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Homogeneous shear flow of a hard-sphere fluid: Analytic solutions
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Recently, a solution for collision-free trajectories in ldrparticle thermostatted hard-sphere system under-
going homogeneous she@he so-called “Sllod” equations of motigried to a kinetic theory of dilute hard-
sphere gases under shear. However, a solution for collisions, necessary for a complete theory at higher densi-
ties, has been missing. We present an analytic solution to this problem, which provides surprising insights into
the mechanical aspects of thermostatting a system in an external field. The equivalence of constant temperature
and constant energy ensembles in the thermodynamic limit in equilibrium, the conditions for the nature of heat
exchange with the environmefgntropy creation and reductipim the system, and the condition for appear-
ance of the artificial string phase follow from our solution.
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I. INTRODUCTION S o

fiIHﬂLWryi, (1a
The nonequilibrium molecular dynamics algorithm for '

simulation of bulk Couette flowithe so-called “Sllod” algo- .

rithm) has been widely used in order to predict transport and pi=Fi—ivpyi, (1b)
structural properties of atomic and molecular fluids, both in

the I|n.ear Im_nt and in the non—N_evytoman regimes. In prin- wherer, andp; are positions and momenta of partidlgi
ciple, it provides a correct description of an isolated sheared. { N), with Cartesian components {,r.;,r,;) and
y e iN), lyial zi

system arbitrarily far from equilibriurfil]. _ (Pxi »PyiPzi), respectively, anan; are particle masses. For
This algorithm has been employed with a large variety ofgimplicity, we shall consider a two-dimensional system of

continuous effective potentials, providing insights into rheo-prd disks of equal masses,=m for all particlesi. Gener-

logical properties of both simple and complex liquids. Thegjization to three dimensions is straightforward.

hard-sphere limit is of interest because in a large number of The total velocity of the particlé consists of the “pecu-

simple liquids consisting of nearly spherical particles, thejiar” velocity p;/m with the “streaming velocity” termiyry,

molecular motion is dominated by those portions of the in-superimposed on [tEq. (18)]. The particles interact through

termolecular potential which are short ranged and harshlgonservative, pairwise additive forceg ,

repulsive, while the longer-ranged interactions that have

slow spatial variation play only a minor role. Hard spheres N

are also used to represent colloidal particles suspended in a Fizz Fii,

fluid that then acts as an ideal homogeneous heat bath. In this 7

case, the strain rates used in simulations approach the values

that can be obtained in an experiment. whereF;; is the force of particlg on particlei, and Newton’s
Let us consider a liquid placed between two plates paralyhird |aw F;=—F; is satisfied. The additional shear-
lel to thexy plane, where one of the plates moves in #he dependent term in Eqlb) follows from the requirement that
direction relative to the other with constant velocity. In thethe system of equationd) generate the correct expression
laminar regime, we expect the development of a lineafor the dissipative fluf1].
streaming velocity profile. The streaming velocity of a The Egs.(1) are used in simulation in conjunction with
layer of fluid at a distancg from the reference plate is then the “sliding brick” periodic boundary conditiong2] consis-
equal toiyy, wherei is the unit vector in the direction, and  tent with the shear rate in the equations of motion. The

y=2duy/dy is the applied shear rate. sliding-brick boundaries can alternatively be used with New-
In this geometry, the Sllod equations of motion for theton’s equations of motion, in order to create a “boundary-
particles in the bulk fluid under shear are driven” shear flow with a linear streaming velocity profile

within the simulation cell. The average behavior of the sys-
tem is then equivalent to that obtained from the Sllod equa-
*Electronic address: janka@rsc.anu.edu.au tions (1) [1]. The boundary-driven Lees-Edwards algorithm
TPresent address: Department of Chemical Engineering, Univef-2] was used in the pioneering nonequilibrium simulation of
sity of Queensland, Brisbane Qld 4076, Australia. Electronic adNaitoh and Ond3] to compute shear-dependent viscosity of
dress: o.jepps@mailbox.uq.edu.au a hard-sphere fluid.
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The kinetic temperatur@ of the system is defined from complexity introduced by the thermostat multiplier. Between
the “peculiar kinetic energy’Ex and the equipartition theo- collisions, when alF; are zero, the motion of all particles is

rem still coupled by the constraint given by E@®). During a pair
N o collision, when there is a nonzero force of interaction, only
i d between the colliding pair, this force is present in all equa-
(Bx)= < ; ﬁ> - ENkBT tions of motion via the thermostat multiplier. Recently, a so-

lution of Egs.(2) for free flight was found 10] by decou-
whered is the dimension of the systerkg is the Boltzmann  pling the force-free equations of motion between collisions.
constant, and the angular brackéts- ) denote the ensemble In what follows, we briefly review and discuss the free-flight
average. solution and its implications, show how to solve the coupled
Shearing of a fluid produces viscous heating, whichcollision equations, and discuss some physical implications
causes the peculiar kinetic energy and temperature to iref our solutions for the collisions.
crease indefinitely over time. As a consequence, the system

can never reach a well-defined steady state. The first method Il. FREE TRAJECTORIES
of temperature control was simple velocity rescaling. Naitoh )
and Ond 3] discarded it as unphysical, and used time scaling A. Solution

to calculate reduced properties as temperature increased. For hard disks of equal mass between collisions, the
Later, different continuous methods for removing adia-system of equation€) reduces to

batic heating were proposéd,4], which consisted of addi-

tion of a term of the form— «(r,p)p; to the right-hand side . Pxi - Pyi

of Eq. (1b), = P = @
P . .
__"H'Yryl: 2 Pxi= = YPyi— aPxi, Pyi= — aPyi,

- . where the thermostat multiplier has the form
pi=Fi—iypyi—ap;.

The main problem with this type of thermostatting, in the = E )
case of a sheared fluid, is that it assumes that the streaming 2K0 PxiPyi-
velocity profile created by Eggl) is linear and equal to

iyry; for all shear rates. This is a good approximation ofA|l the momentum equations in Eq@l) are coupled via the

dissipative processes at low shear rates, but leads to unphysirermostat multiplier, which satisfies a nonlinear second-
cal suppression of velocity fluctuations and prevents the onorder equation of motion,

set of turbulence at higher shear rafé$. A remedy was
found in the profile-unbiased thermos&t and recently, in a
“configurational temperature thermostdt7]. In this work,
we present the analytic solution of the thermostatted Sllo
equationg2) for hard spheres in the simplest case, where the
thermostat multipliere is determined using Gauss'’s prin-

a+6aa+4a3=0.

dI'he general solution has the form

ciple of minimal constraint, so that botfx and K a(t)= =G (6)
=Eyx/m become constants of the motion, i.e., Co—(t—cy)?
1 % F oo Y % 3 with the constants, andc, determined from the initial con-
2K, &4 i*Pi 2K, &4 PxiPyi- @) ditions att=0,
One of our objectives is to determine, from the form of E 2

analytic solutions, what are the unphysical consequences of : Pxi(0)Pyi(0) : pi(0)-pi(0)

employing this thermostat, and in which circumstances they c¢;= , Cp= —ci. (7)
would have most impact. 7,2 pyi(0)2 722 pyi(0)2

In the hard-sphere limit, the interaction fordég vanish
during the free motion between the collisions, or are infinite
during the infinitesimally short collision time. For a two- There is no reference to the shear ratie the solution given
particle hard-sphere system under shear, the magnitude of tihy Eq. (6), all v dependence is in the constamtsandc,.
peculiar momenta is fixed by the isokinetic constrdia. = The evolution of momenta and positions can now be ob-
(3)], and Egs.(2) can be reduced to the always-integrabletained from Eq.4) by direct integration,
one-body problem. In this case, both the free trajectd6és

and collisiong 8,9] had been solved. c2+c,
However, forN>2, the system of equatiori) has been pyi(t)=pyi(0) — =
Cot (t—Cy)?

considered impossible to solve for a long time because of the
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t)=[pyi(0) — ¥Pyi(0)t] \/ cite;
Pxi(t) =[Pxi(0) 'ypyi( )] c +(t_01)21

2

t—cy+V(t—cy)?+c,
—cytVei+e,

ryi(t)=ry;(0)+ Pyi(0 )\/c +czln
m

()= (0)+ 97y (O)t+ 22— m[m )
—V(t=cy?+c,]
. pxi<0>+7pini<0><t—2cl> e
t—c;+V(t—cp)+c, X

xIn et /—C2+ c ' (8) FIG. 1. Free trgjectories of three hard disks and their suqcessive
1 172 momenta, according to E@8), for the reduced number density of
p*=Nog?/L?°=3/64, and the reduced shear ratey*

In the equilibrium limit y=0, the solutions in Eqs8) — myol(mkeT*) Y= 0.455

reduce to the familiar straight-line form,

pi(t)=p;(0), orientation of momentungsecond and fourth quadrante-
sults in heat having to be taken out. If motion is entirely in
pi(0) the x direction (p,;=0), there is no change in peculiar ki-
() =ri(0)+———t. netic energy even in an adiabatic process, and this particle

does not contribute to the thermostat multiplier.

In a hard_sphere System in equ”ibrium, Change of tempera_ Another question that can be addressed is what would be
ture at constant density is equivalent to time scaling. Fronthe “steady state” of a sheared system without collisions.
the form of So|ut|0n$EqS (8)] for thermostatted free traJeC_ First, from the infinite time limit of the momentum evolution
tories under shear, we can see that in the same sys@me N Egs.(7),
m,o,N), the same orbits in space would be followed by all ,
particles at a constant ratio af/(p)=y/T¥2. This means lim pyi(t) = = ¥Pyi(0) Vei+ca,
that increasing temperature at constant density is equivalent =
to time scaling of the same system with shear reduced by a
factor of T2, lim py;(t)=0,

The orbits and momenta of a three-particle system under toe
shear are shown in Fig. 1. Particles move along curved tra-
jectories, and their momenta rotate in the clockwise direcmomenta of all particles tend to align along thex axis,
tion, approaching 0 if they were initially in the upper half with the infinite time limit of the thermostat multiplier equal
plane and approaching = if they were initially in the lower  to zero. During free motion under shear, momentum align-

half plane, their magnitudes changing as they move. ment is such as to minimize heat exchange with the environ-
ment. In this limit, there is no resistance to shear flow, and
B. Discussion the steady state viscosity vanishes:

From the form of the collision-free equations of motion
[Egs.(4) and(5)], one can deduce which trajectories contrib-
ute to viscous heating. The positive sign of the thermostat (WY, lim Z Pxi(t)Pyi(t)=0.
multiplier « corresponds to extraction of heat from the sys- i
tem, whereas negative corresponds to a situation when
heat is added to the system from the environment. Therefore, The hydrostatic pressure has only the kinetic component
the trajectories that contribute to positivein Eq. (5) are between collisions and is constant because of conservation of
responsible for heat having to be extracted from the systenkinetic energy. However, the whole initial pressure
and the negativer are responsible for the need to add heat
from the environment. In particular, wherx- and 1
y-momentum components have the same signs, i.e., whenP(0)= [Py (0)+ Pyy(O)]sz [pZi(0)+pZ(0)]
they are in the first and third quadrants and, therefore, ori- =1
ented in the direction of change of streaming velocity along
the direction of motion, heat needs to be added. The opposiis in the infinite time limit all applied in the direction,

N
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Lo =P aa, Pa=Fy-ap
im Pyy=— lim 3, p2(t) 2T AP P=hy T APy,
t—o t—oo i=1

bxi:_apxi! byi:_apyia i>2,

2 N
Y
== m_\/(ci'i' CZ)iZE1 pgi(o) = Pxx(o) + Pyy(O), where now
1 N - F-(p2—p1)
. I T 2 — - T~y .
ﬂpyy—mvm ;1 pZi(t)=0. 2K,

. .. The strain ratey does not appear in any of the E¢42) in
However, collisions always occur, and the above collision+ne infinite force limit. The terms containing the strain rate in

free limits are never reachg@]. the momentum equations are all finite and become negli-
gible.
Ill. COLLISIONS Second, in this limit, the duration of the collisian i.e.,

the time during which the particles interact becomes negligi-

. . bly small, 7—0. The total displacement of each of the par-
Let us consider a system & hard disks under shear, ticles is zero during the collision, and it is sufficient to solve

described by Eq€2) and(3), out of which disks numbered 1 only the momentum equations in the systéig).

and 2 are colliding. It is assumed that the force of interaction The isokinetic systeni12), unlike a system with conser-

between 1 and 2 is central, purely repulsive, of constiat  vation of total energy, does not in general conserve the mo-
finite) magnitudeF throughout the distance, the diameter mentum of the colliding pair,

of the disk, and zero otherwise. In this case, the positions and
momenta of the colliding particles obey the equations P,#P;.

A. Equations of motion for hard disks

_Paz N 0V Indeed, if the momenta of the particles 1 and 2 just before
x1,2 Yryi2, Ty12 ) - : .
m m the collision argy, andp,, and just after the collision ang;
) ) andp;, so that
Px1,2= FFx—= ¥Py12— aPyxi2,  Py1o= FFy—apPyi o,
©) pi=p1+Ap; and p,=p,+Apy,

where r,=r,—ry, Fy=F(ro—ra)lria, Fy=F(ry
—ry1)/r1, are the Cartesian components of the force of in
teractionF, and « is the Gauss thermostat multiplier. The
thermostat multiplier, in general, given by E@®), in this
special case of only two colliding particles reduces to

we cannot assume thatp; + Ap,=0. Only the momentum
“of the whole system is conserved.

The same is true of the kinetic energy. Since the infinite
force appears in the momentum equations of all particles, all
the momenta change during the collision. We cannot assume

E N that the kinetic energy of the colliding pair is generally the
= M - E n. 10 same before and after the collision, and disregard the others.
a PxiPyi - (10) . . . .
2Kq 2Kg =1 All particles take part in the collision even if they do not
touch.
The equations of motion for other noncolliding particies
>2 are B. Solution
P - Py It is convenient to rewrite Eqg12) in terms ofp_=p,
=y T Myin Tyi= (1) _p, andp, =p,+p, instead ofp, andp,, where
. - . F-p_
Pxi= = ¥Pyi— @Pxis  Pyi= — aPy;. p-=2F- 2K, p-,
Note that the force of interaction between 1 and 2 figures in
the equations of motion of all the particles because of the - F-p-
thermostat term. P+ 2K, P

In order to find the solution of the system of equati@@s
(10), and (11) in the limiting case of hard disks, i.e., when The solution forp_ is the solution for the momentum of
F—o0, two points should be taken into account. FirstFas particle 2 in the “relative” reference frame in which particle
—oo, all terms on the right-hand side of the momentum1 is stationary at the origifFig. 2).
equations not containing become negligibly small and can Force F is central, i.e., directed along the vectoy,.

be neglected, so that Therefore, we decompose the vegbarinto a “radial” com-
. _ ponentp, _ parallel tor,, and a “tangential” componen,
Px1=—Fx—apyx, py1=—Fy—apy, (120  perpendicular ta,,
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1 |—-»p
FIG. 2. The relative reference frame for colliding particles 1 and o g 3 -----p*:
2. Particle 1 is at rest, and the momentum of particle @_is=p, 0.5 F 3 .
—p1, while its streaming velocity igr,;,. Note that the angle of Ak ____,.—--" E
incidence is not necessarily equal to the angle of reflection, and tha 15 Ot i -__. ‘ ]
magnitudes of relative momentum before and after the collision do = "~ g A05 B C 1 D15 2
not have to be equal. Ft
(b)
p_-rqp 1.5 r ; .
= L /____
pr r12 ’ 1 : / ]
~. L~ 1
T Pxadly12t Pyadfxaz = ",'7' T — 1 [—»p
Pt-= r - 0.5 [ . [~ — ] §
12 L ~N . o -_— 'pn
. . . - ! ~N 1 {—--
With this decomposition, the thermostat multiplier becomes ¢ N 1l P
a=Fp,_/(2K,), and the equations fqu, - andp,_ are [ [ S Pe
[rm———— B e i EY| j
k .\ 4
. Pr- 0.5 T~ ]
_=2F|1- , 13 [ I~
Pr [ 4Ko} 13 [ b
-1 | 1 1
D Py 0 A0S B C 1 D15 2
. r— Pt
pi-=—F . (14 Ft
t 2K,

FIG. 3. Change of momenta during a collision of disks 1 and 2
The solution for the radial component is in a three-hard-disk systerfe) Relative radial and tangential com-
ponents according to Eq&l5) and (16); (b) individual radial and
tangential components of 1 and 2 according to E4g) and(18).

_ pe=(0)+2K, tanh(Ft/VKo)
~ 1+[p,_(0)/(2yKo) Jtant(Ft/\Ko)

and for the tangential component it is

pr—(t) (15
The equations fop,, andp;, , as well as for the Carte-

sian momentum components of the particles not taking part
in the collision, have the same form as Ed4), with the
p;_(0)/cosk Ft/\/K_O) (16) solutions of the form Eq(16). Solutions given by Eq(16)

- : are the momentum components just before the collision res-

L+[pr—(0)/(2Ko)Jtant(Ft/VKo) caled by the same factor.

In Egs.(15) and(16), p,_(0) andp,_(0) are the radial and Using Egs.(15) and(16), we can find the radial and tan-

tangential components of relative momentum just before th@ential momentum components of 1 and 2 in the laboratory

collision. Note that Eqs(15) and(16) are proportional to the frame just after the collision,

pure hyperbolic tangent and hyperbolic cosine shifted in time

so that at=0, they are equal tp, _(0) andp;_(0), respec- Py TP, Pes T Pro

. . . . r+ r t+ t

tively. Therefore, the relative radial component is bounded prl,ZzT and ptl,ZzT-

between— 2K 3% and + 2K, and the tangential component

has an extremum when the radial component vanifhigs

3@@)]. Substitution yields the results

P (1)

1 p,+(0)/coshFt/\Kq) = p, _(0)+ 2K, tanh Ft/yKo)

1 ’ 1
Pri2=3 1+ pr—(0)/(2Ko) Jtanh(Ft/ K ) *
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pr— (1)
ey

P, 0)/costiFt/ Ko)
1+[p,-(0)/(2VKo) Jtanh Ft/\Ko)

(18) r(t)=|ro(t)—ry(t)|= (19)

Pt1,2=

so that the condition on the value of the quanttly at the

shown in Fig. 8b). At the pointFt=A, the relative radial end of collision is

momentum of 1 and 2,_ vanishes[Fig. 3a)], i.e., p;
=p, [Fig. 3(b)]. After Ft=2A=C, p,_ reverses sign, so 7. P,
thatp,_(C)=—p,_(0). This is a consequence of the parity f f(t)dtZJ
of the hyperbolic tangent. At this point in time, the colliding 0 0
particles exchange their radial momenta, while their tangentne point at which the radial velocity given by E(L9)
tial components, as well as the momenta of all the OtheEhanges sign is the turning poifgoint Ft=A in Fig. 3a)].
particles, remain unchanged. The collision Iookg just like atrpe condition Eq(20) can then be interpreted as a condition
constant total energy at zero shear. If the result is taken aftghat the total area under the curve describing the evolution of
a shorter time(point B) or after a longer timgpoint D), |, (1) from the start Et=0) to the end of the collision be
momentum and energy of the colliding pair are not con-gqua| to zero. From the symmetry of the hyperbolic tangent,
served, and consequently the momenta of all other particle$ to)1ows that the collision must then end Bt=2A=C,
get rescaled. _ twice the turning point time. As already mentioned, the radial
By rearranging the expressiofi§gs.(15) and(16)], one  mpomenta of the colliding particles are in this case ex-
can show that. the kinetic energy of the whole system is CONghanged, while their tangential components, as well as the
served at all times, momenta of other particles, remain unchanged. The “colli-
sion rule” at zero shear is the same for thermostatted and
constant energy collisions, and the two systems cannot be
distinguished from their trajectories at equilibrium.

(t)
——dt=0. (20)

N N
El p?<t>=i§1 p?(0)=2K,.

Therefore, it is sufficient to solve Eq$13) and (14) and D. End-of-collision under shear
rescale all the other components by such a factor that the t1q strain-rate dependent terms do not appear in the time-

total ki”iﬂc energy is c_onservgd. , , dependent solutions for the momenta in EG$) and (16).
If p=pi,=0 andp;=0 fori>2, the right hand side of 1, ever, shear figures in the position equatié®)sand Egs.
Eq. (16) vanishes. In this pathological case of a *head on” 19y changing the total velocities of all particles according to

collision of 1 and 2, with all other disks at rest, 1 and 2 passpeir positions. Therefore, the total radial velocity of the par-
through each other without a collision because their radia]. , - . . L .
cle r in the relative reference frame is different from its

momenta are fixed by the thermostat. This is an isolate fibri | dd d h : lef th
singularity of purely mathematical origin, which can be re- equilibrium valué, and depends on the poiar anglef the
collision as well as on the relative radial momentpm . At

moved by interchanging, andp, after the collision. - . ) o
The solutions found so far describe the way in whichthe collision point (41,ry12), the radial velocity is

momenta change during a hard-disk collision, but they do

not determine when the collision stops and which are the r(t)=
final momentum values after the collision. In order to find
this, we need to make use of the position equations.

pr—(t)  ryadyi
+vy .
m o

(21)

The radial component of the streaming velocity,
o o o =y y12 IS constant during the collision because the po-
C. End-of-collision condition in equilibrium sition of particle 2 does not change in the infinite force limit.
Let us look at the collision of particles 1 and 2 in more The end-of-collision condition which replaces Eg0) under
detail, in a reference frame where particle 1 is stationary aghear, is
the origin, and is represented by a disk of raditswhile

particle 2 is represented by a point with momentum equal to jT'r(t)dt= f’[pr(t) n yrxlzry12 di=0. 22)
(pr— ,pi—)- The coordinates of the point 2 arg= o cos¢ 0 ol M o
andyo= o sin¢ (Fig. 2. The sign ofu, = yr ;.r 1, depends on the quadrant where

During the collision, particle 2 moves infinitesimally to- the collision occurs. I y2r y12<O (Fig. 4, shaded region
wards the center of Lntil it reaches the turning pointand  shear is “pushing” particle 2 towards particle 1, and the
after that, it moves away from the center until it is at acollision lasts longer than in equilibrium. On the other hand,
distances again. This is when the infinite force ceases to actjf Ml y12>0 (Fig. 4, white regiol, shear is pulling particle
which defines the “end of the collision.” 2 away from particle 1, and the collision duration decreases.

Since the particles are assumed to be spherical, the end- The end-of-collision condition in the two cases is shown
of-collision condition is that the total distance traveled by thejn Fig. 5. If r,, is directed along the change of the streaming
“point particle” 2 in the radial direction during the collision velocity [inset in Fig. %a)], the magnitude of the relative

is equal to zero. _ radial momentum is reduced. If the alignment of the two
In equilibrium, the radial velocityr of point 2 in this disks is against shedinset in Fig. %b)], thenp,_ increases.
reference frame is equal to As a consequence, when a collision occurs in the first or the
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FIG. 4. Collision under shear according to E83) in the rela-

tive coordinate frame of Fig. 2. The full circle represents particle 1,
the thinner circle is the scattering cross section. If the collision

occurs in the first or in the third quadrafvthite region, the radial
component of the peculiar velocity is reduced by the radial compo
nent of the streaming velocity. If the collision is in the second or
fourth quadrantshaded region the total relative radial velocity is
larger thanp, _ /m. The vectors are defined in E1).

PHYSICAL REVIEW E 67, 021105 (2003

third quadrant, the angle of reflection is larger than the angle o
of incidence. In the case of a collision in the second or the FIG. 6. Two types of collisions under shear. In case 1, the rela-

fourth quadrant, particle 2 is deflected towards the line con
necting their centers.

115

I

Ft
Ft

FIG. 5. End-of-collision condition under she@ when particle

alignment is along sheath) when particle alignment is against
shear. Full line: peculiar radial momentum. Dashed line: total radia

momentum. The shaded region represents the end-of-collision con-

dition under sheaEq. (22)]: the area under the curve representing
the integral of the total relative momentum_(Ft)+mu, must
vanish at the end of collision.

tive momentunp_ decreases and the angle of incidedgés larger
than the angle of reflectiofr. In case 2,p_ increases and,

< 0. The dashed lines represent the relative momenta after time
reversal.

In both cases, using some straightforward algebra, one
finds for the end-of-collision time

1-p—(0)/(2VKg)  1—mu/(2VKy)

b (0/(2VKe) 1+ my (24K’
23

Fr

ol

where the first term on the right hand side is the equilibrium
collision time and the second term represents the interval by
which the collision time is increased or reduced because of
shear. The final value @i, _(7) is found by substituting Eq.
(23) into Eq.(15).

Kratky and Hoovef11] used a method analogous to ours
to solve the collisions of hard spheres in the Evans’ algo-
rithm for thermal conductivityf12]. However, in their case,
there is no explicit streaming velocity term due to the field in
the position equations of motion, so that the momentum and
the kinetic energy of the colliding pair are conserved during
the collision, and the motion of the other particles is unaf-
fected.

E. Discussion

The two types of collision are shown in Fig. 6. The nature
of heat exchange with the environment can be deduced from
the behavior of the thermostat multipliar during the colli-
sion. The total heat put into the system from the heat bath
during a collision is

Fpr (1)

Myo COS¢ Sin g F
o 2Ky

dt= oK,

T.

(24)

lQ:Lamm:

The sign ofQ depends only on the product césin ¢. If the
coordinates of the point of collision are in the first or in the
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I I I l I I I 6 T T T T
3 1 7 2‘\/K_0 :-.—_.; -.'_—_-..: _____________________________ -
L B a- mu, M=_ZJK_O
-4 I 1 1 1 1
0 0.5 1 1.5 2 2.5 3
Fz

FIG. 8. When the relative radial streaming momentumo,

.. . . H 1/2 far .
FIG. 7. Collision in a three-particle system under shear, reduced Myo €os¢sin¢>2Ky“, there cannot be any collisions taking

shear ratey* =0.455, reduced densitp* =3/64. Dashed lines place at the pointy (dashed-dotted linebecause the total relative
would be the trajectories if there were no interactibe., collision radlalllzmomentu_rr_] is always positive. Whemyo cosésing<
between 1 and 2. Full lines are the trajectories with a collision. Disk—2Ko*, the colliding particles cannot pull apart after the collision
3 is deflected by the collision although it does not take part in it. (dashed lingbecause the shaded area cannot become poffiiye

2

third quadrant, the magnitude of the relative momenfum

decreases and heat is added to the sys@m@) in order to  relative coordinate system, as shown in Fig. 2. According to
keep the temperature constant. This is case 1 in Fig. 6. Othe collision rule given by Eq(23) and shown in Fig. &),

the other hand, for the collisions in the second or the fourttthis means that, for collisions in the first and third quadrants,
quadrant, the magnitude pf. increases and heat needs to beparticle 2 will collide with particle 1 only ifp, - <—|mu|.

taken out Q<0). For the collisions at pointgg=n/2, If the relative radial momentum, _ is not negative enough,
wheren is an integer, or fory=0, there is no heat exchange the collision will not occur, i.e., particle 2 will not even reach
with the heat bath. the point of collision.

It is worth noting the fact that, if we reverse the momenta  Alternatively, from Fig. %b), collisions in the second and
of all particles just after the collision, their trajectories would fourth quadrants can occur evenpif_ >0, if the condition
not retrace themselves. The same holds for the free traject®, - <|mu| is satisfied. Therefore, as strain rate increases,
ries. Indeed, the Sllod system of equatiq@s is not time  there is a higher probability of collisions occurring in the
reversible, and the trajectories would reverse exactly only isecond and fourth quadrants, and a lower probability of col-
each momentum and the strain ratall change sign. In this lisions in the first and third quadrants.
case, the conditions for the quadrants of the polar aggle ~ The maximum value ofcos¢sind| is equal to 1/2 when
change as well. ¢=*ml4 or =+ 37/4, and the largest possible magnitude
Collisions of hard spheres contribute to heat exchangef the relative radial momentum of the colliding pair is
with the environment, otherwise all heat is generated durin¢pr_|max=2K$’2. As a consequence, when
free motion between collisions.
When the magnitudes of momenta of the colliding par- 4Ky 2 [2dNkgT
ticles change, the momenta of all the other particles get res- v= moe o m (29)
caled instantly in order to keep the total kinetic energy of the
system constant. Therefore, all particles get deflected during
a collision even though they have no direct interaction. Thighere will be no collisions at pointsp==/4 and ¢=
counterintuitive consequence of the solution for the sheared- 37/4 (Fig. 8, dashed-dotted lineOn the other hand, if a
collision of hard spheres is always present, but the effect igollision occurs at pointgy= — /4 and ¢=3n/4, the total
more pronounced for smallé\. In Fig. 7, it is shown for a relative radial velocity at these points cannot become posi-

three-particle system. tive, and the two colliding particles can never go away from
each other(Fig. 8, dashed linge If the strain rate increases
F. Extreme shear further, such “trapping” collisions occur at increasing polar

) ) o angle intervalsA ¢ around— 7/4 and 3w/4, whereas there
For a system oN hard disks at a given total kinetic en- 5o 1o collisions forp=ml4= A and p=— 3m/4+ A .

ergy Ex=Ko/m, the radial component of the relative mo-  Thjs effect is related to the formation of the “string
mentum of la}zcolliding paip, . must belong to the interval phase” observed in simulations of simple fluids with con-
[—2K5"2Kg"]. In order for a collision to occur, it is neces- tinyous potentials under strong sh¢as]. In reality, if the
sary for the total relative radial velocityto be negative, i.e., system is large enough, the increase in shear rate invariably
for the particles to approach just before the collision. leads to turbulencgs]. Therefore, the string phase does not

Let |u,|=|yo cos¢sing| be the magnitude of the total appear in bulk fluids under shear, unless turbulence is stabi-
relative radial velocity at some point on the circumference oflized by some external force. In Gauss-thermostatted Sllod
a sphere of the diameter representing particle 1 in the system of equation&), such force is artificially provided by
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the thermostat term, which strictly constrains the streamingvherer ,15(t,) are the relative coordinates of timh colli-
velocity profile to be linear. sion point, and the produdtr, in the limit F—o is deter-
In a hard-sphere system, the string phase is a combinatiamined from Eq.(23) for isokinetic collision under shear.
of trapping collisions and momentum alignment in free tra-
jectories discussed in Sec. IIB. The expression for the lim- A. Kinetic part
iting shear rate in Eq(25) suggests that the appearance of
string phases in a Gauss-thermostatted system occurs at
higher values of shear rate for larger system sizes, and that 7P
would not occur in the thermodynamic limit. This is another
indication of the artificial nature of the string phase in bulk pKy =
sheared liquids.

The kinetic part of the hydrostatic pressure of hard
heres is

N 2
2 2K
> P20 N,
i m m

i=1

ol r

the same constant value in equilibrium and in the Gauss-
thermostatted sheared case. There can be no shear dilation in

The elements of the pressure ten8gy; are given as the the Kinetic part of the hard-sphere pressure.

IV. HYDROSTATIC PRESSURE AND SHEAR STRESS

ensemble averages The kinetic part of the shear stress is equal to
— K 1 thi1
N N-1 N K 0 | +
iPpi PoV=— lim — j s)ds
Paﬁv=<_2 PaiPsi 'pﬁ'>+<2 D raijF[,ij>, (26) X myV .. t Z th 9
i=1 m i=1 j=i+1

wherea, 8 denote the Cartesian componexts/, andz, and ~—
V is the volume of the system. The first term on the right 2V
hand side represents the kinetic part and the second term is ) . .
the potential part. The hydrostatic pressérds defined as WhereAt=A4t(cy,c;) is the mean time between collisions,

the trace of the pressure tensor divided by the dimension did the angular brackets give an average over all possible
the system, initial conditionsc, andc,. This expression can be used in

simulation to evaluate the kinetic contribution. It has been
1 used to estimate the shear viscosity of an ideal gas using a
p= q > P, self-consistent approach of kinetic thed0].
a=1

dNkgT / 1 | c2—c,
— In ,
At (At—cy)?-c,

) _ B. Potential part
The pressure in Eq26) can be expressed as the time aver-

age, 1. Equilibrium
N From Eq. (27), the potential contribution to the hydro-
b vli it D Pai(S)Pgi(S) static pressuréthe virial) for a two-dimensional system in
“p _tmt o\i=1 m equilibrium is
N-1 N Py 1im > o -
"’El e raij(S)FBij(S))dS- P V_tmz 2 Fro=75 fealF 7). (28)
=1 j=i

h\gherefcou is the collision frequency. In an isokinetic en-

In the case of hard spheres, free trajectories contribute to t ) . .
emble, the average transmitted impulse is

kinetic part, whereas collisions contribute to the potentials
part. LetAt,,At,, ... ,At, be the times between+ 1 col- B
lisions, so thatt=3At;. Lett; be the time when théth (F yr= Kol In 1-p;(0)/(2VKy) 29
collision occurs, and; the infinitesimal duration of théth 1+ pr,(O)/(Z\/K_O)

collision. Then the kinetic part of the pressure tensor is

where the average is taken over all possible valuep,of

1 g N D.i(S)Ps(S) just before the collision.
PRoV=lim= > > T s, In the equilibrium constant energy ensemble, the product
et Jy 31 m Ft can be showi9] to be equal to
and the potential part is (Frnve= —2(p;-(0)),

1 to+ 7 yielding a different hydrostatic pressure than for constant
PLaV= lim + > J r a1 S)F p12(S)ds kinetic energy.
toet N Jin This result may seem paradoxical, given that from the
outside, both systems look exactly the same — the same
o1 M1l g12 . . ) -
=lim= 2 Fry, (27) specular elastic collisions occur at the same time and trajec
P o tories follow the same rectilinear paths. However, in a “soft”
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repulsive potential, the two collisions would differ signifi- _ [ANKT
cantly. While in a constant energy system, the radial compo-lim (F7)yyr= lim 2ymNikgT In 1 pcosyltzymNieT)
nent would decrease till the turning point and increase in theN—= N—e 1+ pcosy/(2ymNksT)
opposite direction without any impact on the other momen- 30

tum components of noncolliding particles, in the isokinetic - p cosy __ bco i
collision, all momentum components of all particles change. (MNkT)Y?  12(mNkgT)3? '

In a thermostatted sheared system, the expression for the

longer and the two colliding bodies overlap more. The ratioVe find the ratio of isokinetic and constant energy pressures
The difference is the most obvious in the case of only two lim — lim ~14 1 +0

constant energy constraint. At any given point of collision, The pressures in the two ensembles approach in the ther-

equally probable. The isokinetic and the constant energy viriobserved numerically in Reff11]. The 1N approach of pres-

virial [9].

From the central limit theorem, it follows that for lardé virial becomes

In the latter case, with the same potential, the collision lasts
of the two times remains different even in the hard-spherd? two dimensions in the thermodynamic limit,
limit. b
PNVT_ <F7'>NVT~ i

colliding hard disks. In the thermostatted system, the magni- Now Phye N (FT)nvE 6N N2/
tudes of each of the two momenta are fixed-tp by the
all possible orientations of the relative momentire., all  modynamic limit as M. The difference in pressures in the
values of the radial component betwee@p and Q are then  two ensembles, decreasing with the system bizhas been
als then differ by a factor equal to half the Catalan constantsures is in accordance with the general proof of equivalence
the isokinetic virial being nearly twice the constant energyof equilibrium ensembles presented in Rf4].

For N disks, all possible orientations of the relative mo- 2. Shear
mentum are still equally probable, but not all magnitudes.
the probability of a disk having a momentumis given by
the Maxwell-Boltzmann distribution,

fd¢f dlﬂfdppf(p@,lﬂ)FT(p@,lﬂ)

g
PPV= Efcoll
()= exp{ —p*/2mkg T} fd¢fdwfdppf(p,¢,w>
2

f exp— p*/2migT}dp The magnitude of the peculiar momentum does not necessar-

ily follow a distribution of Maxwell-Boltzmann type, but the

deviations should be negligible in the thermodynamic limit

It gives the probability of any relative momentum_, and for small shear ratés]. In the angular integration, how-
and, in particular, that of the colliding particle 2, being equalever, the differences do not disappear in the thermodynamic
to p. The average impulse of EQR8) then becomes limit because they are related to the change in the streaming

velocity across the hard-disk diameter The limits of inte-
gration for the angular variables are now such that the rela-

3m/2 2Ky tive total radial velocity is negative,
f dsbf dp pFr(p,y)exp{ — p/2mks T}
e 0 myo
(Fr)= 2Ky ' cosy<— sin 2¢,
Wj dpexp{— p?/2mkgT} 2p(0)
0

and the angular distributions are no longer uniform. There-
fore, the first term on the right hand side of E83) changes
where = 6— ¢ is the angle betweep_ andr 5. its value, although its form is the same as in equilibrium.
In equilibrium, all initial orientations of relative momen- There is also an additional term for [the second term on
tum 6, and all angles of impact (Fig. 6) that lead to a the right-hand side of Eq(23)] with a nonvanishing
collision, i.e., such thap,_<0, are equally probable. The ?Y-dependent leading term whéh—o-. Taylor expansion of
radial component of the relative momentum in terms ofthis term gives
anglesé; and ¢ is p,_ = p cos@— ¢), wherep is the magni- _
tude of the relative momentum_, and the conditiorp, Koin 1—-myao sin 2¢/(2./Ko) _ myo
0

sin 2¢

<0 means¢e[0,27r] and y=(6— ¢) e[ 7/2,37/2]. The l+myosin2¢/(2yKg) 2
duration of a collisionr is a function of the magnitude of the

relative momentunp and the angle), 7= 7(p, ). The form 2 [(myo i 2t

of F7(p, ) for the isokinetic equilibrium collision is given 3Kl 4 ST 2+ -+ -

by Eq.(23) for u,=0.
Using Taylor expansion of the mean isokinetic collision All the terms in the Taylor expansion would vanish for a
impulse(F )yt in terms ofp/(MNksT) Y2 asN— e, uniform distribution of¢ with the same limits as in equilib-
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rium because they contain powers of sinHowever, be- on the coupling of all motion in order to define and conserve
cause of the change of limits and nonuniform angular distrithe temperature of the system. When such a method is used
bution, the first term on the right hand side gives a finitet0 control peculiar momenta with respect to a nonzero
contribution for all system sizes. The exact final form of theStreaming velocity profile, it causes the change of direction
virial is a result of interplay between the change in the pe_of all trajectories in a finite system. _ThIS.IS not so obvious in
culiar momentum distribution during free flight and colli- systems with continuous interparticle interactions because

; ; . ere the collisions are not clearly defined and there are no
sional mapping, and can be deduced most easily by comput Iscontinuous changes of momenta. On the other hand, this

S|mulation. L effect is significant only for strongly sheared small systems,
The integrand of the shear stress expression is equal to t.%%d becomes infinitesimal in the thermodynamic limit.

integrand for the hydrostatic pressure multiplied by an add"‘l’herefore the Gauss kinetic thermostat is still a good ap-
tional factor of'si.n 2b. This causes it tp vanish in equilibrium proximati(;n of the process for large systems and low shear
and become finite whery#0 even in the thermodynamic rates For very high shear rates, the nonlocality of collisions
limit. would be visible even for large system sizes, but then an
even more serious objection is the assumption of the linear
V. CONCLUSION streaming velocity profile in Eq3).
It is important to bear in mind that the objective of intro-

We have presented an analytic solution for collisions ina, . . . S
ucing an artificial thermostat in nonequilibrium molecular

sheared hard-sphere liquid thermostatted using a Gauss isg . . . . . .
Kinetic constraint. ynamics simulations is not to reproduce the microscopic

Our solution shows that, in equilibrium, the hydrostatic details of heat transfer, but to account for its macroscopic

pressures calculated in the constant energy and the constq‘%ﬂeas' In doing so, we must choose which properties need

temperature ensembles differ, although the trajectories in th be reta_ined Ina pa”'?“'?“ model. Let us consider two O.f
two ensembles are indistinguishable. The difference j{he most important applications of the hard-sphere model in

system-size dependent and disappears in the thermodynanﬁgmpmer simulations—granular matter and colloidal disper-

limit, with a leading term proportional to the inverse of the sions. . . :
number of particles. In simulations of granular matter, heat is extracted only in

With these equations of motion, collisions under SheaI;:ollisions through the coefficient of restitution. This reflects
conserve neither the momentum nc;r the kinetic energy of 5he fagt that granular particles are macroscopic objects with
many internal degrees of freedom, and “heat transfer” con-

colliding pair, only the energy and the momentum of the . L

system as a whole. As a consequence, the angle of reflecti?St‘?‘ largely of IOS.S of center-oi‘-mass Kinetic energy due to
is not equal to the angle of incidence, and all trajectories ar iction. In a CO”?'dal suspf:nsmn, on the other' hand,' the
deflected after a collision, irrespective of whether the par_solve_nt acts as a heat bath fo_r the dispers_ed solid p_artlcles,
ticles were actually colliding or not. Under extreme shear,and is otherwise not present In a simulation. In this case,

the collision law predicts instability equivalent to the string using our S.OIUt'OnS in simulation of colloidal systems under
phase appearing in strongly sheared continuous system%hear provides an equally acceptable approximation for rep-

This instability occurs at higher shear rates for larger systen'iesentlng Sl.JCh a system by hard spheres Ina void in the first
sizes, and would disappear in the thermodynamic limit, place, provided that the shear rate is sufficiently small and

Among the features of collisions in this system, theirthe system is sufficiently large.
nonlocal” character seems the most counterintuitive. I—io_vv— ACKNOWLEDGMENT
ever, the same unphysical nature of representing collisions
under shear, as shown in Fig. 7, is shared by all continuous The authors would like to thank Professor William G.
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