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Some exact results for Boltzmann’s annihilation dynamics
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The problem of ballistic annihilation for a spatially homogeneous system is revisited within Boltzmann’s
kinetic theory in two and three dimensions. Analytical results are derived for the time evolution of the particle
density for some isotropic discrete bimodal velocity modulus distributions. According to the allowed values of
the velocity modulus, different behaviors are obtained: power law decay with nonuniversal exponents depend-
ing continuously upon the ratio of the two velocities, or exponential decay. When one of the two velocities is
equal to zero, the model describes the problem of ballistic annihilation in the presence of static traps. The
analytical predictions are shown to be in agreement with the results of two-dimensional molecular dynamics
simulations.
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I. INTRODUCTION

In ballistically controlled reactions, particles with a give
initial velocity distribution move freely~ballistic motion! in
a d-dimensional space. When two of them meet, they an
hilate and disappear from the system. This apparently sim
problem has attracted a lot of attention during the past ye
@1–14# for the following reasons. First, this is one of the fe
problems of nonequilibrium statistical physics that can
exactly solved in some cases, and second it models s
growth and coarsening processes@15#.

This field was entered with the pioneering work by E
skens and Frisch@1#, where a one-dimensional system wi
only two possible velocities1c or 2c was studied. Using
combinatorial analysis, they showed that the density of p
ticles was decreasing according to a power law (t21/2) in the
case of a symmetric initial velocity distribution. The inves
gation of this one-dimensional problem was generalized
Droz et al. @6# to the three-velocity case, where the initi
velocity distribution is given by w(v;0)5p1d(v2c)
1p0d(v)1p2d(v1c) with p15p2 ~symmetric case! and
p11p01p251. It turns out that the decay of the partic
density depends on the details of the initial velocity distrib
tion. The following analytical results were obtained. Forp0
,1/4, the densityn(v;t) of particles with velocityv5$0,
1c,2c%, behaves in the long-time limit asn(0;t)
;t21, n(6c;t);t21/2. When p051/4, n(0;t);n(6c;t)
;t22/3. Finally, for p0.1/4, one finds thatn(0;t) saturates
to a nonzero stationary value, whilen(6c;t) decays faster
than a power law. Moreover, it was shown that in one dim
sion, annihilation dynamics creates strong correlations
tween the velocities of colliding particles, which excludes
Boltzmann-like approximation. Pairs of nearest neighb
particles have the tendency to align their velocities a
propagate in the same direction@6#.

An analytical investigation of the one-dimensional ca
with a continuous velocity distribution is much more diffi
cult. A dynamical scaling theory, whose validity was su
ported by extensive numerical simulations for several vel
ity distributions, led Reyet al. @7# to the conjecture that al
1063-651X/2003/67~2!/021103~7!/$20.00 67 0211
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the continuous velocity distributionsw(v) that are symmet-
ric, regular and, such thatw(0)Þ0 are attracted in the long
time regime towards the same Gaussian-like distribution,
thus belong to the same universality class.

For higher dimensions, most of the studies are based
an uncontrolled Boltzmann-like description@2,3,11# or nu-
merical simulations@12#. However, based on phenomen
logical mean-field-like arguments, Krapivskyet al. have
studied the annihilation kinematics of a bimodal veloc
modulus distribution ind.2 dimensions@4#. In the case of a
mixture of moving and motionless particles they showed t
the stationary particles always persist, while the density
moving particles decays exponentially. This approach c
tains unknown phenomenological parameters, and thu
complete comparison with the results obtained by numer
simulation is not possible.

In a recent paper, Piaseckiet al. @14# gave an analytical
derivation of the hierarchy equations obeyed by the redu
distributions for the annihilation dynamics. In dimensiond
.1 for a spatially homogeneous system, and in the limit~the
so-called Grad limit! for which the particle diameters→0
and the particle densityn(t)→`, such that n(t)sd21

5l21, wherel is the mean free path, the hierarchy reduc
to the Boltzmann-like hierarchy. This hierarchy propaga
the factorization of the reducedk-particle distribution in
terms of one-particle distribution functions. Thus, if the in
tial state is factorized, the whole hierarchy reduces to o
nonlinear equation for the one-particle Boltzmann distrib
tion. For annihilation kinetics, the ratio of particle diamet
to mean-free path vanishes in the long-time limit, and
situation becomes similar to the Grad limit discussed ab
for l→`. Thus the long-time limit of the annihilation dy
namics~for d.1) is likely to be adequately described by th
nonlinear Boltzmann equation.

A scaling analysis of the nonlinear Boltzmann equati
led to analytical expressions for the exponents describing
decay of the particle density and of the root-mean-squ
velocity in the case of continuous velocity distributions@14#.

In view of the different behaviors observed in one dime
sion for discrete or continuous velocity distributions, it
©2003 The American Physical Society03-1
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relevant to study the case of distributions with discr
modulus spectrum in dimensions higher than 1. The goa
this paper is to investigate simple examples of this kind
three dimensions for which the nonlinear Boltzmann eq
tion derived in Ref.@14# can be exactly solved. The gene
alization of this approach to an arbitrary dimension
straightforward, and for the sake of comparison with nume
cal simulations, we shall also consider the two-dimensio
situation in some detail.

The validity of the Boltzmann description in the long-tim
limit will be confirmed by comparing our analytical predic
tions with the results obtained by a molecular dynam
simulation.

The paper is organized as follows. In Sec. II we define
model. In Sec. III the three-dimensional Boltzmann equat
is solved analytically for a two-velocity modulus (c1 andc2)
isotropic distribution. For simplicity we first consider the on
velocity model c15c2.0 that allows to draw interesting
comparisons with the same model in one dimension. T
the implicit solution for the particle densities in the gene
casec1.c2.0 is established. It is shown analytically that
the long-time limit the particle densities decay according
power laws, with exponents depending continuously on
value of the velocity modulus ratio. We also find upper a
lower bounds to the particle densities that are compared
the numerical solution of the dynamical equation. The p
ticular case of a mixture of moving (c2.0) and motionless
(c150) particles is also investigated. It turns out that t
particle densities decay exponentially to zero for the mov
particles, and to a nonzero value for the motionless on
This phenomenology is independent of space dimension,
in Sec. IV, it will be shown explicitly to hold in two dimen
sions by implementing molecular dynamics simulations. T
numerical method has the advantage of being free of
approximations underlying Boltzmann’s dynamics an
therefore, provides an interesting test for the analytical p
dictions. Section V contains our interpretations and conc
sions.

II. THE MODEL

We consider a system made of spheres of diametes
moving ballistically in three-dimensional space. If two pa
ticles touch each other, they annihilate and thus disapp
from the system. We consider only two-body collisions. T
initial spatial distribution of particles is supposed to be u
form, therefore it remains uniform during the evolution. I
deed, if the state is initially translationally invariant, then t
free evolution preserves this symmetry. Annihilation dyna
ics adds the effect of binary collisions that depends only
the distance between particles, thus preserving the tran
tional invariance. Finally, existing numerical simulatio
seem to be compatible with this assumption of homogen
@14#. We are interested in the time evolution of the numb
density of particles with a given velocity modulus.

Let f 1(v;t) be the distribution function of the density o
particles inR3 with velocity vPR3 at time t. For spatially
homogeneous states, the distribution function has the fo

f 1~v;t !5n~ t !w~v;t !, ~1!
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wherew(v;t) is the velocity probability density. In the long
time limit, Piaseckiet al. @14# have shown that the hierarch
satisfied by the reduced distributions approached the Bo
mann hierarchy. If the initial state is factorized, the nonline
Boltzmann equation provides then the complete descrip
of annihilation dynamics,

]

]t
f 1~v1 ;t !5s2E dŝu~2ŝ• v̂12!~ŝ• v̂12!

3E
R3

dv2uv12u f 1~v1 ;t ! f 1~v2 ;t !. ~2!

Here u is the Heaviside function,v125v12v2 the relative
velocity of two particles,v̂125v12/v12 a unit vector,v12

5uv12u, and the integration with respect todŝ is the angular
integration over the solid angle.

We consider spherically symmetric initial condition
f 1(v;0), v5uvu. This symmetry property is propagated b
the dynamics. The Boltzmann equation~2! then takes the
form

]

]t
f 1~v;t !52

2

3
~ps!2f 1~v;t !E

0

`

duu2f 1~u;t !

3F ~u1v !32uu2vu3

u v G . ~3!

Equation~3! is a nonlinear homogeneous integral equat
for the distribution functionf 1(v;t). A simplification arises
if the initial velocity distribution has a discrete modulu
spectrum. This spectrum is preserved by the annihilation
namics as no new velocities are created. A simple cas
provided by the bimodal distribution

w~v,0!5
A

4pc1
2
d~v2c1!1

12A

4pc2
2
d~v2c2!, ~4!

wherec2.c1>0 andA denotes the fraction of particles wit
velocity modulusc1.

III. EXACT RESULTS

Before addressing the general case, we first consider
single-species problem wherec25c1.0.

A. Single-velocity modulus distribution

Settingc25c15c.0 in Eq.~4!, one obtains from Eq.~1!

f 1~v;t !5n~ t !
1

4pc2
d~v2c!. ~5!

From the kinetic equation~3!, we find

d

dt
n~ t !52

4

3
ps2cn~ t !2, ~6!

whose solution is
3-2
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n~ t !5
n0

11
4

3
ps2n0ct

, ~7!

wheren(0)5n0. A striking observation is that, in the limi
t→`, the density~7! becomes independent of its initia
valuen0. Note that the same phenomenon is also presen
simple diffusion limited annihilation such asA1A→0,
when the dimension of the system is larger than 2@16#.

Contrary to the one-dimensional case for which it h
been rigorously shown that the density decays proportion
to t21/2 @1#, one sees from Eq.~7! that in three dimensions
Boltzmann’s dynamics is faster as the density decays acc
ing to t21, which is the mean-field value@4#. We note, how-
ever, that the same behaviorn(t)}1/t holds in all dimensions
within Boltzmann’s kinetic theory~and in fact, more gener
ally within the framework of a scaling analysis of the hie
archy governing the dynamics of ballistic annihilation@14#!.
This discrepancy between Boltmann’s prediction and the
act result in one dimension illustrates the crucial importa
of dynamical correlations whend51. On the other hand, a
suggested in Ref.@14# and explicitly shown below by mo
lecular dynamics simulations, the nonlinear Boltzmann eq
tion is relevant for describing the long-time dynamics of b
listic annihilation whend>2. In this case the particles ar
very diluted and no dynamical correlations can develop d
ing the time evolution, which would violate the molecul
chaos hypothesis.

B. Mixture of particles with two nonzero velocity moduli

Consider the case where particles with velocitiesc1.0
andc2.c1 are initially present. Thusf 1(v;t) is of the form

f 1~v;t !5X~ t !
1

4pc1
2
d~v2c1!1Y~ t !

1

4pc2
2
d~v2c2!,

~8!

whereX(t) and Y(t) are, respectively, the densities of pa
ticles with velocitiesc1 and c2. They add up to the tota
densityX(t)1Y(t)5n(t). Upon rescaling the time accord
ing to t5tc2ps2/3, it follows from Eq.~3! that

Ẋ~t!524gX~t!22~31g2!X~t!Y~t!, ~9a!

Ẏ~t!524Y~t!22~31g2!X~t!Y~t!, ~9b!

where 0<g5c1 /c2,1, and the overdot denotes time d
rivative with respect tot.

The set of equations~9! is a nonlinear homogeneous sy
tem of coupled differential equations with constant coe
cients. An implicit solution can be obtained by introducin
the functionV(t) defined asV(t)5Y(t)/X(t). From Eq.
~9! we get

dY

dX
5

4V21~31g2!V

4g1~31g2!V
, ~10!
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so that

dX

X
5

4g1~31g2!V

~12g2!V21~12g!~32g!V
dV. ~11!

Integrating Eq.~11! yields

X0

X
5S V0

V D aS V01
32g

11g

V1
32g

11g

D b

, ~12!

with a54g/@(12g)(32g)#>0, b5(31g2)/(12g2)2a
.0, V(0)5V05Y0 /X0 , X05X(0), Y05Y(0). Thespecial
case ofg50 will be discussed in Sec. III C, hence from no
on we assume thatg.0, so thata.0. Equations~9! can
also be written as

d

dt S 1

XD54g1~31g2!
Y~t!

X~t!
, ~13a!

d

dt S 1

YD541~31g2!
X~t!

Y~t!
. ~13b!

Multiplying the right-hand side~RHS! of Eq. ~13a! by X0
and equating it with the derivative of the RHS of Eq.~12!,
one obtains upon integration from 0 tot the relation

X0t5E
V

V0
du

1

4g1~31g2!u

3H 2
d

duF S V0

u D aS V01
32g

11g

u1
32g

11g

D bG J . ~14!

Equation~14! implicitly defines the time dependence of th
function V(t). The procedure to obtain the densitiesX(t)
andY(t) from Eq. ~14! is as follows. The integration in Eq
~14! leads to Appel functions, which may be inverted~at
least numerically! in order to giveV(t). The insertion of
V(t) in Eq. ~12! then givesX(t). It is then straightforward
to obtain Y(t), having determinedV(t) and X(t). The
structure of the implicit relation~14! permits us to establish
interesting analytical results.

First, let us investigate the long-time behavior of the p
ticle densitiesX(t) andY(t). Whent→`, the LHS of Eq.
~14! diverges linearly, which implies that lim

t→`
V(t)50.

So, in the long-time limit, the implicit relation~14! leads to
the asymptotic formula

X0t .
t→` 1

4g S V0

V D aS 11g

32g
V011D b

, ~15!

so that
3-3
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V~t! .
t→`

V0S 11g

32g
V011D b/a

~4gX0t!21/a. ~16!

As lim
t→0

V(t)50, Eq. ~13a! takes the asymptotic form

d/dt(1/X)54g. Hence we conclude that

X~t! .
t→` 1

4g
t21. ~17!

On the other hand, from Eqs.~13b! and ~16! we find the
long-time relation

d

dt S 1

YD .
t→`

~31g2!
1

V0
S 11g

32g
V011D 2b/a

~4gX0t!1/a,

~18!

which upon integration yields

Y~t! .
t→`V0

4g
~4gX0!21/aS 11g

32g
V011D b/a

t2(31g2)/4g.

~19!

Note that the exponent for the densityY(t) is a function of
the ratiog5c1 /c2 and thus is nonuniversal. In the limitg
→1 one recovers the asymptotic behavior of the sing
velocity modulus distribution~see Sec. III A!.

Second, we may find analytical upper and lower boun
for X(t) and Y(t). Granted thata.0 andb.0, the inte-
grand of Eq.~14! is a strictly monotonic decreasing positiv
function of u, thereforeV(t),V0 for all t.0. Considering
that (4g)21>@4g1(31g2)u#21 for u>0, the insertion of
Eq. ~12! in Eq. ~14! provides the inequalityX0t<(X0 /X
21)/4g which leads to an upper bound forX(t). On the
other hand, the inequality@4g1(31g2)u#21<@4g1(3
1g2)V0#21 yields a lower bound, so that we finally get

X0

11@4gX01~31g2!Y0#t
<X~t!<

X0

114gX0t
. ~20!

Note that for times such that

4gX0t@1, ~21!

the upper bound~20! coincides with the exact asymptot
relation~17!. The same kind of analysis as that leading to E
~20! yields the upper bound,

0<Y~t!<
Y0

11~31g2!X0t
. ~22!

The width defined by the difference of the bounds in bo
cases~20! and ~22! is O(t21). Figures 1 and 2 show th
numerical solution forX(t), Y(t), the bounds~20! and~22!,
as well as their asymptotic behaviors~17! and ~19! on a
logarithmic scale.

The knowledge of the numerical solution~see Figs. 1 and
2! allows to determine the crossover time, separating
early and long-time~power law! regimes.
02110
-

s

.

e

C. Mixture of moving and motionless particles

We now consider a particular case of Sec. III B that w
solve exactly in the asymptotic limitt→`. The system is
now characterized by a certain number of motionless p
ticles ~zero velocity,c150), whereas the rest of the particle
have a given nonzero velocity modulus. Thus, settingg50
in Eq. ~12!, inverting the relation in order to findV
5V(X), then making use of Eq.~13a! with g50 leads to

d

dt S 1

XD53S 31
Y0

X0
D S X

X0
D 1/3

29. ~23!

The integration of Eq.~23! yields

FIG. 1. Upper and lower bounds~20! ~dotted lines! as well as
the numerical solution of the set of equations~9! for X(t) with
X05Y0 , g50.2 ~continuous line!. The inner logarithmic plot
shows indeed the power law behaviorX(t);t21 for t→`, where
the asymptotic solution~17! is represented by the dashed straig
line. Moreover, in this regime the solution converges to the up
bound~20!.

FIG. 2. Upper bound~22! ~dashed lines! as well as the numeri-
cal solution of the set of equations~9! for Y(t) with X05Y0 , g
50.2 ~continuous line!. The inner logarithmic plot of the numerica

solution shows indeed the power law behaviorY(t);t2(31g2)/4g

for t→`, where the asymptotic solution~19! is represented by the
dashed straight. Furthermore, the use of both the upper bound~17!
and the asymptotic form~19! allows one to find an analytical ap
proximation forY(t), which turns out to be exact in both limitst
→0 andt→`.
3-4
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3X0t5
1

3 F12
X0

X G1
a

2 F12S X0

X D 2/3G1a2F12S X0

X D 1/3G
1a3lnF a21

a2~X0 /X!1/3G , ~24!

with a511Y0/3X0. In the asymptotic limitt→`, the LHS
of Eq. ~24! tends to1`. The densityX(t) cannot thus tend
to zero, and must approach a strictly positive valueX(`)
5X`.0. For t→`, all terms on the RHS of Eq.~24! but
the logarithmic one approach a finite limit. This implies t
asymptotic behavior

X`5 lim
t→`

X~t!5
X0

a3
5X0S 3X0

3X01Y0
D 3

.0. ~25!

ReplacingX by X` in all terms of Eq.~24! except the loga-
rithmic one and then inverting the relationt(X), we find

X~t! .
t→`

X`@12«~X0 ,Y0 ;t!#23 .
t→`

X`@113«~X0 ,Y0 ;t!#,
~26!

where

«~X0 ,Y0 ;t!5
Y0 exp~m/a3!

3X01Y0
exp~23X`t! ~27!

andm51/31a/21a2211a3/16,0. Making use of Eq.~9a!
with g50, we find

Y~t! .
t→`

3X`«~X0 ,Y0 ;t!. ~28!

Hence we have

X~t! .
t→`

X`1Y~t!. ~29!

There is a qualitative difference from the casec1.0. As
shown in Fig. 3, the density of particles at rest approac
the asymptotic valueX`.0 exponentially fast, while the
density of moving particles goes to zero exponentially. Ta
I summarizes the long-time behavior for the different cas

Note that generalizing our results to any dimensiond
>2 is straightforward~see below for the cased52). The
algebraic or exponential decay of the particle densities h
irrespective ofd. In particular, for the general casec1.0 the
exponent of the density of ‘‘slow’’ particles is independent
d so that asymptoticallyX(t);t21. Finally the relation~29!
still holds.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

The analytical predictions obtained in the preceding s
tion rely on the validity of the molecular chaos assumptio
leading to the Boltzmann equation. It is therefore instruct
to compare these predictions to the results of molecular
namics~MD! simulations, where the exact equations of m
02110
s
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tion of the particles are integrated~see Ref.@14# for more
details concerning the method!.

A. Analytical results in two dimensions

MD simulations are most efficiently performed in two d
mensions, where the best statistical accuracy can
achieved. We consequently repeat the analysis of Secs. II
III for a two-dimensional system. Introducing the rescal
time t52psc2t, one obtains the counterpart of Eqs.~9! in
the form

Ẋ~t!524gX~t!22k~g!X~t!Y~t!, ~30a!

Ẏ~t!524Y~t!22k~g!X~t!Y~t!, ~30b!

where k(g)5*0
pdwA11g222g cosw. In the limit t→`,

the solution of the system~30! reads

X~t! .
t→` 1

4g
t21, ~31a!

Y~t! .
t→`V0

4g
~4gX0!21/mS 42k

k24g
V011D n/m

t2k/4g,

~31b!

wherem54g/(k24g) andn5k/(42k)2m. On the other
hand, taking the limitg→0 in Eqs. ~30! and solving the
corresponding system leads to the long-time behavior

FIG. 3. Linear-logarithmic plot of the numerical solution of th
set of equations~9! for X05Y0 , g50 ~continuous lines!. The
asymptotic relations~26! and ~28! are shown by the dashed line
and the asymptotic limit~25! by the dotted line.

TABLE I. Summary of the long-time density behavior in thre
dimensions.

c25c1.0 c2.c1Þ0 c2.c150

X(t) t21 t21 X`@113 exp(23X`t)#
Y(t) t21

t2(31g2)/4g X`3 exp(23X`t)
3-5
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X~t! .
t→`

X`@11«2~X0 ,Y0 ;t!#, ~32a!

Y~t! .
t→`

X`«2~X0 ,Y0 ;t!, ~32b!

where

X`

X0
5

1

~11V0x!1/x
~33!

andx54/p21. In Eqs.~32!, we have

«2~X0 ,Y0 ;t!5pV0
(11V0x)21/x21

exp~2JX` /X0!

3exp~2pX`t!, ~34!

and

J5E
0

V0
du ln~u!F2

d2

du2 S 1/x1V0

1/x1u D 1/xG . ~35!

B. Molecular dynamics simulations

MD simulations have been implemented with systems
typically N5105 to 43105 spheres in two dimension
~discs!. Periodic boundary conditions were enforced, and l
densities considered, in order to minimize the excluded v
ume effects discarded at the Boltzmann level~note that these
effects are necessarily transient since the density decre
with time!.

Figure 4 compares the MD results obtained withg
51/10 to the predictions of Eqs.~31! ~for g51/10, the time

FIG. 4. Log-log plot of the densitiesX ~upper curve! and Y
~lower curve! as a function of rescaled time, as obtained in the M
simulations of a two-dimensional system withg50.1. The initial
condition corresponds to an equimolar mixture (X05Y0) of N52
3105 particles, with reduced density (X01Y0)s250.1 at t50
~both species have the same diameter!. The dashed lines have slope
21 and27.9 @as predicted by Eqs.~31!#. Inset: log-log plot ofY as
a function ofX, where the broken line has slope27.9.
02110
f
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decay of the ‘‘fast’’ particles is governed by the expone
k/4g.7.9). Although the large-time behaviors forX and Y
are compatible with those given by Eqs.~31!, it may be
observed that the corresponding asymptotic regime is d
cult to probe, even for large systems. The parametric plot@or
‘‘trajectory’’ Y(X)] shown in the inset is however in agree
ment with the relationY}Xk/4g deduced from Eq.~31!.

We have also performed MD simulations for a mixture
moving and motionless particles (g50), where it is ex-
pected that the densityX of particles at rest decreases dow
to a nonvanishing valueX` . In the situation of an equimola
mixture (X05Y0), we haveV051, so that according to Eq
~33!, X` /X0.0.414. The MD simulations are in agreeme
with this scenario, and we findX` /X0.0.408 irrespective of
the initial conditions for a system with initiallyN523105

particles. The results for the time dependence ofX andY are
displayed in Fig. 5. We conclude that the numerical simu
tions are again in agreement with the prediction of Bol
mann’s kinetic theory.

V. CONCLUSIONS

We have shown that for some simple spatially homo
neous systems, characterized by a velocity distribution wi
discrete velocity modulus spectrum, it is possible to find
exact solution for the nonlinear integral equation describ
the dynamics of ballistic annihilation. These results, obtain
at the level of a Boltzmann equation, have been validated
explicit comparison with molecular dynamics simulations
two dimensions.

For a single-velocity modulus distribution, the partic
density of the model decays asymptotically asn(t);t21,
irrespective of space dimension. It was however rigorou

FIG. 5. Linear-logarithmic plot of the density of moving pa
ticles. Here,g50, X05Y05531023/s2 @corresponding to a very
low total initial packing fractionh0[p(X01Y0)s2/450.0078].
The initial number of particles isN543105. The results of MD
simulations~continuous curve! are compared to the predictions o
Eqs. ~32!, shown by the broken line. The inset shows thatX2X`

and Y ~obtained in MD! have asymptotically the same time dec
@see Eqs.~32!#.
3-6
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SOME EXACT RESULTS FOR BOLTZMANN’S . . . PHYSICAL REVIEW E 67, 021103 ~2003!
shown that in one dimension, the decay is slower,n(t)
;t21/2. This difference is a consequence of the fact tha
one dimension strong dynamical correlations are created@6#,
which invalidate the approximation underlying Boltzmann
dynamics. In higher dimensions, the Boltzmann equation
comes exact in the long-time limit.

In the case of a distribution with two different finite non
zero velocity moduli, we found that both particle densiti
decay for a large time according to a power law. The int
esting feature is that the density of the slow particles dec
as t21, while the density of the fast particles decays mo
rapidly ~e.g., ast2(31g2)/4g in three dimensions!, with a non-
universal exponent depending continuously on the velo
modulus ratiog5c1 /c2. A rough criterion for the crossove
time separating the short- and long-time regimes has b
given in Eq.~21!.

Finally, the casec150 leads to a particularly interestin
behavior. Independently of the initial conditions, the den
ties of the moving and the motionless particles both decre
exponentially fast, however down to a nonzero value for p
ticles at rest. This behavior is quite different from that o
served in the one-dimensional case where the initial valu
the density of motionless particles plays an important role
the long-time regime. This difference between one dim
sion and higher dimensions reflects once again the impor
role played by the dynamically created correlations ford
51.

The case with motionless particles can be viewed a
J

e
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problem of ballistic annihilation of particles with one
velocity moduli moving in a random medium containing im
mobile traps~the motionless particles! that can capture a
moving particle and then disappear. Here again, the situa
can be compared to similar problems in diffusion limite
annihilation, where the presence of traps can modify
long-time dynamics from a power law to an exponential d
cay @17#.

It would be interesting to compare the above theoreti
predictions with some experimental data. Besides gro
and coarsening problems, ballistic annihilation could mo
other physical systems such as, for example, the fluoresc
of laser excited gas atoms with quenching on contact@18#.
However, the correspondence between such experime
situations and our model is not yet close enough to all
comparison. We would be highly interested in the knowled
of other physical systems that could be described by
models studied here.
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