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Some exact results for Boltzmann’s annihilation dynamics
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The problem of ballistic annihilation for a spatially homogeneous system is revisited within Boltzmann’s
kinetic theory in two and three dimensions. Analytical results are derived for the time evolution of the particle
density for some isotropic discrete bimodal velocity modulus distributions. According to the allowed values of
the velocity modulus, different behaviors are obtained: power law decay with nonuniversal exponents depend-
ing continuously upon the ratio of the two velocities, or exponential decay. When one of the two velocities is
equal to zero, the model describes the problem of ballistic annihilation in the presence of static traps. The
analytical predictions are shown to be in agreement with the results of two-dimensional molecular dynamics

simulations.
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I. INTRODUCTION the continuous velocity distributions(v) that are symmet-

ric, regular and, such that(0)+# 0 are attracted in the long-

In ballistically controlled reactions, particles with a given time regime towards the same Gaussian-like distribution, and
initial velocity distribution move freelyballistic motion in  thus belong to the same universality class.
a d-dimensional space. When two of them meet, they anni- For higher dimensions, most of the studies are based on
hilate and disappear from the system. This apparently simplan uncontrolled Boltzmann-like descripti¢,3,11 or nu-
problem has attracted a lot of attention during the past yeamnerical simulationg12]. However, based on phenomeno-
[1-14] for the following reasons. First, this is one of the few logical mean-field-like arguments, Krapivskgt al. have
problems of nonequilibrium statistical physics that can bestudied the annihilation kinematics of a bimodal velocity
exactly solved in some cases, and second it models sommodulus distribution id>2 dimension$4]. In the case of a
growth and coarsening proces$s). mixture of moving and motionless particles they showed that

This field was entered with the pioneering work by El- the stationary particles always persist, while the density of
skens and Frischl], where a one-dimensional system with moving particles decays exponentially. This approach con-
only two possible velocities-c or —c was studied. Using tains unknown phenomenological parameters, and thus a
combinatorial analysis, they showed that the density of pareomplete comparison with the results obtained by numerical
ticles was decreasing according to a power [aw*f) in the  simulation is not possible.
case of a symmetric initial velocity distribution. The investi-  In a recent paper, Piaseckt al. [14] gave an analytical
gation of this one-dimensional problem was generalized bylerivation of the hierarchy equations obeyed by the reduced
Droz et al [6] to the three-velocity case, where the initial distributions for the annihilation dynamics. In dimensign
velocity distribution is given by ¢(v;0)=p, é(v—=c) >1 for a spatially homogeneous system, and in the l{thi
+pod(v)+p-8(v+c) with p,=p_ (symmetric caseand  so-called Grad limjt for which the particle diametes— 0
P, +po+p_=1. It turns out that the decay of the particle and the particle densityn(t)—, such thatn(t)o? !
density depends on the details of the initial velocity distribu-=)\ "1, where\ is the mean free path, the hierarchy reduces
tion. The following analytical results were obtained. fgr  to the Boltzmann-like hierarchy. This hierarchy propagates
<1/4, the densityn(v;t) of particles with velocityy={0, the factorization of the reducel-particle distribution in
+c,—c}, behaves in the long-time limit ax(0;t) terms of one-particle distribution functions. Thus, if the ini-
~t71, n(+c;t)~t Y2 When po=1/4, n(0;t)~n(+c;t) tial state is factorized, the whole hierarchy reduces to one
~1723 Finally, for po>1/4, one finds than(0;t) saturates nonlinear equation for the one-particle Boltzmann distribu-
to a nonzero stationary value, whité = c;t) decays faster tion. For annihilation kinetics, the ratio of particle diameter
than a power law. Moreover, it was shown that in one dimento mean-free path vanishes in the long-time limit, and the
sion, annihilation dynamics creates strong correlations besituation becomes similar to the Grad limit discussed above
tween the velocities of colliding particles, which excludes afor N—. Thus the long-time limit of the annihilation dy-
Boltzmann-like approximation. Pairs of nearest neighbomamics(for d>1) is likely to be adequately described by the
particles have the tendency to align their velocities anchonlinear Boltzmann equation.
propagate in the same directip@i. A scaling analysis of the nonlinear Boltzmann equation

An analytical investigation of the one-dimensional caseled to analytical expressions for the exponents describing the
with a continuous velocity distribution is much more diffi- decay of the particle density and of the root-mean-square
cult. A dynamical scaling theory, whose validity was sup-velocity in the case of continuous velocity distributidid].
ported by extensive numerical simulations for several veloc- In view of the different behaviors observed in one dimen-
ity distributions, led Reyet al. [7] to the conjecture that all sion for discrete or continuous velocity distributions, it is
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relevant to study the case of distributions with discretewheree(v;t) is the velocity probability density. In the long-
modulus spectrum in dimensions higher than 1. The goal ofime limit, Piaseckiet al. [14] have shown that the hierarchy
this paper is to investigate simple examples of this kind insatisfied by the reduced distributions approached the Boltz-
three dimensions for which the nonlinear Boltzmann equamann hierarchy. If the initial state is factorized, the nonlinear
tion derived in Ref[14] can be exactly solved. The gener- Boltzmann equation provides then the complete description
alization of this approach to an arbitrary dimension isof annihilation dynamics,
straightforward, and for the sake of comparison with numeri-
cal simulations, we shall also consider the two-dimensional
situation in some detalil.
The validity of the Boltzmann description in the long-time
limit will be confirmed by comparing our analytical predic- . .
tions with the results gbtainepd byga moleczlar d)p/namics XjﬁBdVZMz'fl(vl’t)fl(vz’t)' @
simulation. ) o _ )
The paper is organized as follows. In Sec. Il we define thd1ere 6 is the Heaviside functiony;,=v;—v, the relative
model. In Sec. Ill the three-dimensional Boltzmann equatiorvelocity of two particles,vi,=Vv;,/v, @ unit vector,vy,
is solved analytically for a two-velocity modulus,(andc,)  =|v;,|, and the integration with respect dar is the angular
isotropic distribution. For simplicity we first consider the one integration over the solid angle.
velocity modelc,;=c,>0 that allows to draw interesting ~ We consider spherically symmetric initial conditions
comparisons with the same model in one dimension. Thef, (v;0), v=|v|. This symmetry property is propagated by
the implicit solution for the particle densities in the generalthe dynamics. The Boltzmann equati¢?) then takes the
casec;>C,>0 is established. It is shown analytically that in form
the long-time limit the particle densities decay according to
power laws, with exponents depending continuously on the d 2 ) 0
value of the velocity modulus ratio. We also find upper and o fvi)=—z(mo) fl(U?t)jo dut?fy(u;t)
lower bounds to the particle densities that are compared with
the numerical solution of the dynamical equation. The par-
ticular case of a mixture of movingc{>0) and motionless
(c,=0) particles is also investigated. It turns out that the
particle densities decay exponentially to zero for the movingequation(3) is a nonlinear homogeneous integral equation
particles, and to a nonzero value for the motionless onegor the distribution functionf,(v;t). A simplification arises
This phenomenology is independent of space dimension, arigl the initial velocity distribution has a discrete modulus
in Sec. 1V, it will be shown explicitly to hold in two dimen- spectrum. This spectrum is preserved by the annihilation dy-
sions by implementing molecular dynamics simulations. Thisnamics as no new velocities are created. A simple case is
numerical method has the advantage of being free of thgrovided by the bimodal distribution
approximations underlying Boltzmann’s dynamics and,

Y U
S hni=o fdao(—a-vn)(a-vlz)

(u+v)d=ju—vo|?
uv

X

- )

therefore, provides an interesting test for the analytical pre- A 1-A
dictions. Section V contains our interpretations and conclu- e(v,0)=——=68(v—cy)+ ——8(v—Cy), (4)
sions. 4mcy 47cy

wherec,>c,=0 andA denotes the fraction of particles with
velocity modulusc;.
We consider a system made of spheres of diameter
moving ballistically in three-dimensional space. If two par- 1. EXACT RESULTS
ticles touch each other, they annihilate and thus disappear . i .
from the system. We consider only two-body collisions. The Before a_ddressmg the general case, we first consider the
initial spatial distribution of particles is supposed to be uni-Single-species problem wheog=c;>0.
form, therefore it remains uniform during the evolution. In-
deed, if the state is initially translationally invariant, then the A. Single-velocity modulus distribution
free evolution preserves this symmetry. Annihilation dynam-
ics adds the effect of binary collisions that depends only on

Il. THE MODEL

Settingc,=c;=c>0 in Eq.(4), one obtains from Eql)

the distance between particles, thus preserving the transla- 1
tional invariance. Finally, existing numerical simulations fi(v;t)=n(t) 5 0(v—c). (5)
seem to be compatible with this assumption of homogeneity 4mc

[14]. We are interested in the time evolution of the number

density of particles with a given velocity modulus. From the kinetic equatio(), we find

Let f;(v;t) be the distribution function of the density of d 4
particles inR® with velocity ve R® at timet. For spatially —n(t)=— = wacn(t)?, (6)
homogeneous states, the distribution function has the form dt 3
fi(v;t)=n(t)o(v;t), (1)  whose solution is
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No so that
n()=—7———, @)
1+ gmrznoct d_X_ 4y+(3+y)V (11)
X (1=y)V2+(1-y) (3= y)V

wheren(0)=n,. A striking observation is that, in the limit ) )
t—o, the density(7) becomes independent of its initial 'Ntegrating Eq(11) yields
valueng. Note that the same phenomenon is also present for s
simple diffusion limited annihilation such asé+A—0, Vot 3__7
when the dimension of the system is larger thai@). Xo (Vo\* "° 1+y

Contrary to the one-dimensional case for which it has 7:(7) 3—vy ' (12)
been rigorously shown that the density decays proportionally V+

- : . 1+
to t~¥2[1], one sees from Ed7) that in three dimensions, Y

Boltzmann’s dynamics is faster as the density decays accord-: _ _ _ _ 2 N
ing tot ™%, which is the mean-field valugl]. We note, how- i\”g‘ \‘;(0;11/\[/(1:\(7/)&3 ;)]:BXO(’OSB Y(ij:(z,o))/(#heysgecicgl
ever, that the same behaviuft) =17 holds in all dimensions cas’e ofy=0 v?/ill bg dig(,:usosed in S,ec? I C, hénce from now

W|th|n_B(_)Itzmanns kinetic theor;(aryd in fact, more gener- "o o ssume thay>0, so thata>0. Equations(9) can
ally within the framework of a scaling analysis of the hier- also be written as

archy governing the dynamics of ballistic annihilatidr]).

This discrepancy between Boltmann'’s prediction and the ex-

; ; S o d/1 Y(7)
act result in one dimension illustrates the crucial importance —| < | =4y+(3+ ) o—, (133
of dynamical correlations wheth=1. On the other hand, as dr|X X(7)
suggested in Ref.14] and explicitly shown below by mo-
lecular dynamics simulations, the nonlinear Boltzmann equa- af1 A4 (342 X(7) (13b)
tion is relevant for describing the long-time dynamics of bal- dr\yY/) (3+y )Y(r)'

listic annihilation whend=2. In this case the particles are
very diluted and no dynamical correlations can develop durMultiplying the right-hand sidgRHS) of Eq. (138 by X,
ing the time evolution, which would violate the molecular and equating it with the derivative of the RHS of Ea2),

chaos hypothesis. one obtains upon integration from O tothe relation
B. Mixture of particles with two nonzero velocity moduli X fVod
T= u—--—
Consider the case where particles with velocitigs-0 0 v 4y+(3+y*)u

andc,>c, are initially present. Thu$,(v;t) is of the form

vor 227\’
1030 = X(0) ——s 80— C) + Y(1) —— 80 —C) d (V(’)a S (14)
v,l)= v—C v—0C»y), X - — — .
' 477Ci ! 47TC§ 2 du u Ut 3—y
8 1+vy

whereX(t) and Y(t) are, respectively, the densities of par- Equation(14) implicitly defines the time dependence of the
ticles with velocitiesc, and c,. They add up to the total fynction V(7). The procedure to obtain the densitiégr)
density X(t) +Y(t)=n(t). Upon rescaling the time accord- andY(r) from Eq.(14) is as follows. The integration in Eq.

ing to r=tc,ma?/3, it follows from Eq.(3) that (14) leads to Appel functions, which may be invertéat
) least numerically in order to giveV(7). The insertion of
X(7)==4yX(7)*=(3+ yY)X(7)Y(7), (98 V() in Eq. (12) then givesX(7). It is then straightforward

to obtain Y(7), having determinedV(r) and X(7). The
Y(7)=—4Y(1)2= (3+ y)X(7)Y(7), (9b)  structure of the implicit relatiori14) permits us to establish

interesting analytical results.

where 0<y=c,/c,<1, and the overdot denotes time de- First, let us investigate the long-time behavior of the par-

rivative with respect tar. ticle densitiesX(7) andY(7). Whenrt—, the LHS of Eq.
The set of equation®) is a nonlinear homogeneous sys- (14) diverges linearly, which implies that lim V(7)=0.

tem of coupled differential equations with constant coeffi-So, in the long-time limit, the implicit relatiofil4) leads to

cients. An implicit solution can be obtained by introducing the asymptotic formula

the functionV(7) defined asvV(7)=Y(7)/X(7). From Eq.

(9) we get —

XOT = 4—7

v S

V0>“(1+7

dY 4VZ+(3+9?)V
=, (10
dX 49+ (3+9AV so that
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(1+'y Bla

(AyXor) ™1,

T—®

V(1) = Vq Vot+1 (16)

33—y

As lim__ V(7)=0, Eq. (133 takes the asymptotic form
d/d7(1/X)=4+y. Hence we conclude that

T— 0 1
7) = —7 L

X( 4y

17

On the other hand, from Eq$13b) and (16) we find the
long-time relation

d/1)7~ , 114y ~Ala Ua
Gy = GEAT Vet (4nxente,
(18)
which upon integration yields
o0 1+ Bla
_ o ~va| 27 —(3+99)lay
Y(7) 47(4‘yX0) (3_yV0+1 T .

19

Note that the exponent for the density ) is a function of
the ratioy=c4/c, and thus is nonuniversal. In the limijt
—1 one recovers the asymptotic behavior of the single
velocity modulus distributiorisee Sec. Il A.

Second, we may find analytical upper and lower bound
for X(7) andY(7). Granted thaw>0 and3>0, the inte-
grand of Eq.(14) is a strictly monotonic decreasing positive
function of u, thereforeV(7) <V, for all 7>0. Considering
that (4y) " '=[4y+(3+y?)u] ! for u=0, the insertion of
Eqg. (12) in Eq. (14) provides the inequalityXo7<(Xy/X
—1)/4y which leads to an upper bound fof(7). On the
other hand, the inequalitf4y+ (3+ y?)u] '<[4y+ (3
+v?)V,] ! yields a lower bound, so that we finally get

%o <X(7)< _ X (20)
1+[4yXo+(3+9Y*) Yol 7 1+4yXor
Note that for times such that
AyXor>1, (21

the upper bound20) coincides with the exact asymptotic
relation(17). The same kind of analysis as that leading to Eq.
(20) yields the upper bound,

Yo

0=Y(r)=———r—.

(22)

PHYSICAL REVIEW B7, 021103 (2003

10!
10°

0.8

06 |
=]
<l !
> \
04 |\
02F S S~ e
. e
0 1 2 3 4 5 6 T 8 9 10
Xt

FIG. 1. Upper and lower bound20) (dotted line$ as well as
the numerical solution of the set of equatiof® for X(7) with
Xo=Yy, y=0.2 (continuous ling The inner logarithmic plot
shows indeed the power law behavifr) ~ 7~ for 7—o, where
the asymptotic solutioril?) is represented by the dashed straight
line. Moreover, in this regime the solution converges to the upper
bound(20).

C. Mixture of moving and motionless particles

We now consider a particular case of Sec. Il B that we
solve exactly in the asymptotic limit—o. The system is

now characterized by a certain number of motionless par-
ticles (zero velocity,c;=0), whereas the rest of the particles

have a given nonzero velocity modulus. Thus, settyrg0

in Eq. (12), inverting the relation in order to findV

=V(X), then making use of Eq133 with y=0 leads to

1/3
s

d
dr

1
X

Yo
+ —
Xo

X
Xo

(23

|=afe+ 53]

The integration of Eq(23) yields

s

1

0.8 k

0.6 i

S

04 H

02 r

FIG. 2. Upper bound22) (dashed lingsas well as the numeri-

The width defined by the difference of the bounds in bothca) solution of the set of equatio8) for Y(7) with Xo=Y,, v

cases(20) and (22) is O(r1). Figures 1 and 2 show the
numerical solution foX(7), Y(7), the bound$20) and(22),
as well as their asymptotic behaviots7) and (19) on a

solution shows indeed the power law behavitirr) ~ 7

=0.2(continuous ling The inner logarithmic plot of the numerical
~(3+ 994y

for 7—oo, where the asymptotic solutiqi9) is represented by the
logarithmic scale. dashed straight. Furthermore, the use of both the upper bdd

The knowledge of the numerical soluti¢see Figs. 1 and and the asymptotic fornil9) allows one to find an analytical ap-
2) allows to determine the crossover time, separating th@roximation forY(r), which turns out to be exact in both limits
early and long-tim&power law regimes. —0 andr— .
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1 XO a XO 2/3 ) XO 1/3
3X07_§[1_Y E 1—(7) +a‘|l1— Y
+adin| — (24)
a’inf ———————|,
a—(Xo/X)¥3

with a=1+Yy/3X,. In the asymptotic limitr— o, the LHS

of Eq. (24) tends to+ . The densityX(7) cannot thus tend
to zero, and must approach a strictly positive vakige)
=X,.>0. For r—oo, all terms on the RHS of Eq24) but
the logarithmic one approach a finite limit. This implies the
asymptotic behavior

ReplacingX by X., in all terms of Eq.(24) except the loga-
rithmic one and then inverting the relatieX), we find

3

3X
0 >0.

3%+ Yo (25)

. Xo
Xo= lim X(7)= = =Xq
a

T—®

X(7) = X[ 1— (X0 Yo:m)] 2 = Xo[1+36(Xo,Yo: 7],
28

T— 0

where

Yo exp u/ad)

£(Xo,Yg,7)= 3Xo+ Yo

exg—3X.7) (27
andu=1/3+a/2+a%—11a%16<0. Making use of Eq(9a)
with y=0, we find

T—®

Y(7) = 3X.,.e(Xp,Yq;7). (28

Hence we have

T— 0

X(7) = XotY(7). (29)

There is a qualitative difference from the case>0. As

shown in Fig. 3, the density of particles at rest approaches

the asymptotic valueX,,>0 exponentially fast, while the

PHYSICAL REVIEW E 67, 021103 (2003

FIG. 3. Linear-logarithmic plot of the numerical solution of the
set of equationg9) for Xy,=Y,, y=0 (continuous lines The
asymptotic relation26) and (28) are shown by the dashed lines,
and the asymptotic limif25) by the dotted line.

tion of the particles are integratddee Ref[14] for more
details concerning the methpd

A. Analytical results in two dimensions

MD simulations are most efficiently performed in two di-
mensions, where the best statistical accuracy can be
achieved. We consequently repeat the analysis of Secs. Il and
Il for a two-dimensional system. Introducing the rescaled
time 7=2moc,t, one obtains the counterpart of E@S) in
the form

X(7)=—4yX(7)2= k(y)X(7)Y(7), (308

Y(7)=—4Y(7)%—= k()X(7)Y(7), (30b)

where k(y)=[gde\1+ y?>—2ycose. In the limit 7— o,

the solution of the systerf80) reads

T—®©

density of moving particles goes to zero exponentially. Table

| summarizes the long-time behavior for the different cases.

Note that generalizing our results to any dimensibn
=2 is straightforward(see below for the casé=2). The

X(1) = =71, 31
(0 =7 (313

Vo yu| 4K e 14

~ —Uu —Kl4y
Y(7) = 7 (47%0) (K_4yVo+1> T ,(31b)

algebraic or exponential decay of the particle densities hold

irrespective of. In particular, for the general casg>0 the
exponent of the density of “slow” particles is independent of
d so that asymptoticallX(7) ~ 7~ . Finally the relation(29)
still holds.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

The analytical predictions obtained in the preceding sec-

tion rely on the validity of the molecular chaos assumption

leading to the Boltzmann equation. It is therefore instructiveX(r)
to compare these predictions to the results of molecular dy¥(7)

namics(MD) simulations, where the exact equations of mo

whereu=4vy/(k—4v) andv=k/(4— k) — . On the other
hand, taking the limity—0 in Egs.(30) and solving the
corresponding system leads to the long-time behavior

TABLE I. Summary of the long-time density behavior in three
dimensions.

Cc,=C1>0 c,>Cc1#0 c,>c1=0
1 1 Xo[1+3 exp=3X,.7)]
1 7 @+)lay X..3 exp(3X..7)
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FIG. 4. Log-log plot of the densitieX (upper curvg and Y FIG. 5. Linear-logarithmic plot of the density of moving par-

(lower curve as a function of rescaled time, as obtained in the MDtjcles. Here,y=0, X,=Y,=5x 10 3/0? [corresponding to a very
simulations of a two-dimensional system wi§h=0.1. The initial  |ow total initial packing fraction o= (Xo+ Y,)o2/4=0.0078].
condition corresponds to an equimolar mixtudy € Y,) of N=2 The initial number of particles idl=4x10°. The results of MD
X 10° particles, with reduced densityXf+Yo)o?=0.1 at7=0  gimulations(continuous curveare compared to the predictions of
(both species have the same diamefene dashed lines have slopes Egs. (32), shown by the broken line. The inset shows that X,

—1 and—7.9[as predicted by Eq¢31)]. Inset: log-log plotoffas  and Y (obtained in MD have asymptotically the same time decay
a function ofX, where the broken line has sloper.9. [see Eqs(32)].

T— 0

_ ) decay of the “fast” particles is governed by the exponent
X(7) = Xal1+82(Xo, Yo:i7) ], (323 kl4y=7.9). Although the large-time behaviors frand Y
are compatible with those given by Eq&1), it may be

T— 0

_ . observed that the corresponding asymptotic regime is diffi-
V(1) = Xa£2(Xo,Yoi7), (320 cult to probe, even for large systems. The parametric[plot
where “trajectory” Y(X)] shown in the inset is however in agree-
ment with the relatior¥ o< X4 deduced from Eq(31).
X, 1 We have also performed MD simulations for a mixture of

X Ty Tk (33)  moving and motionless particlesy€0), where it is ex-

0 (14+Vox)™ pected that the densitq of particles at rest decreases down
to a nonvanishing valu¥., . In the situation of an equimolar
mixture (Xo=Yy), we haveVO— 1, so that according to Eq.
(33), X, /Xy=0.414. The MD simulations are in agreement
with this scenario, and we find,. / Xo=0.408 irrespective of

andy=4/7—1. In Egs.(32), we have

—1/x—1
£2(Xo,Yo;m) =V VO ey — X, 1Xo)

the initial conditions for a system with initialljd=2x 10°
xexp(— mXea7), (34) particles. The results for the time dependencX ahdY are
and displayed in Fig. 5. We conclude that the numerical simula-
tions are again in agreement with the prediction of Boltz-
Uy +V, mann’s kinetic theory.
f duln(u)| — ( v s ) (35
xTu V. CONCLUSIONS

We have shown that for some simple spatially homoge-
neous systems, characterized by a velocity distribution with a

MD simulations have been implemented with systems ofdiscrete velocity modulus spectrum, it is possible to find the
typically N=10° to 4x10° spheres in two dimensions exact solution for the nonlinear integral equation describing
(discg. Periodic boundary conditions were enforced, and lowthe dynamics of ballistic annihilation. These results, obtained
densities considered, in order to minimize the excluded volat the level of a Boltzmann equation, have been validated by
ume effects discarded at the Boltzmann levedte that these explicit comparison with molecular dynamics simulations in
effects are necessarily transient since the density decreasg#o dimensions.
with time). For a single-velocity modulus distribution, the particle

Figure 4 compares the MD results obtained with density of the model decays asymptotically mg)~t 2,
=1/10 to the predictions of Eq$31) (for y=1/10, the time irrespective of space dimension. It was however rigorously

B. Molecular dynamics simulations
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shown that in one dimension, the decay is slowg(t) problem of ballistic annihilation of particles with one-
~t~ %2 This difference is a consequence of the fact that invelocity moduli moving in a random medium containing im-
one dimension strong dynamical correlations are cre@gd mobile traps(the motionless particle¢sthat can capture a
which invalidate the approximation underlying Boltzmann’s moving particle and then disappear. Here again, the situation
dynamics. In higher dimensions, the Boltzmann equation becan be compared to similar problems in diffusion limited
comes exact in the long-time limit. annihilation, where the presence of traps can modify the
In the case of a distribution with two different finite non- long-time dynamics from a power law to an exponential de-
zero velocity moduli, we found that both particle densitiescay[17].
decay for a large time according to a power law. The inter- it \yould be interesting to compare the above theoretical

esting feature is that the density of the slow particles decayﬁredictions with some experimental data. Besides growth

_1 . . .
ast™", while the density of the fast particles decays more; g coarsening problems, ballistic annihilation could model

rapidly (e.g., a2~ 7747 in three dimensionswith a non-  gther physical systems such as, for example, the fluorescence
universal exponent depending continuously on the velocityf |aser excited gas atoms with quenching on confat.
modulus ratioy=c;/c,. A rough criterion for the crossover pHowever, the correspondence between such experimental
time separating the short- and long-time regimes has beeglyyations and our model is not yet close enough to allow
given in Eq.(21). comparison. We would be highly interested in the knowledge

Finally, the casee;=0 leads to a particularly interesting of other physical systems that could be described by the
behavior. Independently of the initial conditions, the densi-models studied here.

ties of the moving and the motionless particles both decrease
exponentially fast, however down to a nonzero value for par-
ticles at rest. This behavior is quite different from that ob-
served in the one-dimensional case where the initial value of
the density of motionless particles plays an important role in  This work was partially supported by the Swiss National
the long-time regime. This difference between one dimenScience Foundation. M.D. acknowledges the support of the
sion and higher dimensions reflects once again the importar8wiss National Science Foundation and of the CNRS. J.P.
role played by the dynamically created correlations dor acknowledges the hospitality at the Department of Physics of
=1. the University of Geneva. We thank P. L. Krapivsky for
The case with motionless particles can be viewed as &ringing our attention to Ref4].
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