0.3687-0.0040. (A23)
By combining the second part of EQ7) with Egs.(Al) and APPENDIX B: DERIVATION OF SUSCEPTIBILITY
(A23), the old interpolation coefficient= —4.04 (Table 4 AMPLITUDES

of Ref.[7]), becomesl= —4.6736. The latest five-loop cal-

culation also give$4] Expressions for the Wegner expansion of the susceptibil-

ity will be derived in this appendix, which were not pre-

sented in previously published work. Multiplying EQ6) by
u*[F_(u*)—F_(u*)]=0.4170-0.0036. (A24) Eq. (20) to the powery yields

Using Eqs.(A23) and(A24), one has

—U*F(U*)=0.04830.0076. (A25) altl7=yalbs (PR Ff('()I; A1) P
By combining the first part of Eq.37) with Egs.(Al) and -
(A25), the old interpolation coefficienhz=5.04(Table 1 of

Ref.[8]), becomed= —5.07. In order to expand the exponent functioris,(u(l)) and
We modify Eq.(39) to be F,u(l)), based on Eq422) and(28), one needs to expand
first the function for the flow equatiorg,(u(l)), to the first
B(u)=4+9(1+bgu)u?, (a26) ~ orderinfu(l)—u*],
with bg=—20.68 in order to satisfy the five-loop Borel re-
sumed result$Eq. (L2.34)] [4] Buu())=wl[u()—u*1+0{[u(l)—u*12, (B2
B(u*)=0.5024+0.001. (A27)

where w=dg,/du|,+ and B,(u*)=0. Since F (u*)=0
All the calculations use the value of derived in this paper. andF ,(u*)=0, one obtains
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()= ¢ (u*) APPENDIX C: DERIVATION OF SPECIFIC HEAT
Fr(U(|)): lim W[U(')—U*] AMPLITUDES
H—u ) A derivation of the critical amplitudes and constant back-
+O{fu(l)—u*]%} ground of the specific heat in the additive renormalization
u* form will be given in this appendix. This derivation is con-
gr( )[u(l) u* 1+ Of[u(l)—u*73}, sistent with the one for susceptibility given above and is
different from the one given by Schloms and Doh@i.
(B3) First an expansion expression for the functidu(l))
will be derived that is an approximate solution of Eg§8).
£ U())— £ 5(u*) By expandingB(u) and {,(u) around u* and omitting
F,u()= lim 2 ¢ [u(l)—u*] higher-order terms beyond the linear term, EBB) becomes
g sy @LU(D—U"]
dA(l
+O{[u()—u*]1?% I%=4B(u*)+48’(u*)(u—u*)
g¢( )[ u(h)—u*1+0{[u(l)—u*7?}, +lalv=2¢/(u*)(u—u*)JA(l).  (CY
(B4) Then Eq.(B8) is used to replaceu(— u*) with |, yielding
— * 4 * * * 72 dA(l)
fo(u()="fo(u*)+fLu")[u(l)—u*]+O{[u(l)—u (] },) I=g~ =HFYI°+(G+ZI?)A(), (C2)
B5
where
b (u(1))=b.(u*)+b’ (u*)[u(l)—u*]+O{[u(l)—u*]%}.
(B6) H=4B(u*), (C3)
The expression b (u(l))7exd —F4u(l))—yF (u(l))]/
f.(u(l)) is then expanded in terms pdi(I) —u* ], dropping G= @ (C4)
the higher orders, to give ’
Xo(b%tg)?” Y=4B'(u*)(u—u*), (CH
x=[t]” EENTa
Z=-2¢(u*)(u—u*). (Co)
AR . | |
X Tes +—+f— [U(|)—U 1t With a variable change of
B7 1©Z
®7) V= (C7)
The solution of the flow equation witB,(u) approximated
by Eq.(B2) is Eq. (C2) becomes
u(l)—u* dA(v) H Y G
|w=w. (B8) v do =;+ Zv+ ;+U A(v). (C8)

By expressing in terms of|t| and dropping higher-order The solution of Eq(C8) is

terms, one hak=t|"/(b*ty)” and
A(v)=expv)v®*

It _Xo(b to)” H G G
X= f (U ) X Kl—ar - —,0 _ZF 1_;,U ’
] b, ¢, fL u—u* (C9
X|1-= (y_r_yb ¢+ ) u*(b*to)vw|t|yw:|

whereK, is a constant to be determined through the initial
(B9) condition. Expanding Eq(C9) in v and keeping only the
linear terms ofl “* and|®, one obtains
Comparing Eq(B9) to the standard Wegner expansion to the

first term, see Eq.31), one obtains the critical amplitudes of Al =A(U*)+Ky(u—u*) 19+ Kgl ", (C10
the susceptibility expressed analytically in E&2) and(33)
with A=vw. where Eq.(40) is used forA(u*) and
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1 Y A 7 panding the renormalization functions at the fixed paoiht
K,= o e +A* . Taking the expression for susceptibility, HR7), as an ex-
(u—u®) « aw ample, the crossover correction term does not contain any
2, system-dependent parameters, such,asa, and is propor-
:E[ZB'(U*)—A*gr’(u*)]_ (C1y ’iopal to [u*—u(l)]. Using Eq.(B8), one obtains forT
c»
K3 in Eg. (C10 will be eliminated through initial condition A A
at the reference point=1, u(l) u(l=1) | t t
1- =1- ==/, (DI
u* u* bty ty
K3=A1_A*_K2(u_u*), (ClZ)
h
whereA;=A(I=1). SinceA; has not been given as a fitting where
parameter, it is calculated from the numerical solution of Eq. £ =b* to(1—ufu*) A, D2)

(38) with A(u=0)=-2.

Substituting Eq(C10) into Eq. (42), one has We definet as the crossover reduced temperature that char-

* acterizes the crossover from the Ising fixed point to the
¢ _ —exd 2F,(1)]Ks+exg 2F, (1]l Gausgian fixed point. Thu§ all the firsEA\Negner coe_fficients
Co can simply be expressed in the fognt, =, whereg, is a

X[F.(1)—A* —K,(u—u*)1®]. (C13 gﬂgirjsl constant. In the case of susceptibility abdye

Replacingl “’? in Eq. (C13) with t/t, from Eq.(20) leads to
=2.45. (D3)

U*

; Gx)=ut |y vt ot
Co —exfg 2F (D ]Ks+exg (2—a)F (1) ][b(1)te]*|t]
This simplified form for the first Wegner coefficients is iden-

X[F (1) —A* —Ky(u—u")1*]. (€14 fical to the expressions given in Table Il of RE22] for the
case of an infinite cutoff wave number.

Now we will prove analytically, for the case af—u*,
that the crossover temperature defined in Eq.(D2) is in-
dependent of (+u/u*). Hence all the first Wegner coeffi-
cients are independent of {du/u*). The temperature scal-
ing factort, defined in Eq(21) is equal tou?/a in the limit
IimUHU*F,(u)=0. Using the expansion technique applied in
= —Ky+ (FX —A*)(b%ty)?|t| =@ the Appendixes B and C we can find the dependencgs of

anda on (1—u/u*) and thus the dependence fgfon (1
Y [ '

—u/u*).
1]
X(u_u*)(bito)A : (C19 wherez,, is an undetermined integration constant. Thus one

F.(1), F<(l), andb.(l) are expanded according to Egs.
(B3), (B5), and (B6), respectively. Terms of order higher
than O{[u(l)—u* 1%} or O(1?®) are dropped in the expan-
sion, and[u(l)—u*] is replaced using EqB8). By using
the approximation of®=|t|*/(b*ty)2, one finally has

3
Co
(FLo Kyt (2— ) b o
o o %,

Fi—A*
x U*

Using Eq.(B2), one solves Eq(8) for
(uz,2,% t=z,(1-ulu*), (D4)
obtains from Eq(4),

By comparing Eq(C15) to the standard Wegner expansion P /A
to the first term, see Eq44), one obtains the analytical pu=(UZZ,") "AgUo=2,Asuo(1—u/u*)"=. (DY)
expressions for the critical amplitudes of the specific heat

given in Egs.(45) and(46). The critical background specific
heat is also identified as

Using Eqg. (B2) and approximatingZ,(u)=¢,(u*)=2
—v~1, one solves Eq(6) for

Ber=—CokGs. (16 Zi(w) =z (1-ulu) @ e (06

wherez, is an undetermined integration constant. Thus one
has from Eq.(5),

From the equations for the first Wegner amplitudes of the
susceptibility, specific heat, coexistence curve, and correla- a=Z,(u) tag=2z,ao(1—u/u*)@- VA (D7)
tion length, Eqs(33), (46), (55), and(60), one notices that
the system-dependent pary*(—u)/(ty)?, is the same in Therefore, we can now obtain an expression for the tempera-
every expression. These expressions were derived by exdre scaling factoty near the fixed pointu™,

APPENDIX D: CROSSOVER PARAMETER
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" 3Up)? 1A . from Eq.(21) andt}=0.21 from Eq.(D2). This value com-
tozw(l—u/u )% as u—u*.  (D8)  pares well with other crossover reduced temperature values,
0.16 obtained from[ yeq(l)—21]/(vy—1)=0.5 with y=
The integration constants, and z, are system dependent —dIn y/dInt and 0.26 obtained from the conditiargl)/u*
and can be obtained by fitting experimental data to the=0.5. Herey.; can be calculated analytically using Egs.
theory. Therefore the crossover temperature can be alterng20) and (26).
tively expressed as

(z,A

R (2,A3Ug)? D9) APPENDIX E: x*, C¥, AND COEXISTENCE CURVE

X + Z,a, EXPERIMENTAL MEASUREMENTS

The system-dependent crossover reduced temperafure  We list in this appendix the dimensionless experimental
containing u%/ao is identical tog defined in Eq.(3.19 of measurements of isothermal susceptibility, specific heat, and
Ref. [22] except for some scaling factors. This quantity is coexistence curve ofHe. The ITS90 temperature standard
proportional to the Ginzburg numbg20]. Using the values was used in Tables V, VI, and VII. Square brackets indicate
of u,u,a given in Table Il, we obtaint,=2.5132<10"’  powers of ten.

TABLE V. The dimensionless experimental measurements ofHie isothermal susceptibilitys . T,
=3.315 545 K was obtained from the joint fit gf andC?, to the MSR¢* model. The index values 0, 19,
and 8 correspond, respectively, To>T., {T<T,,liquid}, and{T<T,vapos.

T TT.~1 X3 Index T TIT.—1 X3 Index

3.3157200 5.2§8-05] 2.763 +04]
3.3158500 9.209-05] 1.524 +04]
3.3158770  1.002-04] 1.27§+04]
3.3159900 1.343-04] 9.46§ +03]
3.3161700 1.896-04] 6.006 + 03]
3.3161770 1.90704] 5.60Q +03]
3.3163600 2.499-04] 4.477+03]
3.3164000 2.5§0-04] 4.457+03]
3.3166570 3.395-04] 2.966 +03]
3.3173270 5.376-04] 1.67Q+03]
3.3175600 6.078-04] 1.469 +03]
3.3179100 7.134-04] 1.256+03]
3.3179170  7.195-04] 1.18Q+03]
3.3179400 7.225-04] 1.194+03]
3.3180170  7.497-04] 1.12Q+03]
3.3185400 9.034-04] 9.477+02]
3.3188970  1.00t-03] 7.79Q+02]
3.3202400 1.416-03] 5.26§ +02]
3.3221970 2.006-03] 3.45Q +02]
3.3239900 2.547-03] 2.587+02]
3.3250870  3.149-03] 1.97Q+02]
3.3295500  4.244-03] 1.407 +02]
3.3341869  5.643-03] 9.85( +01]
3.3404500  7.512-03] 7.046 +01]
3.3487469  1.0qt02] 4.98Q +01]
3.3487600 1.002-02] 4.979+01]
3.3596699  1.331-02] 3.535+01]
3.3745467  1.790-02] 2.48Q +01]
3.3897402 2.238-02] 1.884+01]
3.3999300 2.545-02] 1.647+01]
3.3999967 2.547-02] 1.62Q+01]
3.4402800 3.762-02] 1.014+01]
3.4999362 5.5102] 6.54Q +00]
3.4999899  5.563-02] 6.54Q +00]

o

3.6000160  8.5§0-02] 3.990+00] O
3.6000502 8.5§1+-02] 3.939+00] O
3.8000406  1.461-01] 2.126+00] O
3.3149265 —1.864—04] 1.151+03] 19
3.3144595 —3.273-04] 8.291+02] 19
3.3137295 —5.475-04] 3.271+02] 19
3.3135883 —5.901—04] 3.665+02] 19
3.3125410 —9.059—04] 2.145+02] 19
3.3122627 —9.899-04] 1.86§+02] 19
3.3096911 —1.765—03] 9.41§+01] 19
3.3050875 —3.154—03] 4.70§+01] 19
3.2969714 —5.607—03] 2.344+01] 19
3.2824717 —9.975-03] 1.225+01] 19
3.2630551 —1.583—02] 7.40§+00] 19
3.2566732 —1.776—02] 6.555+00] 19
3.2323114 —2.514—02] 4.455+00] 19
3.1836186 —3.979—02] 2.696+00] 19
3.1064086 —6.30§—02] 1.717+00] 19
3.3144595 —3.273—04] 6.347+02]
3.3137295 —5.475-04] 3.326+02]
3.3135883 —5.90]—04] 3.08Q +02]
3.3125410 —9.059—04] 1.82q +02]
3.3122627 —9.899—-04] 1.436 +02]
3.3096911 —1.765—03] 9.30qQ +01]
3.3051276 —3.147—03] 4.865 +01]
3.3050875 —3.154—03] 4.533+01]
3.2969591 —5.606—03] 2.937+01]
3.2824590 —9.979—03] 1.586 +01]
3.2630538 —1.583—02] 6.585 +00]
3.2323290 —2.510—02] 4.10q +00]
3.1836229 —3.979-02] 2.486 +00]
3.1064148 —6.30§—02] 1.60Q +00]
2.9840784 —9.997—02] 9.556 —01]

[eNelNelNeolNelNeNelNelNeolNelNolNolNolNeolNeolNolNolNelNolNolololNeolNolNolNolololololNolNolNel
00 00 0O C0O 00O O 0O 00 0O 0O O O O 0o 00
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TABLE VI. The dimensionless experimental measurements of thie specific heatC}. T,
=3.315545 K was obtained from the joint fit gf andC} to the MSR¢* model.

T TT.—1 ct T TT.—~1 c
3.014570 ~9.07§-02] 7.881 3.298910 ~5.017—-03] 11.697
3.021686 —8.863-02] 7.946 3.301335 —4.286 03] 11.856
3.028699 —8.657—02] 7.959 3.304018 —3.477-03] 12.119
3.035582 —8.444-02] 8.038 3.305181 —3.126-03] 12.209
3.042383 —8.239-02] 8.088 3.306067 —2.859 —03] 12.272
3.049135 ~8.035-02] 8.069 3.307219 —2.511-03] 12.498
3.055774 ~7.835-02] 8.173 3.308159 —2.22§-03] 12.715
3.059940 ~7.709 -02] 8.183 3.308833 —2.024-03] 12.833
3.064174 —7.587-02] 8.200 3.309386 —1.85§ — 03] 12.824
3.070900 ~7.379-02] 8.231 3.310214 —1.60§ — 03] 13.081
3.077578 ~7.177-02] 8.312 3.311035 —1.364 — 03] 13.029
3.081723 —7.057-02] 8.331 3.311577 ~1.197-03] 13.314
3.085888 ~6.927-02] 8.332 3.313179 —7.135—04] 13.795
3.002441 ~6.729-02] 8.541 3.313675 —5.639 —04] 14.128
3.099071 ~6.529 - 02] 8.471 3.314163 —4.167—-04] 14.827
3.103159 —6.406 —02] 8.428 3.314846 —2.107—-04] 15.637
3.104792 ~6.357-02] 8.498 3.316036 1.482-04] 8.389
3.106435 ~6.307-02] 8.512 3.316098 1.669-04] 8.595
3.108071 —6.25§ —02] 8.498 3.316160 1.856-04] 8.159
3.109702 ~6.20§ —02] 8.543 3.316217 2.028 04] 8.289
3.111329 ~6.159 - 02] 8.578 3.316279 2.215 04] 7.875
3.112949 -6.110-02] 8.624 3.316339 2.396-04] 7.907
3.114572 —6.067 —02] 8.528 3.316400 2.580-04] 7.823
3.115721 ~6.027-02] 8.561 3.316405 2.595-04] 7.992
3.116924 ~5.997—02] 8.622 3.316461 2.764 04] 7.654
3.120951 —5.869 —02] 8.631 3.316512 2.918 04] 7.572
3.130580 ~5.579-02] 8.680 3.316562 3.068- 04] 7.689
3.143237 ~5.197-02] 8.798 3.316627 3.264- 04] 7.617
3.155746 —4.824-02] 8.902 3.316690 3.454-04] 7.643
3.165016 —4.540 - 02] 9.008 3.316757 3.656-04] 7.274
3.171098 —4.357-02] 9.061 3.316827 3.868-04] 7.473
3.177146 —4.174-02] 9.118 3.316893 4.067 04] 7.407
3.182946 —3.999 - 02] 9.177 3.316943 4.21704] 7.611
3.188913 ~3.819-02] 9.248 3.316995 4.374 04] 7.202
3.190517 ~3.771-02] 9.231 3.317088 4,655 04] 7.302
3.191638 ~3.737-02] 9.257 3.317206 5.01+ 04] 6.963
3.198331 —3.535-02] 9.419 3.317399 5.593-04] 7.138
3.210298 ~3.174-02] 9.590 3.317663 6.389-04] 6.968
3.222044 ~2.824-02] 9.760 3.317885 7.059-04] 6.913
3.235858 —2.403-02] 9.677 3.317972 7.32%04] 6.858
3.237019 —2.36§—02] 9.888 3.318097 7.698-04] 6.693
3.237827 —2.344-02] 9.861 3.318225 8.084- 04] 6.562
3.238887 ~-2.317-02] 9.836 3.318429 8.699-04] 6.581
3.245184 —2.127-02] 10.083 3.318670 9.496 04] 6.702
3.268550 ~1.417-02] 10.452 3.318830 9.909 04] 6.573
3.269553 ~1.387-02] 10.481 3.318919 1.0£8 03] 6.624
3.286051 —8.896 — 03] 11.023 3.319077 1.065 03] 6.661
3.287624 —8.421—03] 10.997 3.319217 1.108 03] 6.493
3.288580 —8.133-03] 11.091 3.319447 1.177 03] 6.449
3.296766 —5.664 — 03] 11.477 3.319738 1.265 03] 6.279
3.297686 —5.386 — 03] 11.591 3.320283 1.499 03] 6.528
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TABLE VI. (Continued.

T TT.—1 ct T TIT.—1 c
3.320536 1.505- 03] 6.285 3.375402 1.805- 02] 4.917
3.320809 1.588- 03] 6.270 3.376038 1.875 02] 4.857
3.320989 1.642- 03] 6.261 3.376954 1.852 02] 4.862
3.321325 1.743-03] 6.209 3.378597 1.902-02] 4.845
3.321702 1.857-03] 6.096 3.380724 1.966-02] 4.836
3.322174 1.999- 03] 5.919 3.382861 2.036-02] 4.820
3.322638 2.139- 03] 6.104 3.385006 2.095 02] 4.812
3.323109 2.281- 03] 5.910 3.387156 2.166-02] 4.803
3.323586 2.425- 03] 5.944 3.389310 2.225 02 4.789
3.324054 2.566- 03] 5.853 3.391472 2.296-02] 4.774
3.324387 2.66[7- 03] 5.711 3.393640 2.355-02] 4.766
3.324605 2.733- 03] 5.867 3.395811 2.47%02] 4.765
3.324881 2.816- 03] 5.874 3.397990 2.487 02] 4.738
3.325280 2.936- 03] 5.802 3.400172 2.552 02] 4.736
3.325758 3.080- 03] 5.776 3.402356 2.618 02] 4.727
3.326317 3.249- 03] 5.741 3.404543 2.684-02] 4.720
3.327445 3.589- 03] 5.682 3.406731 2.756-02] 4.718
3.328419 3.893- 03] 5.649 3.408924 2.816-02] 4.710
3.329076 4.081- 03] 5.485 3.41116 2.883 - 02] 4.701
3.329729 4.27B- 03] 5.666 3.412433 2.922-02] 4.666
3.331770 4.894- 03] 5.507 3.413044 2.94102] 4.661
3.332809 5.207- 03] 5.440 3.413649 2.959-02] 4.737
3.333808 5.508- 03] 5.465 3.414220 2.976-02] 4.723
3.334811 5.81[1- 03] 5.397 3.414872 2.996-02] 4.681
3.335822 6.116- 03] 5.382 3.415805 3.024-02] 4.678
3.336837 6.422- 03] 5.337 3.417482 3.075-02] 4.674
3.337850 6.727- 03] 5.329 3.419719 3.142 02] 4.661
3.338592 6.951- 03] 5.308 3.421956 3.209-02] 4.660
3.339364 7.184- 03] 5.301 3.424190 3.27702] 4.651
3.340384 7.492- 03] 5.277 3.426428 3.344-02] 4.645
3.341933 7.959- 03] 5.241 3.428664 3.412 02] 4.631
3.344007 8.585- 03] 5.199 3.430897 3.479-02] 4.630
3.346105 9.21[7- 03] 5.161 3.433131 3.54702] 4.632
3.348203 9.850- 03] 5.142 3.435362 3.614-02] 4.647
3.350301 1.048-02] 5.112 3.437601 3.68% 02] 4.628
3.352403 1.112-02] 5.085 3.439850 3.749-02] 4.626
3.354507 1.175-02] 5.051 3.442101 3.81702] 4.620
3.356612 1.239-02] 5.022 3.444355 3.885-02] 4.609
3.357923 1.278-02] 5.015 3.446613 3.953-02] 4.597
3.358726 1.302-02] 4.987 3.448872 4.02%02] 4.592
3.359605 1.329-02] 5.006 3.451131 4.089-02] 4.594
3.361045 1.372-02] 4.992 3.453395 4.158 02] 4.584
3.363198 1.437-02] 4.967 3.455659 4.226-02] 4.576
3.365356 1.502-02] 4.949 3.459058 4.328 02] 4.579
3.367521 1.568-02] 4.931 3.463590 4.465-02] 4.570
3.369688 1.633-02] 4.909 3.468123 4.602- 02] 4.557
3.371862 1.699-02] 4.884 3.472658 4.739-02] 4.562
3.374039 1.764-02] 4.875
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TABLE VII. The experimental measurements of the reduced densitdp,  along the coexistence
curve. The data were provided by Professor H. Meyer as they were used iriBef he index values 0 and
8 correspond to liquid and vapor, respectively.

1-T/T, [ApL vl Index TITe—1 [ApL vl Index
2.84§ —04] 7.197 —02] 0 7.580—01] 1.016 +00] 0
3.128 —04] 7.46Q —02] 0 8.190 — 01] 1.01§ +00] 0
3.445 —04] 7.705 —02] 0 8.790—01] 1.019 +00] 0
3.836 —04] 7.977-02] 0 9.390—01] 1.019 +00] 0
4.46Q —04] 8.365 —02] 0 9.98(—01] 1.017+00] 0
5.319 — 04] 8.859 — 02] 0 8.433 —04] 1.039 - 01] 0
5.327 — 04] 8.826 —02] 0 8.995 — 04] 1.067 —01] 0
5.963 — 04] 9.177-02] 0 9.06( — 04] 1.05§ —01] 0
6.63§ — 04] 9.517 —02] 0 1.221-03] 1.172-01] 0
7.279 —04] 9.827 —02] 0 1.515—03] 1.264 —01] 8
8.337 —04] 1.028 —01] 0 1.611—03] 1.30Q — 01] 8
9.630 —04] 1.089 —01] 0 1.647—03] 1.307 —01] 8
9.65§ —04] 1.084 —01] 0 1.729—03] 1.33G—01] 8
1.279 - 03] 1.198 —01] 0 1.791-03] 1.347 - 01] 8
1.399 — 03] 1.235 - 01] 0 1.931-03] 1.375 —01] 8
1.43Q0—03] 1.239 - 01] 0 2.075—03] 1.417-01] 8
1.51§ — 03] 1.27G - 01] 0 2.315—03] 1.473 - 01] 8
2.171-03] 1.43§ —01] 0 2.382 03] 1.47§ —01] 8
2.421-03] 1.494 —01] 0 2.661—03] 1.54% —01] 8
3.255 — 03] 1.657 —01] 0 2.849— 03] 1.585 —01] 8
3.867 —03] 1.761—01] 0 3.085—03] 1.625 —01] 8
4.066 — 03] 1.793 —01] 0 3.693 — 03] 1.731-01] 8
4.868 — 03] 1.90§ —01] 0 4.713-03] 1.890 — 01] 8
6.266 — 03] 2.09Q —01] 0 5.169 — 03] 1.95Q — 01] 8
7.261—03] 2.207-01] 0 6.004 — 03] 2.057—01] 8
9.366 — 03] 2.42G - 01] 0 6.811—03] 2.153 —01] 8
1.319-02] 2.73§ - 01] 0 7.311-03] 2.209 —01] 8
1.834—02] 3.087-01] 0 8.153 — 03] 2.294 —01] 8
2.285 —02] 3.340 - 01] 0 1.314—-02] 2.727-01] 8
2.854 —02] 3.626 —01] 0 1.500 — 02] 2.857—01] 8
3.135-02] 3.755 —01] 0 1.934—02] 3.140 —01] 8
3.496 —02] 3.917-01] 0 2.485—02] 3.43§ —01] 8
3.783-02] 4.027-01] 0 2.880 - 02] 3.617—01] 8
4.348 —02] 4.237-01] 0 3.157—02] 3.747-01] 8
5.230 —02] 4.463 —01] 0 3.505—02] 3.897 - 01] 8
5.320 —02] 4.474-01] 0 3.827-02] 4.021 - 01] 8
5.559 —02] 4.636 —01] 0 4.38§—02] 4.226 —01] 8
6.98§ —02] 5.03§ —01] 0 5.599 — 02] 4.619—01] 8
7.14q0—02] 5.124 —01] 0 7.054—02] 5.023 —01] 8
7.389 - 02] 5.135 —01] 0 7.474—02] 5.123 —01] 8
8.380 —02] 5.387 —01] 0 8.38§ — 02] 5.347 —01] 8
9.589 — 02] 5.65¢ — 01] 0 9.639 - 02] 5.623 — 01] 8
1.025—01] 5.749 —01] 0 1.467—01] 6.507 —01] 8
1.034—01] 5.80Q —01] 0 2.096 —01] 7.309 —01] 8
1.339-01] 6.363 —01] 0 2.627—01] 7.854 —01] 8
1.714—01] 6.887—01] 0 3.267—-01] 8.36§ —01] 8
2.227-01] 7.524 —01] 0 3.927-01] 8.807 —01] 8
3.106 —01] 8.389 —01] 0 5.547 —01] 9.589 —01] 8
4.979 —01] 9.499 —01] 0 6.773—01] 9.766 —01] 8
5.85( —01] 9.813 —01] 0 8.272—01] 9.61§ —01] 8
6.98Q — 01] 1.007 + 00] 0 9.960 — 01] 9.989 — 01] 8
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