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Homogeneous shear flow of a hard-sphere fluid: Analytic solutions
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Recently, a solution for collision-free trajectories in anN particle thermostatted hard-sphere system under-
going homogeneous shear~the so-called ‘‘Sllod’’ equations of motion! led to a kinetic theory of dilute hard-
sphere gases under shear. However, a solution for collisions, necessary for a complete theory at higher densi-
ties, has been missing. We present an analytic solution to this problem, which provides surprising insights into
the mechanical aspects of thermostatting a system in an external field. The equivalence of constant temperature
and constant energy ensembles in the thermodynamic limit in equilibrium, the conditions for the nature of heat
exchange with the environment~entropy creation and reduction! in the system, and the condition for appear-
ance of the artificial string phase follow from our solution.

DOI: 10.1103/PhysRevE.67.021105 PACS number~s!: 05.20.2y, 45.50.2j, 02.70.2c
or

n
i

n-
re

o
o

he
r
h
in
h
v
e
in
t
lu

ra

he
ea

n

he

r
of

r-
t
n

h

w-
ry-
e
ys-
ua-
m
of
of

ive
ad
I. INTRODUCTION

The nonequilibrium molecular dynamics algorithm f
simulation of bulk Couette flow~the so-called ‘‘Sllod’’ algo-
rithm! has been widely used in order to predict transport a
structural properties of atomic and molecular fluids, both
the linear limit and in the non-Newtonian regimes. In pri
ciple, it provides a correct description of an isolated shea
system arbitrarily far from equilibrium@1#.

This algorithm has been employed with a large variety
continuous effective potentials, providing insights into rhe
logical properties of both simple and complex liquids. T
hard-sphere limit is of interest because in a large numbe
simple liquids consisting of nearly spherical particles, t
molecular motion is dominated by those portions of the
termolecular potential which are short ranged and hars
repulsive, while the longer-ranged interactions that ha
slow spatial variation play only a minor role. Hard spher
are also used to represent colloidal particles suspended
fluid that then acts as an ideal homogeneous heat bath. In
case, the strain rates used in simulations approach the va
that can be obtained in an experiment.

Let us consider a liquid placed between two plates pa
lel to the xy plane, where one of the plates moves in thex
direction relative to the other with constant velocity. In t
laminar regime, we expect the development of a lin
streaming velocity profile. The streaming velocityu of a
layer of fluid at a distancey from the reference plate is the
equal toigy, wherei is the unit vector in thex direction, and
g5]ux /]y is the applied shear rate.

In this geometry, the Sllod equations of motion for t
particles in the bulk fluid under shear are
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ṙ i5
pi

mi
1 igr yi , ~1a!

ṗi5Fi2 igpyi , ~1b!

where r i and pi are positions and momenta of particlei ( i
51, . . . ,N), with Cartesian components (r xi ,r yi ,r zi) and
(pxi ,pyi ,pzi), respectively, andmi are particle masses. Fo
simplicity, we shall consider a two-dimensional system
hard disks of equal masses,mi5m for all particlesi. Gener-
alization to three dimensions is straightforward.

The total velocity of the particlei consists of the ‘‘pecu-
liar’’ velocity pi /m with the ‘‘streaming velocity’’ termigr yi
superimposed on it@Eq. ~1a!#. The particles interact through
conservative, pairwise additive forcesFi j ,

Fi5(
j Þ i

N

Fi j ,

whereFi j is the force of particlej on particlei, and Newton’s
third law Fi j 52Fj i is satisfied. The additional shea
dependent term in Eq.~1b! follows from the requirement tha
the system of equations~1! generate the correct expressio
for the dissipative flux@1#.

The Eqs.~1! are used in simulation in conjunction wit
the ‘‘sliding brick’’ periodic boundary conditions@2# consis-
tent with the shear rateg in the equations of motion. The
sliding-brick boundaries can alternatively be used with Ne
ton’s equations of motion, in order to create a ‘‘bounda
driven’’ shear flow with a linear streaming velocity profil
within the simulation cell. The average behavior of the s
tem is then equivalent to that obtained from the Sllod eq
tions ~1! @1#. The boundary-driven Lees-Edwards algorith
@2# was used in the pioneering nonequilibrium simulation
Naitoh and Ono@3# to compute shear-dependent viscosity
a hard-sphere fluid.
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The kinetic temperatureT of the system is defined from
the ‘‘peculiar kinetic energy’’EK and the equipartition theo
rem

^EK&5K (
i 51

N pi
2

2mL 5
d

2
NkBT,

whered is the dimension of the system,kB is the Boltzmann
constant, and the angular brackets^•••& denote the ensembl
average.

Shearing of a fluid produces viscous heating, wh
causes the peculiar kinetic energy and temperature to
crease indefinitely over time. As a consequence, the sys
can never reach a well-defined steady state. The first me
of temperature control was simple velocity rescaling. Nai
and Ono@3# discarded it as unphysical, and used time scal
to calculate reduced properties as temperature increased

Later, different continuous methods for removing ad
batic heating were proposed@1,4#, which consisted of addi-
tion of a term of the form2a(r ,p)pi to the right-hand side
of Eq. ~1b!,

ṙ i5
pi

mi
1 igr yi , ~2!

ṗi5Fi2 igpyi2api .

The main problem with this type of thermostatting, in t
case of a sheared fluid, is that it assumes that the strea
velocity profile created by Eqs.~1! is linear and equal to
igr yi for all shear rates. This is a good approximation
dissipative processes at low shear rates, but leads to unp
cal suppression of velocity fluctuations and prevents the
set of turbulence at higher shear rates@5#. A remedy was
found in the profile-unbiased thermostat@5# and recently, in a
‘‘configurational temperature thermostat’’@7#. In this work,
we present the analytic solution of the thermostatted S
equations~2! for hard spheres in the simplest case, where
thermostat multipliera is determined using Gauss’s prin
ciple of minimal constraint, so that bothEK and K0
[EK /m become constants of the motion, i.e.,

a5
1

2K0
(
i 51

N

Fi•pi2
g

2K0
(
i 51

N

pxipyi . ~3!

One of our objectives is to determine, from the form
analytic solutions, what are the unphysical consequence
employing this thermostat, and in which circumstances t
would have most impact.

In the hard-sphere limit, the interaction forcesFi j vanish
during the free motion between the collisions, or are infin
during the infinitesimally short collision time. For a two
particle hard-sphere system under shear, the magnitude o
peculiar momenta is fixed by the isokinetic constraint@Eq.
~3!#, and Eqs.~2! can be reduced to the always-integrab
one-body problem. In this case, both the free trajectories@6#
and collisions@8,9# had been solved.

However, forN.2, the system of equations~2! has been
considered impossible to solve for a long time because of
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complexity introduced by the thermostat multiplier. Betwe
collisions, when allFi are zero, the motion of all particles i
still coupled by the constraint given by Eq.~3!. During a pair
collision, when there is a nonzero force of interaction, on
between the colliding pair, this force is present in all equ
tions of motion via the thermostat multiplier. Recently, a s
lution of Eqs.~2! for free flight was found@10# by decou-
pling the force-free equations of motion between collisio
In what follows, we briefly review and discuss the free-flig
solution and its implications, show how to solve the coup
collision equations, and discuss some physical implicati
of our solutions for the collisions.

II. FREE TRAJECTORIES

A. Solution

For hard disks of equal massm between collisions, the
system of equations~2! reduces to

ṙ xi5
pxi

m
1gr yi , ṙ y i5

pyi

m
, ~4!

ṗxi52gpyi2apxi , ṗyi52apyi ,

where the thermostat multipliera has the form

a52
g

2K0
(
i 51

N

pxipyi . ~5!

All the momentum equations in Eqs.~4! are coupled via the
thermostat multiplier, which satisfies a nonlinear seco
order equation of motion,

ä16ȧa14a350.

The general solution has the form

a~ t !5
t2c1

c22~ t2c1!2
, ~6!

with the constantsc1 andc2 determined from the initial con-
ditions att50,

c15

(
i

pxi~0!pyi~0!

g(
i

pyi~0!2

, c25

(
i

pi~0!•pi~0!

g2(
i

pyi~0!2

2c1
2 . ~7!

There is no reference to the shear rateg in the solution given
by Eq. ~6!, all g dependence is in the constantsc1 and c2.
The evolution of momenta and positions can now be
tained from Eq.~4! by direct integration,

pyi~ t !5pyi~0!A c1
21c2

c21~ t2c1!2
,

5-2
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pxi~ t !5@pxi~0!2gpyi~0!t#A c1
21c2

c21~ t2c1!2
,

r yi~ t !5r yi~0!1
pyi~0!

m
Ac1

21c2ln
t2c11A~ t2c1!21c2

2c11Ac1
21c2

,

r xi~ t !5r xi~0!1gr yi~0!t12
gpyi~0!

m
Ac1

21c2@Ac1
21c2

2A~ t2c1!21c2#

1
pxi~0!1gpyi~0!~ t22c1!

m
Ac1

21c2

3 ln
t2c11A~ t2c1!21c2

2c11Ac1
21c2

. ~8!

In the equilibrium limit g50, the solutions in Eqs.~8!
reduce to the familiar straight-line form,

pi~ t !5pi~0!,

r i~ t !5r i~0!1
pi~0!

m
t.

In a hard-sphere system in equilibrium, change of tempe
ture at constant density is equivalent to time scaling. Fr
the form of solutions@Eqs.~8!# for thermostatted free trajec
tories under shear, we can see that in the same system~same
m,s,N), the same orbits in space would be followed by
particles at a constant ratio ofg/^p&5g/T1/2. This means
that increasing temperature at constant density is equiva
to time scaling of the same system with shear reduced b
factor of T1/2.

The orbits and momenta of a three-particle system un
shear are shown in Fig. 1. Particles move along curved
jectories, and their momenta rotate in the clockwise dir
tion, approaching 0 if they were initially in the upper ha
plane and approaching2p if they were initially in the lower
half plane, their magnitudes changing as they move.

B. Discussion

From the form of the collision-free equations of motio
@Eqs.~4! and~5!#, one can deduce which trajectories contr
ute to viscous heating. The positive sign of the thermo
multiplier a corresponds to extraction of heat from the sy
tem, whereas negativea corresponds to a situation whe
heat is added to the system from the environment. Theref
the trajectories that contribute to positivea in Eq. ~5! are
responsible for heat having to be extracted from the syst
and the negativea are responsible for the need to add he
from the environment. In particular, whenx- and
y-momentum components have the same signs, i.e., w
they are in the first and third quadrants and, therefore,
ented in the direction of change of streaming velocity alo
the direction of motion, heat needs to be added. The oppo
02110
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orientation of momentum~second and fourth quadrants! re-
sults in heat having to be taken out. If motion is entirely
the x direction (pyi50), there is no change in peculiar k
netic energy even in an adiabatic process, and this par
does not contribute to the thermostat multiplier.

Another question that can be addressed is what would
the ‘‘steady state’’ of a sheared system without collision
First, from the infinite time limit of the momentum evolutio
in Eqs.~7!,

lim
t→`

pxi~ t !52gpyi~0!Ac1
21c2,

lim
t→`

pyi~ t !50,

momenta of all particles tend to align along the6x axis,
with the infinite time limit of the thermostat multiplier equa
to zero. During free motion under shear, momentum ali
ment is such as to minimize heat exchange with the envir
ment. In this limit, there is no resistance to shear flow, a
the steady state viscosity vanishes:

h`52
1

mgV
lim
t→`

(
i 51

N

pxi~ t !pyi~ t !50.

The hydrostatic pressure has only the kinetic compon
between collisions and is constant because of conservatio
kinetic energy. However, the whole initial pressure

P~0!5
1

2
@Pxx~0!1Pyy~0!#5

1

2mV (
i 51

N

@pxi
2 ~0!1pyi

2 ~0!#

is in the infinite time limit all applied in thex direction,

FIG. 1. Free trajectories of three hard disks and their succes
momenta, according to Eq.~8!, for the reduced number density o
r* 5Ns2/L253/64, and the reduced shear rateg*
5mgs/(mkBT* )1/250.455.
5-3
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lim
t→`

Pxx5
1

mV
lim
t→`

(
i 51

N

pxi
2 ~ t !

52
g2

mV
~c1

21c2!(
i 51

N

pyi
2 ~0!5Pxx~0!1Pyy~0!,

lim
t→`

Pyy5
1

mV
lim
t→`

(
i 51

N

pyi
2 ~ t !50.

However, collisions always occur, and the above collisio
free limits are never reached@6#.

III. COLLISIONS

A. Equations of motion for hard disks

Let us consider a system ofN hard disks under shea
described by Eqs.~2! and~3!, out of which disks numbered 1
and 2 are colliding. It is assumed that the force of interact
between 1 and 2 is central, purely repulsive, of constant~in-
finite! magnitudeF throughout the distances, the diameter
of the disk, and zero otherwise. In this case, the positions
momenta of the colliding particles obey the equations

ṙ x1,25
px1,2

m
1gr y1,2, ṙ y1,25

py1,2

m
,

ṗx1,257Fx2gpy1,22apx1,2, ṗy1,257Fy2apy1,2,
~9!

where r125r22r1 , Fx5F(r x22r x1)/r 12, Fy5F(r y2
2r y1)/r 12 are the Cartesian components of the force of
teractionF, and a is the Gauss thermostat multiplier. Th
thermostat multiplier, in general, given by Eq.~3!, in this
special case of only two colliding particles reduces to

a5
F•~p22p1!

2K0
2

g

2K0
(
i 51

N

pxipyi . ~10!

The equations of motion for other noncolliding particlesi
.2 are

ṙ xi5
pxi

m
1gr yi , ṙ y i5

pyi

m
, ~11!

ṗxi52gpyi2apxi , ṗyi52apyi .

Note that the force of interaction between 1 and 2 figures
the equations of motion of all the particles because of
thermostat term.

In order to find the solution of the system of equations~9!,
~10!, and ~11! in the limiting case of hard disks, i.e., whe
F→`, two points should be taken into account. First, asF
→`, all terms on the right-hand side of the momentu
equations not containingF become negligibly small and ca
be neglected, so that

ṗx152Fx2apx1 , ṗy152Fy2apy1 , ~12!
02110
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ṗx25Fx2apx2 , ṗy25Fy2apy2 ,

ṗxi52apxi , ṗyi52apyi , i .2,

where now

a5
F•~p22p1!

2K0
.

The strain rateg does not appear in any of the Eqs.~12! in
the infinite force limit. The terms containing the strain rate
the momentum equations are all finite and become ne
gible.

Second, in this limit, the duration of the collisiont, i.e.,
the time during which the particles interact becomes negl
bly small, t→0. The total displacement of each of the pa
ticles is zero during the collision, and it is sufficient to sol
only the momentum equations in the system~12!.

The isokinetic system~12!, unlike a system with conser
vation of total energy, does not in general conserve the m
mentum of the colliding pair,

p2Þp1 .

Indeed, if the momenta of the particles 1 and 2 just bef
the collision arep1 andp2, and just after the collision arep18
andp28 , so that

p185p11Dp1 and p285p21Dp2 ,

we cannot assume thatDp11Dp250. Only the momentum
of the whole system is conserved.

The same is true of the kinetic energy. Since the infin
force appears in the momentum equations of all particles
the momenta change during the collision. We cannot ass
that the kinetic energy of the colliding pair is generally t
same before and after the collision, and disregard the oth
All particles take part in the collision even if they do n
touch.

B. Solution

It is convenient to rewrite Eqs.~12! in terms ofp25p2
2p1 andp15p21p1 instead ofp1 andp2, where

ṗ252F2
F•p2

2K0
p2 ,

ṗ152
F•p2

2K0
p1 .

The solution forp2 is the solution for the momentum o
particle 2 in the ‘‘relative’’ reference frame in which particl
1 is stationary at the origin~Fig. 2!.

Force F is central, i.e., directed along the vectorr12.
Therefore, we decompose the vectorp2 into a ‘‘radial’’ com-
ponentpr 2 parallel tor12 and a ‘‘tangential’’ componentpt2
perpendicular tor12,
5-4
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pr 25
p2•r12

r 12
,

pt25
2px12r y121py12r x12

r 12
.

With this decomposition, the thermostat multiplier becom
a5Fpr 2 /(2K0), and the equations forpr 2 andpt2 are

ṗr 252FF12
pr 2

4K0
G , ~13!

ṗt252F
pr 2pt2

2K0
. ~14!

The solution for the radial component is

pr 2~ t !5
pr 2~0!12AK0 tanh~Ft/AK0!

11@pr 2~0!/~2AK0!#tanh~Ft/AK0!
, ~15!

and for the tangential component it is

pt2~ t !5
pt2~0!/cosh~Ft/AK0!

11@pr 2~0!/~2AK0!#tanh~Ft/AK0!
. ~16!

In Eqs.~15! and~16!, pr 2(0) andpt2(0) are the radial and
tangential components of relative momentum just before
collision. Note that Eqs.~15! and~16! are proportional to the
pure hyperbolic tangent and hyperbolic cosine shifted in ti
so that att50, they are equal topr 2(0) andpt2(0), respec-
tively. Therefore, the relative radial component is bound
between22K0

1/2 and12K0
1/2, and the tangential componen

has an extremum when the radial component vanishes@Fig.
3~a!#.

FIG. 2. The relative reference frame for colliding particles 1 a
2. Particle 1 is at rest, and the momentum of particle 2 isp25p2

2p1, while its streaming velocity isgr y12. Note that the angle of
incidence is not necessarily equal to the angle of reflection, and
magnitudes of relative momentum before and after the collision
not have to be equal.
02110
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The equations forpr 1 andpt1 , as well as for the Carte
sian momentum components of the particles not taking p
in the collision, have the same form as Eq.~14!, with the
solutions of the form Eq.~16!. Solutions given by Eq.~16!
are the momentum components just before the collision
caled by the same factor.

Using Eqs.~15! and ~16!, we can find the radial and tan
gential momentum components of 1 and 2 in the laborat
frame just after the collision,

pr1,25
pr 17pr 2

2
and pt1,25

pt17pt2

2
.

Substitution yields the results

at
o

FIG. 3. Change of momenta during a collision of disks 1 and
in a three-hard-disk system.~a! Relative radial and tangential com
ponents according to Eqs.~15! and ~16!; ~b! individual radial and
tangential components of 1 and 2 according to Eqs.~17! and ~18!.
pr1,25
1

2

pr 1~0!/cosh~Ft/AK0!6pr 2~0!62AK0 tanh~Ft/AK0!

11@pr 2~0!/~2AK0!#tanh~Ft/AK0!
, ~17!
5-5
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pt1,25
pt1,2~0!/cosh~Ft/AK0!

11@pr 2~0!/~2AK0!#tanh~Ft/AK0!
, ~18!

shown in Fig. 3~b!. At the point Ft5A, the relative radial
momentum of 1 and 2pr 2 vanishes@Fig. 3~a!#, i.e., p1
5p2 @Fig. 3~b!#. After Ft52A5C, pr 2 reverses sign, so
that pr 2(C)52pr 2(0). This is a consequence of the pari
of the hyperbolic tangent. At this point in time, the collidin
particles exchange their radial momenta, while their tang
tial components, as well as the momenta of all the ot
particles, remain unchanged. The collision looks just like
constant total energy at zero shear. If the result is taken a
a shorter time~point B) or after a longer time~point D),
momentum and energy of the colliding pair are not co
served, and consequently the momenta of all other parti
get rescaled.

By rearranging the expressions@Eqs. ~15! and ~16!#, one
can show that the kinetic energy of the whole system is c
served at all times,

(
i 51

N

pi
2~ t !5(

i 51

N

pi
2~0!52K0 .

Therefore, it is sufficient to solve Eqs.~13! and ~14! and
rescale all the other components by such a factor that
total kinetic energy is conserved.

If pt15pt250 andpi50 for i .2, the right hand side o
Eq. ~16! vanishes. In this pathological case of a ‘‘head o
collision of 1 and 2, with all other disks at rest, 1 and 2 pa
through each other without a collision because their ra
momenta are fixed by the thermostat. This is an isola
singularity of purely mathematical origin, which can be r
moved by interchangingp1 andp2 after the collision.

The solutions found so far describe the way in whi
momenta change during a hard-disk collision, but they
not determine when the collision stops and which are
final momentum values after the collision. In order to fi
this, we need to make use of the position equations.

C. End-of-collision condition in equilibrium

Let us look at the collision of particles 1 and 2 in mo
detail, in a reference frame where particle 1 is stationary
the origin, and is represented by a disk of radiuss, while
particle 2 is represented by a point with momentum equa
(pr 2 ,pt2). The coordinates of the point 2 arex05s cosf
andy05s sinf ~Fig. 2!.

During the collision, particle 2 moves infinitesimally to
wards the center of 1~until it reaches the turning point!, and
after that, it moves away from the center until it is at
distances again. This is when the infinite force ceases to a
which defines the ‘‘end of the collision.’’

Since the particles are assumed to be spherical, the
of-collision condition is that the total distance traveled by t
‘‘point particle’’ 2 in the radial direction during the collision
is equal to zero.

In equilibrium, the radial velocityṙ of point 2 in this
reference frame is equal to
02110
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ṙ ~ t !5u ṙ2~ t !2 ṙ1~ t !u5
pr 2~ t !

m
, ~19!

so that the condition on the value of the quantityFt at the
end of collision is

E
0

t

ṙ ~ t !dt5E
0

tpr 2~ t !

m
dt50. ~20!

The point at which the radial velocity given by Eq.~19!
changes sign is the turning point@point Ft5A in Fig. 3~a!#.
The condition Eq.~20! can then be interpreted as a conditio
that the total area under the curve describing the evolutio
pr 2(t) from the start (Ft50) to the end of the collision be
equal to zero. From the symmetry of the hyperbolic tange
it follows that the collision must then end atFt52A5C,
twice the turning point time. As already mentioned, the rad
momenta of the colliding particles are in this case e
changed, while their tangential components, as well as
momenta of other particles, remain unchanged. The ‘‘co
sion rule’’ at zero shear is the same for thermostatted
constant energy collisions, and the two systems canno
distinguished from their trajectories at equilibrium.

D. End-of-collision under shear

The strain-rate dependent terms do not appear in the ti
dependent solutions for the momenta in Eqs.~15! and ~16!.
However, shear figures in the position equations~9! and Eqs.
~11!, changing the total velocities of all particles according
their positions. Therefore, the total radial velocity of the p
ticle ṙ in the relative reference frame is different from i
equilibrium value, and depends on the polar anglef of the
collision as well as on the relative radial momentumpr 2 . At
the collision point (r x12,r y12), the radial velocity is

ṙ ~ t !5
pr 2~ t !

m
1g

r x12r y12

s
. ~21!

The radial component of the streaming velocityur
5gr x12r y12 is constant during the collision because the p
sition of particle 2 does not change in the infinite force lim
The end-of-collision condition which replaces Eq.~20! under
shear, is

E
0

t

ṙ ~ t !dt5E
0

tFpr 2~ t !

m
1g

r x12r y12

s Gdt50. ~22!

The sign ofur5gr x12r y12 depends on the quadrant whe
the collision occurs. Ifr x12r y12,0 ~Fig. 4, shaded region!,
shear is ‘‘pushing’’ particle 2 towards particle 1, and th
collision lasts longer than in equilibrium. On the other han
if r x12r y12.0 ~Fig. 4, white region!, shear is pulling particle
2 away from particle 1, and the collision duration decreas

The end-of-collision condition in the two cases is show
in Fig. 5. If r12 is directed along the change of the streami
velocity @inset in Fig. 5~a!#, the magnitude of the relative
radial momentum is reduced. If the alignment of the tw
disks is against shear@inset in Fig. 5~b!#, thenpr 2 increases.
As a consequence, when a collision occurs in the first or
5-6
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third quadrant, the angle of reflection is larger than the an
of incidence. In the case of a collision in the second or
fourth quadrant, particle 2 is deflected towards the line c
necting their centers.

FIG. 4. Collision under shear according to Eq.~23! in the rela-
tive coordinate frame of Fig. 2. The full circle represents particle
the thinner circle is the scattering cross section. If the collis
occurs in the first or in the third quadrant~white region!, the radial
component of the peculiar velocity is reduced by the radial com
nent of the streaming velocityu. If the collision is in the second o
fourth quadrant~shaded region!, the total relative radial velocity is
larger thanpr 2 /m. The vectors are defined in Eq.~21!.

FIG. 5. End-of-collision condition under shear~a! when particle
alignment is along shear,~b! when particle alignment is agains
shear. Full line: peculiar radial momentum. Dashed line: total ra
momentum. The shaded region represents the end-of-collision
dition under shear@Eq. ~22!#: the area under the curve representi
the integral of the total relative momentumpr 2(Ft)1mur must
vanish at the end of collision.
02110
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In both cases, using some straightforward algebra,
finds for the end-of-collision time

Ft

AK0

5 ln
12pr 2~0!/~2AK0!

11pr 2~0!/~2AK0!
1 ln

12mur /~2AK0!

11mur /~2AK0!
,

~23!

where the first term on the right hand side is the equilibriu
collision time and the second term represents the interva
which the collision time is increased or reduced because
shear. The final value ofpr 2(t) is found by substituting Eq.
~23! into Eq. ~15!.

Kratky and Hoover@11# used a method analogous to ou
to solve the collisions of hard spheres in the Evans’ al
rithm for thermal conductivity@12#. However, in their case
there is no explicit streaming velocity term due to the field
the position equations of motion, so that the momentum
the kinetic energy of the colliding pair are conserved dur
the collision, and the motion of the other particles is un
fected.

E. Discussion

The two types of collision are shown in Fig. 6. The natu
of heat exchange with the environment can be deduced f
the behavior of the thermostat multipliera during the colli-
sion. The total heat put into the system from the heat b
during a collision is

Q5E
0

t

a~ t !dt5E
0

tFpr 2~ t !

2K0
dt52

mgs cosf sinf

2K0
Ft.

~24!

The sign ofQ depends only on the product cosf sinf. If the
coordinates of the point of collision are in the first or in th

,
n

-

l
n-

FIG. 6. Two types of collisions under shear. In case 1, the re
tive momentump2 decreases and the angle of incidenceu I is larger
than the angle of reflectionuR . In case 2,p2 increases andu I

,uR . The dashed lines represent the relative momenta after
reversal.
5-7
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third quadrant, the magnitude of the relative momentump2

decreases and heat is added to the system (Q.0) in order to
keep the temperature constant. This is case 1 in Fig. 6.
the other hand, for the collisions in the second or the fou
quadrant, the magnitude ofp2 increases and heat needs to
taken out (Q,0). For the collisions at pointsf5np/2,
wheren is an integer, or forg50, there is no heat exchang
with the heat bath.

It is worth noting the fact that, if we reverse the momen
of all particles just after the collision, their trajectories wou
not retrace themselves. The same holds for the free traje
ries. Indeed, the Sllod system of equations~2! is not time
reversible, and the trajectories would reverse exactly onl
each momentum and the strain rateg all change sign. In this
case, the conditions for the quadrants of the polar anglf
change as well.

Collisions of hard spheres contribute to heat excha
with the environment, otherwise all heat is generated dur
free motion between collisions.

When the magnitudes of momenta of the colliding p
ticles change, the momenta of all the other particles get
caled instantly in order to keep the total kinetic energy of
system constant. Therefore, all particles get deflected du
a collision even though they have no direct interaction. T
counterintuitive consequence of the solution for the shea
collision of hard spheres is always present, but the effec
more pronounced for smallerN. In Fig. 7, it is shown for a
three-particle system.

F. Extreme shear

For a system ofN hard disks at a given total kinetic en
ergy EK5K0 /m, the radial component of the relative mo
mentum of a colliding pairpr 2 must belong to the interva
@22K0

1/2,2K0
1/2#. In order for a collision to occur, it is neces

sary for the total relative radial velocityṙ to be negative, i.e.
for the particles to approach just before the collision.

Let uur u5ugs cosf sinfu be the magnitude of the tota
relative radial velocity at some point on the circumference
a sphere of the diameters representing particle 1 in th

FIG. 7. Collision in a three-particle system under shear, redu
shear rateg* 50.455, reduced densityr* 53/64. Dashed lines
would be the trajectories if there were no interaction~i.e., collision!
between 1 and 2. Full lines are the trajectories with a collision. D
3 is deflected by the collision although it does not take part in
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relative coordinate system, as shown in Fig. 2. According
the collision rule given by Eq.~23! and shown in Fig. 5~a!,
this means that, for collisions in the first and third quadran
particle 2 will collide with particle 1 only ifpr 2,2umur u.
If the relative radial momentumpr 2 is not negative enough
the collision will not occur, i.e., particle 2 will not even reac
the point of collision.

Alternatively, from Fig. 5~b!, collisions in the second and
fourth quadrants can occur even ifpr 2.0, if the condition
pr 2,umur u is satisfied. Therefore, as strain rate increas
there is a higher probability of collisions occurring in th
second and fourth quadrants, and a lower probability of c
lisions in the first and third quadrants.

The maximum value ofucosf sinfu is equal to 1/2 when
f56p/4 or f563p/4, and the largest possible magnitud
of the relative radial momentum of the colliding pair
upr 2umax52K0

1/2. As a consequence, when

g>
4AK0

ms
5

2

s
A2dNkBT

m
, ~25!

there will be no collisions at pointsf5p/4 and f5
23p/4 ~Fig. 8, dashed-dotted line!. On the other hand, if a
collision occurs at pointsf52p/4 andf53p/4, the total
relative radial velocity at these points cannot become p
tive, and the two colliding particles can never go away fro
each other~Fig. 8, dashed line!. If the strain rate increase
further, such ‘‘trapping’’ collisions occur at increasing pol
angle intervalsDf around2p/4 and 3p/4, whereas there
are no collisions forf5p/46Df andf523p/46Df.

This effect is related to the formation of the ‘‘strin
phase’’ observed in simulations of simple fluids with co
tinuous potentials under strong shear@13#. In reality, if the
system is large enough, the increase in shear rate invari
leads to turbulence@5#. Therefore, the string phase does n
appear in bulk fluids under shear, unless turbulence is st
lized by some external force. In Gauss-thermostatted S
system of equations~2!, such force is artificially provided by

d

k

FIG. 8. When the relative radial streaming momentummur

5mgs cosf sinf.2K0
1/2, there cannot be any collisions takin

place at the pointf ~dashed-dotted line! because the total relative
radial momentum is always positive. Whenmgs cosf sinf,

22K0
1/2, the colliding particles cannot pull apart after the collisio

~dashed line! because the shaded area cannot become positive@Eq.
~25!#.
5-8
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the thermostat term, which strictly constrains the stream
velocity profile to be linear.

In a hard-sphere system, the string phase is a combina
of trapping collisions and momentum alignment in free t
jectories discussed in Sec. II B. The expression for the l
iting shear rate in Eq.~25! suggests that the appearance
string phases in a Gauss-thermostatted system occu
higher values of shear rate for larger system sizes, and th
would not occur in the thermodynamic limit. This is anoth
indication of the artificial nature of the string phase in bu
sheared liquids.

IV. HYDROSTATIC PRESSURE AND SHEAR STRESS

The elements of the pressure tensorPab are given as the
ensemble averages

PabV5K (
i 51

N
pa i pb i

m L 1K (
i 51

N21

(
j 5 i 11

N

r a i j Fb i j L , ~26!

wherea,b denote the Cartesian componentsx, y, andz, and
V is the volume of the system. The first term on the rig
hand side represents the kinetic part and the second ter
the potential part. The hydrostatic pressureP is defined as
the trace of the pressure tensor divided by the dimensio
the system,

P5
1

d (
a51

d

Paa .

The pressure in Eq.~26! can be expressed as the time av
age,

PabV5 lim
t→`

1

t E0

tS (
i 51

N
pa i~s!pb i~s!

m

1 (
i 51

N21

(
j 5 i 11

N

r a i j ~s!Fb i j ~s!D ds.

In the case of hard spheres, free trajectories contribute to
kinetic part, whereas collisions contribute to the poten
part. LetDt1 ,Dt2 , . . . ,Dtn be the times betweenn11 col-
lisions, so thatt5(Dt i . Let t i be the time when thei th
collision occurs, andt i the infinitesimal duration of thei th
collision. Then the kinetic part of the pressure tensor is

Pab
K V5 lim

t→`

1

t (
n
E

tn

tn11

(
i 51

N
pa i~s!pb i~s!

m
ds,

and the potential part is

Pab
P V5 lim

t→`

1

t (
n
E

tn

tn1tn
r a12~s!Fb12~s!ds

5 lim
t→`

1

t (
n

r a12r b12

s
Ftn , ~27!
02110
g

on
-
-
f
at

t it
r

t
is

of

-

he
l

wherer a12(tn) are the relative coordinates of thenth colli-
sion point, and the productFtn in the limit F→` is deter-
mined from Eq.~23! for isokinetic collision under shear.

A. Kinetic part

The kinetic part of the hydrostatic pressure of ha
spheres is

PKV5
1

d (
i 51

N pi
2

m
5

2K0

dm
5NkBT,

the same constant value in equilibrium and in the Gau
thermostatted sheared case. There can be no shear dilati
the kinetic part of the hard-sphere pressure.

The kinetic part of the shear stress is equal to

Pxy
K V52

K0

mgV
lim
t→`

1

t (
n
E

tn

tn11
a~s!ds

'2
dNkBT

2gV K 1

Dt
ln

c1
22c2

~Dt2c1!22c2
L ,

whereDt5Dt(c1 ,c2) is the mean time between collision
and the angular brackets give an average over all poss
initial conditionsc1 andc2. This expression can be used
simulation to evaluate the kinetic contribution. It has be
used to estimate the shear viscosity of an ideal gas usin
self-consistent approach of kinetic theory@10#.

B. Potential part

1. Equilibrium

From Eq. ~27!, the potential contribution to the hydro
static pressure~the virial! for a two-dimensional system in
equilibrium is

PPV5 lim
t→`

s

2t (
n

Ftn5
s

2
f coll^Ft&, ~28!

where f coll is the collision frequency. In an isokinetic en
semble, the average transmitted impulse is

^Ft&NVT5AK0K ln
12pr 2~0!/~2AK0!

11pr 2~0!/~2AK0!
L , ~29!

where the average is taken over all possible values ofpr 2

just before the collision.
In the equilibrium constant energy ensemble, the prod

Ft can be shown@9# to be equal to

^Ft&NVE522^pr 2~0!&,

yielding a different hydrostatic pressure than for const
kinetic energy.

This result may seem paradoxical, given that from t
outside, both systems look exactly the same — the sa
specular elastic collisions occur at the same time and tra
tories follow the same rectilinear paths. However, in a ‘‘so
5-9
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repulsive potential, the two collisions would differ signifi
cantly. While in a constant energy system, the radial com
nent would decrease till the turning point and increase in
opposite direction without any impact on the other mom
tum components of noncolliding particles, in the isokine
collision, all momentum components of all particles chan
In the latter case, with the same potential, the collision la
longer and the two colliding bodies overlap more. The ra
of the two times remains different even in the hard-sph
limit.

The difference is the most obvious in the case of only t
colliding hard disks. In the thermostatted system, the ma
tudes of each of the two momenta are fixed to6p by the
constant energy constraint. At any given point of collisio
all possible orientations of the relative momentum~i.e., all
values of the radial component between22p and 0! are then
equally probable. The isokinetic and the constant energy v
als then differ by a factor equal to half the Catalan consta
the isokinetic virial being nearly twice the constant ener
virial @9#.

For N disks, all possible orientations of the relative m
mentum are still equally probable, but not all magnitud
From the central limit theorem, it follows that for largeN,
the probability of a disk having a momentump is given by
the Maxwell-Boltzmann distribution,

f ~p!5
exp$2p2/2mkBT%

E exp$2p2/2mkBT%dp
.

It gives the probability of any relative momentump2 ,
and, in particular, that of the colliding particle 2, being equ
to p. The average impulse of Eq.~28! then becomes

^Ft&5

E
p/2

3p/2

dcE
0

2AK0
dp pFt~p,c!exp$2p2/2mkBT%

pE
0

2AK0
dp exp$2p2/2mkBT%

,

wherec5u2f is the angle betweenp2 and r12.
In equilibrium, all initial orientations of relative momen

tum u i and all angles of impactf ~Fig. 6! that lead to a
collision, i.e., such thatpr 2,0, are equally probable. Th
radial component of the relative momentum in terms
anglesu i andf is pr 25p cos(u2f), wherep is the magni-
tude of the relative momentump2 , and the conditionpr 2

,0 meansfP@0,2p# and c5(u2f)P@p/2,3p/2#. The
duration of a collisiont is a function of the magnitude of th
relative momentump and the anglec, t5t(p,c). The form
of Ft(p,c) for the isokinetic equilibrium collision is given
by Eq. ~23! for ur50.

Using Taylor expansion of the mean isokinetic collisi
impulse^Ft&NVT in terms ofp/(mNkBT)1/2 asN→`,
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lim
N→`

^Ft&NVT5 lim
N→`

2AmNkBT ln
12p cosc/~2AmNkBT!

11p cosc/~2AmNkBT!

52
p cosc

~mNkBT!1/2
2

p3cos3c

12~mNkBT!3/2
1•••,

we find the ratio of isokinetic and constant energy pressu
in two dimensions in the thermodynamic limit,

lim
N→`

PNVT
P

PNVE
P

5 lim
N→`

^Ft&NVT

^Ft&NVE
'11

1

6N
1OS 1

N2D .

The pressures in the two ensembles approach in the t
modynamic limit as 1/N. The difference in pressures in th
two ensembles, decreasing with the system sizeN, has been
observed numerically in Ref.@11#. The 1/N approach of pres-
sures is in accordance with the general proof of equivale
of equilibrium ensembles presented in Ref.@14#.

2. Shear

In a thermostatted sheared system, the expression fo
virial becomes

PPV5
s

2
f coll

E dfE dcE dpp f~p,f,c!Ft~p,f,c!

E dfE dcE dpp f~p,f,c!

.

The magnitude of the peculiar momentum does not neces
ily follow a distribution of Maxwell-Boltzmann type, but the
deviations should be negligible in the thermodynamic lim
and for small shear rates@1#. In the angular integration, how
ever, the differences do not disappear in the thermodyna
limit because they are related to the change in the stream
velocity across the hard-disk diameters. The limits of inte-
gration for the angular variables are now such that the r
tive total radial velocity is negative,

cosc<2
mgs

2p~0!
sin 2f,

and the angular distributions are no longer uniform. The
fore, the first term on the right hand side of Eq.~23! changes
its value, although its form is the same as in equilibriu
There is also an additional term toFt @the second term on
the right-hand side of Eq.~23!# with a nonvanishing
g-dependent leading term whenN→`. Taylor expansion of
this term gives

AK0 ln
12mgs sin 2f/~2AK0!

11mgs sin 2f/~2AK0!
'2

mgs

2
sin 2f

2
2

3K0
S mgs

4 D sin3 2f1••• .

All the terms in the Taylor expansion would vanish for
uniform distribution off with the same limits as in equilib
5-10
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rium because they contain powers of sin2f. However, be-
cause of the change of limits and nonuniform angular dis
bution, the first term on the right hand side gives a fin
contribution for all system sizes. The exact final form of t
virial is a result of interplay between the change in the
culiar momentum distribution during free flight and col
sional mapping, and can be deduced most easily by comp
simulation.

The integrand of the shear stress expression is equal to
integrand for the hydrostatic pressure multiplied by an ad
tional factor of sin 2f. This causes it to vanish in equilibrium
and become finite whengÞ0 even in the thermodynami
limit.

V. CONCLUSION

We have presented an analytic solution for collisions i
sheared hard-sphere liquid thermostatted using a Gauss
kinetic constraint.

Our solution shows that, in equilibrium, the hydrosta
pressures calculated in the constant energy and the con
temperature ensembles differ, although the trajectories in
two ensembles are indistinguishable. The difference
system-size dependent and disappears in the thermodyn
limit, with a leading term proportional to the inverse of th
number of particles.

With these equations of motion, collisions under sh
conserve neither the momentum nor the kinetic energy o
colliding pair, only the energy and the momentum of t
system as a whole. As a consequence, the angle of refle
is not equal to the angle of incidence, and all trajectories
deflected after a collision, irrespective of whether the p
ticles were actually colliding or not. Under extreme she
the collision law predicts instability equivalent to the strin
phase appearing in strongly sheared continuous syst
This instability occurs at higher shear rates for larger sys
sizes, and would disappear in the thermodynamic limit.

Among the features of collisions in this system, th
‘‘nonlocal’’ character seems the most counterintuitive. Ho
ever, the same unphysical nature of representing collis
under shear, as shown in Fig. 7, is shared by all continu
kinetic thermostats described in Ref.@4#, because they rely
-

t,

o
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on the coupling of all motion in order to define and conse
the temperature of the system. When such a method is u
to control peculiar momenta with respect to a nonze
streaming velocity profile, it causes the change of direct
of all trajectories in a finite system. This is not so obvious
systems with continuous interparticle interactions beca
there the collisions are not clearly defined and there are
discontinuous changes of momenta. On the other hand,
effect is significant only for strongly sheared small system
and becomes infinitesimal in the thermodynamic lim
Therefore, the Gauss kinetic thermostat is still a good
proximation of the process for large systems and low sh
rates. For very high shear rates, the nonlocality of collisio
would be visible even for large system sizes, but then
even more serious objection is the assumption of the lin
streaming velocity profile in Eq.~3!.

It is important to bear in mind that the objective of intro
ducing an artificial thermostat in nonequilibrium molecul
dynamics simulations is not to reproduce the microsco
details of heat transfer, but to account for its macrosco
effects. In doing so, we must choose which properties n
to be retained in a particular model. Let us consider two
the most important applications of the hard-sphere mode
computer simulations—granular matter and colloidal disp
sions.

In simulations of granular matter, heat is extracted only
collisions through the coefficient of restitution. This reflec
the fact that granular particles are macroscopic objects w
many internal degrees of freedom, and ‘‘heat transfer’’ co
sists largely of loss of center-of-mass kinetic energy due
friction. In a colloidal suspension, on the other hand, t
solvent acts as a ‘‘heat bath’’ for the dispersed solid partic
and is otherwise not present in a simulation. In this ca
using our solutions in simulation of colloidal systems und
shear provides an equally acceptable approximation for
resenting such a system by hard spheres in a void in the
place, provided that the shear rate is sufficiently small a
the system is sufficiently large.
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