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Non-Hamiltonian equilibrium statistical mechanics
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In this paper the equilibrium statistical mechanics of hon-Hamiltonian systems is formulated introducing an
algebraic bracket. The latter defines non-Hamiltonian equations of motion in classical phase space according to
the approach introduced in Phys. Rev6& 056125(2001). The Jacobi identity is no longer satisfied by the
generalized bracket and as a result the algebra of phase space functions is not time translation invariant. The
presence of a nonzero phase space compressibility spoils also the time-reversal invariance of the dynamics.
The general Liouville equation is rederived and the properties of statistical averages are accounted for. The
features of time correlation functions and linear response theory are also discussed.
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[. INTRODUCTION The subtler feature is due to the fact that the generalized
bracket does not satisfy the Jacoby relation so that the non-
Non-Hamiltonian dynamics has been introduced long agddamiltonian algebra of phase space functions lacks time-
in molecular dynamics simulations to achieve, by means ofranslation invariance. It is worth to remark that, within the
additional thermostat and/or barostats coordinates, the calcdifferent context of mixed quantum-classical systems, the
lation of statistical averages in various ensemfile-6]. lack of time-translation invariance, as a consequence of the
Nowadays it is a key element in the design of modern simufailure of the Jacobi identity, and its effects on the statistical
lation methods and it is worth to mention that also mixedmechanics, have been already addressed in the work of Ref.
quantum-classical system can be studied by a nonfg]. The bracket approach to equations of motion permits
Hamiltonian approach7—9]. also to show that the presence of a nonzero compressibility
In a previous pap€l0], a general formalism for express- of phase space spoils the time-reversal invariance of dynami-
ing non-Hamiltonian equations of motion with a Conservedca| flows. The use of non-Hamiltonian dynamics to Study
energy has been proposgtD] and it has been shown that gynamical quantities at equilibrium is a delicate matter and
already known non-Hamiltonian equations of motion, usingcannot be assessed on general ground. Anyway loosing in
thermostats and baI‘OStatS, can be formulated in a Uniﬁegenera”ty one can focus on a CIaSS Of dynamica' mode's
way. It has also been suggested that one could invent nefhere many relevant degrees of freedom, subjected to a
non-Hamiltonian phase space flows to attack some fOfmiquasi-Newtonian dynamicks], are weekly coupled to few
dable problems like calculations on systems with coupling ofadditional degrees of freedom. In such cases, there are tech-
different time or length scales. The necessary condition tgjques to show that the dynamics of the relevant degrees of
such an achievement is the development of a consistent afgbedom is meaningful, as it has been explicitly shown for
coherent theory of statistical mechanics in the non+the NoseHoover dynamic$18]. Within this class of models
Hamiltonian case. Such a theory is proposed here considejtis sensible to calculate dynamical properties at equilibrium.
ing only systems under thermodynamic equilibrium. For this reason non-Hamiltonian correlation functions and
It must be mentioned that a formalism for the rigorousjinear response theory are also treated.
treatment of static averages has been already proposed in The paper is organized as follows. In Sec. Il a generalized
Refs.[11-13. Anyhow some subtle points regarding time- gigebraic bracket is introduced. This mathematical entity will
translation and time-reversal properties of non-Hamiltoniame ysed consistently to define and discuss dynamics in phase
dynamics remain to be clarified. As shown in the following space. In Sec. Il the non-Hamiltonian Liouville equation is
the results of Refd.11-13 that regards equilibrium systems gerived from the algebraic formalism, statistical averages are
can be reproduced and the above issues can be addressedgytussed and it is shown that when the compressibility is
introducing a suitable algebraic bracket to treat nonmonzero the dynamics is not time-reversal invariant. Dy-
Hamiltonian systems. The treatment of statistical mechaniciamical features and correlation functions are discussed in
by imposing an algebraic structure on phase space functionsec. |V, Linear response theory is treated in Sec. V. The last
by means of the Poisson bracket in the Hamiltonian case igection is devoted to comments and conclusions.
well established14-17 and the approach presented here
will be just a straightforward generalization. The use of a
generalized bracket to formulate non-Hamiltonian dynamics
has been sketched in Refl10]. Here, the formalism is
brought to its natural completion, thus, showing that it is a Let the symbolx=(q,p) define the phase space point
legitimate tool for the study of non-Hamiltonian systems.where generalized coordinates, by convention, come first and
generalized momenta after. Then by defining an antisymmet-
ric matrix B;;= — B;; , whose elements are general function
*Email address: asergi@chem.utoronto.ca of x, it is possible to introduce a non-Hamiltonian bracket
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{...,...} sothat, given any two functions of phase space Jacobi identity, either in the form of E¢B) or in the form of
andb, one has Egs. (6), basically express an integrability condition on the
dynamical algebra. In other words, whefi=0 the algebra
N pa ab defined by the bracket is invariant under time translations.
{a'b}:iEj Bl 5y (1) Instead non-Hamiltonian dynamics is defined by
i i
J#0. (7)

where N is the dimension of phase space. Given a Hamil-
tonianH, equations of motion can be postulated in the formEquation(?) says that the laws of motion, given in Eqg),

. change the algebraic relations defined by the bracket in Eq.

xe={xx, "}, k=1,... . N. @ (), ie., the algebra is not invariant under time translations.
The nonintegrability or lack of time-translation invariance in
phase space can be loosely thought of as a kind of curvature
but care must be taken because the treatment of phase space
0 1} as a Riemannian space is not clear from this point of view

Equations(2) with a constant antisymmetric matrix, written
in block form as

B= ©) [15]. A Riemannian treatment of phase space can, neverthe-
less, be very useful providing a proper treatment of the sta-
bility of dynamical systems. See, for example, the preprints

%h Ref.[19].

To simplify future reference an algebra for which K@)

Ids will be called non-Hamiltonian. To unveil the features
of the non-Hamiltonian algebra it is worth to consider again

the Jacobi relation between the phase space variablbs

andH, the Hamiltonian itself,

-1 0

are usually used to discuss the simplectic properties of ¢
nonical transformation$14]. Moreover, Eqs.(2) have the
same structure used in the so called noncanonical Hamih0
tonian dynamic$15,16. This structure is defined by a non-
constant antisymmetric matrig that, in the noncanonical
Hamiltonian case, can be derived from a well defiedn-
canonical transformation of coordinates in phase space.

Due to the antisymmetry d8, a time independerit will {a,{b,H}}+{H,{a,b}}+{b{H,al}=R. (8)
be a constant of motion under any phase space flow defined
by the bracket of Eq92): A direct calculation shows that
dH Non . oM da db dH | By, 9By 9B
EZ{H,H}Z%': (9—XiBij&—Xj=0. (4) R_i,j,k,nﬁ_xia_xka_xn ij o + By % + By o .

9
The property given in Eq4) needs only the antisymmetry of

B but it is otherwise very general. This has been exploited ifFrom Eq.(9) one gets

Ref.[10] to introduce a general nonsimplectic formalism for ) )

the definition of non-Hamiltonian flows in phase space. This {{a,b}, Hi={a,b}+{a,b}+ R, (10
formalism still keeps the definition of the equations of mo- ]

tion in Egs.(2) with the bracket given in Eq1) but intro-  that can also be written as

duces a nonsimplectic form for the mati# It is clear that, d

whenH is time independent, Eq4) remains valid for any —{a,bl={a,b}+{a,b}+R. (12)
nonsimplectic antisymmetric matri8. Specific examples of dt

a nonsimplectic antisymmetric matri8 have been already ) N .
presented in Ref[10] In the following it is assumed that Equation(11) shows that a non-Hamiltonian algebra is not

both H and the matrixi3 are not explictly time dependent. invar_iant under time tranglatic_)n. A direct consequence of Eq.
Although the bracket in Eqg2) points to a group theo- (11)_|s t_hat the non-Hamiltonian brack_et of two constant of

retical expression for non-Hamiltonian flows in phase spacénOtlon is no longer a CO”StaT“ of motion. .

it must be recognized that, in general, such a bracket does no The phase space flow defined by means of @y might

longer satisfy the Jacobi relation, the most important prop/1@ve & nonzero phase space compressibiif—5]

erty entering the definition of a Lie algebra. For a Lie alge- 2N

bra, or for Hamiltonian flows, Jacobi relation is =S 222 (12)

J={a,{b,c}}+1{b,{c,a}}+{c,{a,b}}=0. 5
) o ) o . The compressibility is useful to characterize the statistical
Noncanonical Hamiltonian dynamics satisfies Es).and it mechanical propertiekl1-13. In the following, according

can be show15,16 that this implies to the point of view given in Ref.15], the phase space will
ON be considered an Euclidean spdce., without a metricand
> | B ﬂJFB ﬂJFBA % -0 flat even using canonical generalized coordinates. In fact the
e R . ’ curvilinear abscissa along a general phase space path has no
clear physical meaning and the concept of metric is mean-
ij,k=1,... AN. (6) ingful only in Lagrangian configuration space. Phase space
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in canonical coordinates fat according to a group theoret- while the dynamical variables evolve in time. The equilib-
ical meaning(i.e., translations with respect to different coor- rium condition ensures that upon averaging over initial con-
dinate axis commujeand Euclidean axis can be defined. dition the time dependence under the integral disappears and
When a noncanonical transformation is applied translationthe equilibrium average in the left-hand sidles) of Eq. (16)
with respect to different coordinate axis could no longeris stationary.
commute and phase space can be consideneced From To check the statistical ensemble E6) can be rewritten
this perspective there is still no need to introduce a metricin the Schrdinger picture[17] according to which phase
but the geometrical measure of phase space can be intrgpace variables lika are fixed in time while the ensemble
duced. Considering a general transformatieax’ the inte-  distribution functionp evolves in time. To do this it is useful,
gration element changes according to using Eqgs(2) and the non-Hamiltonian bracket, to introduce
the Liouville operator
| 9|
dx= ———dx’=Jdx’, (13 . IH o
|‘9X | I‘C_Bij 07X1- ﬁxi_{""H}' (17)
where the Jacobiad describes all thggeometriceffects of
the transformation of coordinates. It is worth to remark tha
the general bracket in E@l) is already known to be cova-
riant with respect to canonicfl4] and noncanonicdll5,16|
transformation of coordinates. If the flow in time is consid-
ered then another Jacobidncan be defined

LReminding that in the present caeand ™ are not explic-
itly time dependent the propagator can be defined as

G(T)=exp(i LT). (18

The propagator allows to advance in time general phase
ax(t) space functionsa(x) representing microscopic dynamical
— iable:

7%(0)’ (14)  variable

=

arising from the relation between the coordinates at time 0 a(x(T)=G(Ta(x(0)). (19

and thesame kindof coordinates at timé In the following

Lo . . E ion(16) then can rewritten
section it will be shown, in agreement with the results of quation(16) then can be rewritten as

Refs.[11-13, how the dynamical properties describedhy R
affects thestatisticalweight of phase space. (a)= f dx®Np(x)G(T)a(x(0)}. (20)
I1l. STATISTICAL MECHANICS To get the Schidinger picture from Eq(20) the action of the

In molecular dynamics calculations what is typically ProPagatorG(T) must be transferred from to p which

achieved is the knowledge of a dynamical quantity, aay amounts in practice to the calculation of the adjd®i(T).
along the computed timé spanning the total interval. It is known that the adjoint can be calculated integrating by
Given this time averages are calculated as parts[20]. If there is a nonzero compressibility of phase
space, as given in EL2), then by expanding in seri€(T)
under the integral and integrating by parts, assuming the van-
ishing of the boundary terms, one finds that the expression of
_ _ o the adjointGT(T) acting onp involves the compressibility

The connections of th_e time average to the st_atlstlcal M e., the Liouville operatorZ is not Hermitian

chanics of Gibbs, treating ensemble averages, is usually as-

10T
(a)z?fo dta(t). (15

sumed by invoking the ergodic hypothesis and assuming that G (T)=exd —T( L+ x)] (22)
the limit T—oo is numerically achieved. Then E(L5) is, by '
hypothesis, equal to the ensemble average Equation(21) defines the adjoint of the Liouville operator
iR t_ -
<a>=J XN p(x)a(x(T). 16 (iL)'=—il—«. (22)

Equation (22) shows that, besides the lack of time-
To write Eq. (16) a distribution functionp not depending translational invariance, wher+ 0 the flow in phase space
explicitly on time has been considered, assuming in practicg not even time reversible. By defining a time evolving dis-
an equilibrium ensemble. The eventual presence of the Jac@ipution function
bian of Eq.(13) can be reabsorbed in the definition @(fx)

and its presence will be no longer explicitly considered. Con- p(X(T))=GT(T)p(x(0)). (23
sistency requires that both and B must be time indepen-
dent. Equation(16) is finally rewritten as

Equation(16) describes what is usually called the Heisen-
berg picture of statistical mechaniik7] according to which
p is stationary, acting as a weight over initial conditions,

(@)= [ MBI TpecoIaco). (29
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gt;ﬁaci;sny to recognize in Eq23) the generalized Liouville log J,(x(T))—log J,(x(0))=w(x(T))—w(x(0)). (30)
It is worth to remark that Eq.30) has been derived under
p - ilp— (25) the assumption that both andB are time independent. This
at p—Kp-: condition implies that the compressibility in EQ.2) and its
primitive functionw do not depend explictly on time, as it
Equation (23) has been derived starting from the non- must be in an equilibrium ensemble.
Hamiltonian algebraic bracket in phase space given in Eq. By definition J,(0)=1 and, thus, it follows thatv(0)
(1). Equation(23) defines a non-Hamiltonian flows for the =0. Thus setting the time origiT,=0 in Eq. (28) the
distribution functionp if the bracket in Eq.(1) does not simple form of the distribution function given in Refd1—
satisfy the Jacobi relation, Eq5) or Eq. (6). A non-  13]is obtained
Hamiltonian Liouville equation, in a somewhat different
form than that of Eq.(25), has been suggested in Refs. p(X(T))=p(x(0))exd —w(x(T))]. (31
[11,17 and extensively used in R¢fl3]. Yet the form of Eq.
(25) is preferable both because it is known since 1838 fromrhe distribution in Eq(31) is consistently derived from the
the work of Liouville, see Ref{21-23 for general discus- integration of the Liouville equation, Ed25), by setting
sions and comments also valid for the nonequilibrium steadyfo=0, i.e., fixing once and for all the time origin and, thus,
state casénot treated in the present workand because Eq. breaking time-translational invariance. As a matter of fact it
(25) has been easily derived in the present work starting fronhas already been shown in E41) that the absence of time
the non-Hamiltonian bracket and without entering too diffi- translational invariance is a subtle consequence of the failure
cult and subtle discussion on the, very peculiar, geometry oéf the Jacoby relation in the non-Hamiltonian case.
phase space. By putting the distribution function in the form given in
A nonzero compressibility has important effects on theEq.(31) back into the Liouville equation, E¢25), and doing
statistical mechanics. In fact it is clear thatif=0 then the simple algebra one can put the Liouville equation into the
Liouville operator is not Hermitian. Moreover, the presenceequivalent form suggested in Refsl1-13, but the non-
of a nonzerox modifies the statistical measure of phaseHermitian property of the Liouville operator is then masked.
space determining, in general, the ensemble in which aver- From the condition of derivation of E¢31) it is clear that
ages are calculated. In the following, non-Hamiltonian statisp is not explicitly time dependent, i.edp/dt=0, and the

tical averages are discussed. Liouville equation can be written as
The generalized Liouville Eq25) ensures the invariance .
in time of the normalization —[iLp+k]p(x)=0, (32

d , . I )
aj dxp(x)=0. (260) 2;;2;: Eq.(31) defines consistently an equilibrium en
To characterize the equilibrium ensemble it is important
From Eq.(25) is also easy to establish the total time varia-to fix the form of the distribution function at tinie=0. This
tion of p, can be achieved by reminding that the time independent
Hamiltonian is conserved by the non-Hamiltonian bracket

p in Egs.(2). Yet following the analysis of Ref.13] it is also

Fr =~ &k(X)p(x). (27 {0 be considered that if, = a,(x), with r=1, ... n, are

microscopic constant of motion, i.e{a,H}=0, then any

The distribution function in phase space can be derived byunction of the formF(H,ay, . . . ,a,) will be a solution of

integrating with respect to time E7). So doing between the Liouville equatio{17]. However, the Hamiltoniaf{ is
Ty to T one finds qualitatively different from all the other microscopic con-

. stant of motion. Simple algebraic definitions,@s=0, does
_ __ not allow to establish a thermodynamimacroscopig en-
109 p(x(T)~log p(x(To)) Lodtk(x(t))' 28 semble. Instead the hypothesis of statistical mechanics is that
only special microscopic functions survives the process of
As shown in Refs[11,17] the compressibility is related to averaging over statistical fluctuations. These functions, like
the Jacobian); associated to the phase space flow by arf{, and for some systems the total linear momenfiand
equation similar to Eq(28) total angular momenturh, are connected to the symmetries
of the system under study. As suggested in RE3] other
constant of motion could turn out to be important to define a
macroscopic ensemble. Yet there is no general method to
discover such quantities and one must check in each single
Equation(29) ensures that the compressibility is exactly in- case. Following the work of Ref13], if Egs. (2) are ergodic

d
at log Ji(X) = k(X). (29

tegrable with respect to time. Let indicate the primitive andc;, i=1, ... k are statisticallyelevantconserved quan-
function of k. When Eq.(29) is integrated from 0 tdr it  tity besideH, the form to be expected from solutions of Eq.
gives (27) is
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k

o n—-1
p<x>=5(H—E>iljl s(ci—cpexd —w(x)]. (33 é(T){cl<0>,c2<0>}={c1<T>,cz<T>}+n;T”

R.

(37)
As remarked in Ref[13], Eq.(33) must be used to check the o )
statistical ensemble provided by the specific non- As for the compressibilityk one can show it affects the
Hamiltonian phase space flow employed. As already showRroperties of correlation functions. In fact, when 0 the
in Refs.[11-13 the Jacobiar, associated to flow in time Liouville operator is not a Hermitian operator but its adjoint
enters explicitly, througlw, into the definition of the distri- is given byi £'= —iZ— «. This simple equation implies fea-
bution function and this result has been rederived in thidures of the correlation functions that are different from the
section using the generalized Liouville equation in the formHamiltonian case. In the case of a static average, we have
of Eq. (25).

dtﬂ—l

(ab)=—(ab)—(«xaby), (38

IV. DYNAMICAL PROPERTIES .
while if the dynamic is Hamiltonian one haab)=0. In an

General non-Hamiltonian equations of motion drasticallyanalogous manner, one can derive that the stationary prop-
change the dynamical properties of a system. Yet there is @rty of the correlation function is no longer valid
class of dynamical systems, which is the one actually ex-
ploited in molecular dynamics simulations, where many rel-
evant degrees of freedom are weakly coupled to few addi-
tional coordinates. These systems are usually referred as
extended systemfdl]. NoseHoover thermostaf2—4] and It is worth to remark that, despite E¢B9), for some ex-
NoseHoover chaing5] are well known examples. For this tended systems the stationarity of the correlation function of
class of systems the equations of motion for the relevantelevant dynamical properties might not be ruined. To show
coordinates are in quasi-Newtonian form and in accordancehis one can take as example a system coupled to a-Nose
with the analysis of Ref.3] their dynamics can have a real- Hoover [2—4] thermostat(yet the discussion will be also
istic meaning. In particular the validity, in the thermody- valid for coupling to NoseHoover chaing5]). Letm; ,q; ,p;
namic limit, of equilibrium correlation functions has beeni=1,... n be masses, coordinates and momenta of a
explicitly shown for the case of the Nostoover thermostat  N-particle systems®({q}) will be the interaction potential.
in Ref. [18]. Given the existence of this class of systems,, p, are the thermostat variables am, the associated
which is in practice very important, it is also important to inertial parameters. The conserved Natamiltonian is
formulate the features of non-Hamiltonian correlation func-

dis<b(t+s)a(s)>=—<Kb(t+s)a(s)>. (39

tions and linear response theory. Thus, in this and in the "p? pf}
following section dynamical properties are discussed. HN:Zl om T m. T U +3nkgTy="r+3nkgT7,
It is worth to remark that the absence of time-translation - K (40)

invariance, shown by Eq11), has subtle but important ef-

fects. As a matter of fact applying the non-HamiltonianyhereT is the external temperature akg Boltzmann con-
propagator given in E(18) to {a,b} one gets stant. The distribution function in the extended phase space

R takes the form

G(M){a(0),b(0)}={a(T),b(T)}+O(T). (34

pn=6(Hy—E)exp(— BHr), (41)

Equation (34) is rather boring in some sense because it - .
means that time-translation invariance of the bracket is vali(flnd Itis an even 'fun.ct|on of the momgrpiaandp”. Instead
only to orderO(T) in time. There is no simple way to evalu- the compressibility is ar_1d odd fL_mct|on of the momentum
ate theO(T) terms in the right-hand sidehs) of Eq. (34). Py, k==3Np,/m,. So |faar)db n Eq.. (39) are functions
To show this the particular case whepandc, are constants  ©N!Y of ({d},{p}) then the rhs in Eq(39) is null on average.

of motion will be considered as an example
V. LINEAR RESPONSE THEORY

{ci H}=iLci=0, i=1.2. (35 To derive the formalism of linear response theory one as
usual considers that a system with Hamiltonig is per-
Equation (35 can also be expressed agT)=c;(0), i  turbed at timet=0 by an external time dependent foreét)
=1,2. It is easy to find that coupling to the dynamical variable The perturbation can
be represented by the interaction Hamilton?dp
n-1
(i,/“:)“{cl,cz}:FR, n=1,...», (36) H,=—aF(t). (42)

The total Hamiltonian governing the motion will be
so that propagating forward in time the bracket of the two
constants of motion one obtains H(t)="Ho+H, (1), (43
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and it will no longer be a constant of motion, being explicitly where the ternb(t) (41 /9x;) (dal dx;) po has been canceled
time dependent. Yet using the algebraic non-Hamiltoniarby a term of opposite sign appearing when going, by inte-

bracket one could introduce the Liouville operator gration by parts, fronb(t){pg,a} to po{b(t),a}. Equation
(52) shows a form of the response function equal to the one
N dHy Jda d o N i i i i
ir=B. _9 2 _FB koL, (44 of the Hamiltonian case. Yet the simple form of E§2) is

quite rigid. The derivation has already shown that additional
terms, containing the derivatives &, appear when doing
The average ob(t) is related toF(t) by integration by parts. As a results other forms of the response
functions, usually derived within Hamiltonian dynamics,

|t may not be valid within a non-Hamiltonian algebra and must
(b(t))= fods x(t=s)F(s), (45 pe checked case by case.

1 x; ax;

x(t) is the so called response function and it can be evalu-
ated starting from VI. CONCLUSIONS

In this paper it has been shown that the equilibrium sta-
(b(t))zf dx b(x)p(x,t). (46)  tistical mechanics of non-Hamiltonian systems can be con-
sistently and thoroughly treated by means of a generalized
bracket defining flows in phase space. The bracket does not
r§atisfy the Jacoby relation and, thus, it defines an algebra that
is not invariant under time translations. Phase space com-
pressibility and the standard non-Hamiltonian Liouville
(47) equation have been easily derived from the bracket form of
the equations of motion. The compressibility breaks the
time-reversal invariance of the dynamics and modifies the

Assuming that the external field is small the distribution
function can be written as an unperturbed plus a small pe
turbed part

p=pot op.

When £ is not Hermitian, the equation of motion for the

distribution function is given by Eq25) and under the effect statistical vyelght of phase space. . . .
of a time dependent perturbation the compressibility is ex- The stationary property qf_ genera] correlation functions is
plicitly time dependent broken _by the compressibility. Yet in some r_elevant cases
correlations of a subset of the coordinates might not be af-
B, M, B, da fected by this problem. A specific form of the response func-
k= ———F({t)— —=kot+ x(1). (48)  tion in the linear regime has also been derived.
X 9X; IXi 0% The statistical mechanics of non-Hamiltonian systems at
equilibrium can be studied by different mathematical lan-

The Liouville equation to first order in the perturbation is guages. Some authors have used a metric in phase space and

then a peculiar form of the Liouville equation. In their approach
95p the equations of motion for the dynamical variables must be
——=—0Lydp—iLipo— Kkodp— Ki(t)po. (49) provided by some other means. In this paper the generalized
at Liouville equation, in a form known since Liouville’s origi-

nal work, and the phase space compressibility have been
used. It has been shown that when the physics, symmetries
and conserved quantities, are carefully considered the results
5p(t):f dt,F(t)exd — (t—ty) (i Lo+ ko) ] obtained using the two languages are equivalent. The main
difference is that in the approach presented in this paper all
the statistical ingredients naturally arise from the formalism

The solution is given by

aB;; da A ) .

x| {po.a}+—— ——po]. (50  of the non-Hamiltonian equations of motion. For such a rea-
X IXj son the algebraic bracket formalism promises to be a more

Th ¢ L flexible tool to invent various types of dynamics with the

e response function is statistical mechanics under control.

Further analysis is required to investigate the conditions

x(t)= J dx b(x)exd —t(i Lo+ xo)] of applicability of generql non-Hamiltonian dynam_ics_ to cal-

culate transport coefficients or to treat nonequilibrium en-

y +(9Bij Ja ! sembles.
{po.a} % 0] Po|- (51)
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