
PHYSICAL REVIEW E 67, 021101 ~2003!
Non-Hamiltonian equilibrium statistical mechanics
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In this paper the equilibrium statistical mechanics of non-Hamiltonian systems is formulated introducing an
algebraic bracket. The latter defines non-Hamiltonian equations of motion in classical phase space according to
the approach introduced in Phys. Rev. E64, 056125~2001!. The Jacobi identity is no longer satisfied by the
generalized bracket and as a result the algebra of phase space functions is not time translation invariant. The
presence of a nonzero phase space compressibility spoils also the time-reversal invariance of the dynamics.
The general Liouville equation is rederived and the properties of statistical averages are accounted for. The
features of time correlation functions and linear response theory are also discussed.

DOI: 10.1103/PhysRevE.67.021101 PACS number~s!: 05.20.Jj
g
o
lc

u
ed
o

-
ed
t

in
ifi
ne
m
o

a
n

id

us
d

e-
ia
g
s
e
n

ni
io
e
re

f a
ic

a
s

zed
on-
e-
e

the
the

cal
Ref.
its
ility
mi-
dy
nd
g in
els
o a

ech-
s of
for

m.
nd

zed
ill

hase
is
are
is

y-
d in
last

nt
and
et-
n
et
I. INTRODUCTION

Non-Hamiltonian dynamics has been introduced long a
in molecular dynamics simulations to achieve, by means
additional thermostat and/or barostats coordinates, the ca
lation of statistical averages in various ensemble@1–6#.
Nowadays it is a key element in the design of modern sim
lation methods and it is worth to mention that also mix
quantum-classical system can be studied by a n
Hamiltonian approach@7–9#.

In a previous paper@10#, a general formalism for express
ing non-Hamiltonian equations of motion with a conserv
energy has been proposed@10# and it has been shown tha
already known non-Hamiltonian equations of motion, us
thermostats and barostats, can be formulated in a un
way. It has also been suggested that one could invent
non-Hamiltonian phase space flows to attack some for
dable problems like calculations on systems with coupling
different time or length scales. The necessary condition
such an achievement is the development of a consistent
coherent theory of statistical mechanics in the no
Hamiltonian case. Such a theory is proposed here cons
ing only systems under thermodynamic equilibrium.

It must be mentioned that a formalism for the rigoro
treatment of static averages has been already propose
Refs. @11–13#. Anyhow some subtle points regarding tim
translation and time-reversal properties of non-Hamilton
dynamics remain to be clarified. As shown in the followin
the results of Refs.@11–13# that regards equilibrium system
can be reproduced and the above issues can be address
introducing a suitable algebraic bracket to treat no
Hamiltonian systems. The treatment of statistical mecha
by imposing an algebraic structure on phase space funct
by means of the Poisson bracket in the Hamiltonian cas
well established@14–17# and the approach presented he
will be just a straightforward generalization. The use o
generalized bracket to formulate non-Hamiltonian dynam
has been sketched in Ref.@10#. Here, the formalism is
brought to its natural completion, thus, showing that it is
legitimate tool for the study of non-Hamiltonian system

*Email address: asergi@chem.utoronto.ca
1063-651X/2003/67~2!/021101~7!/$20.00 67 0211
o
f
u-

-

n-

g
ed
w
i-
f

to
nd
-
er-

in

n

d by
-
cs
ns
is

s

.

The subtler feature is due to the fact that the generali
bracket does not satisfy the Jacoby relation so that the n
Hamiltonian algebra of phase space functions lacks tim
translation invariance. It is worth to remark that, within th
different context of mixed quantum-classical systems,
lack of time-translation invariance, as a consequence of
failure of the Jacobi identity, and its effects on the statisti
mechanics, have been already addressed in the work of
@9#. The bracket approach to equations of motion perm
also to show that the presence of a nonzero compressib
of phase space spoils the time-reversal invariance of dyna
cal flows. The use of non-Hamiltonian dynamics to stu
dynamical quantities at equilibrium is a delicate matter a
cannot be assessed on general ground. Anyway loosin
generality one can focus on a class of dynamical mod
where many relevant degrees of freedom, subjected t
quasi-Newtonian dynamics@3#, are weekly coupled to few
additional degrees of freedom. In such cases, there are t
niques to show that the dynamics of the relevant degree
freedom is meaningful, as it has been explicitly shown
the Nose´-Hoover dynamics@18#. Within this class of models
it is sensible to calculate dynamical properties at equilibriu
For this reason non-Hamiltonian correlation functions a
linear response theory are also treated.

The paper is organized as follows. In Sec. II a generali
algebraic bracket is introduced. This mathematical entity w
be used consistently to define and discuss dynamics in p
space. In Sec. III the non-Hamiltonian Liouville equation
derived from the algebraic formalism, statistical averages
discussed and it is shown that when the compressibility
nonzero the dynamics is not time-reversal invariant. D
namical features and correlation functions are discusse
Sec. IV. Linear response theory is treated in Sec. V. The
section is devoted to comments and conclusions.

II. NON-HAMILTONIAN DYNAMICS

Let the symbolx5(q,p) define the phase space poi
where generalized coordinates, by convention, come first
generalized momenta after. Then by defining an antisymm
ric matrix Bi j 52Bj i , whose elements are general functio
of x, it is possible to introduce a non-Hamiltonian brack
©2003 The American Physical Society01-1
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$ . . . , . . .% so that, given any two functions of phase spaca
andb, one has

$a,b%5(
i j

2N
]a

]xi
Bi j

]b

]xj
, ~1!

where 2N is the dimension of phase space. Given a Ham
tonianH, equations of motion can be postulated in the fo

ẋk5$xk ,H%, k51, . . . ,2N. ~2!

Equations~2! with a constant antisymmetric matrix, writte
in block form as

B5F 0 1

21 0G , ~3!

are usually used to discuss the simplectic properties of
nonical transformations@14#. Moreover, Eqs.~2! have the
same structure used in the so called noncanonical Ha
tonian dynamics@15,16#. This structure is defined by a non
constant antisymmetric matrixB that, in the noncanonica
Hamiltonian case, can be derived from a well defined~non-
canonical! transformation of coordinates in phase space.

Due to the antisymmetry ofB, a time independentH will
be a constant of motion under any phase space flow defi
by the bracket of Eqs.~2!:

dH
dt

5$H,H%5(
i j

2N
]H
]xi

Bi j

]H
]xj

50. ~4!

The property given in Eq.~4! needs only the antisymmetry o
B but it is otherwise very general. This has been exploited
Ref. @10# to introduce a general nonsimplectic formalism f
the definition of non-Hamiltonian flows in phase space. T
formalism still keeps the definition of the equations of m
tion in Eqs.~2! with the bracket given in Eq.~1! but intro-
duces a nonsimplectic form for the matrixB. It is clear that,
whenH is time independent, Eq.~4! remains valid for any
nonsimplectic antisymmetric matrixB. Specific examples o
a nonsimplectic antisymmetric matrixB have been already
presented in Ref.@10# In the following it is assumed tha
both H and the matrixB are not explictly time dependent.

Although the bracket in Eqs.~2! points to a group theo
retical expression for non-Hamiltonian flows in phase sp
it must be recognized that, in general, such a bracket doe
longer satisfy the Jacobi relation, the most important pr
erty entering the definition of a Lie algebra. For a Lie alg
bra, or for Hamiltonian flows, Jacobi relation is

J5$a,$b,c%%1$b,$c,a%%1$c,$a,b%%50. ~5!

Noncanonical Hamiltonian dynamics satisfies Eq.~5! and it
can be shown@15,16# that this implies

(
m51

2N S Bim

]Bjk

]xm
1Bkm

]Bi j

]xm
1Bjm

]Bki

]xm
D50,

i , j ,k51, . . . ,2N. ~6!
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Jacobi identity, either in the form of Eq.~5! or in the form of
Eqs. ~6!, basically express an integrability condition on th
dynamical algebra. In other words, whenJ50 the algebra
defined by the bracket is invariant under time translatio
Instead non-Hamiltonian dynamics is defined by

JÞ0. ~7!

Equation~7! says that the laws of motion, given in Eqs.~2!,
change the algebraic relations defined by the bracket in
~1!, i.e., the algebra is not invariant under time translatio
The nonintegrability or lack of time-translation invariance
phase space can be loosely thought of as a kind of curva
but care must be taken because the treatment of phase s
as a Riemannian space is not clear from this point of vi
@15#. A Riemannian treatment of phase space can, never
less, be very useful providing a proper treatment of the s
bility of dynamical systems. See, for example, the prepri
in Ref. @19#.

To simplify future reference an algebra for which Eq.~7!
holds will be called non-Hamiltonian. To unveil the featur
of the non-Hamiltonian algebra it is worth to consider aga
the Jacobi relation between the phase space variablesa, b,
andH, the Hamiltonian itself,

$a,$b,H%%1$H,$a,b%%1$b,$H,a%%5R. ~8!

A direct calculation shows that

R5 (
i , j ,k,n

]a

]xi

]b

]xk

]H
]xn

S Bi j

]Bkn

]xj
1Bn j

]Bik

]xj
1Bk j

]Bni

]xj
D .

~9!

From Eq.~9! one gets

$$a,b%,H%5$ȧ,b%1$a,ḃ%1R, ~10!

that can also be written as

d

dt
$a,b%5$ȧ,b%1$a,ḃ%1R. ~11!

Equation~11! shows that a non-Hamiltonian algebra is n
invariant under time translation. A direct consequence of
~11! is that the non-Hamiltonian bracket of two constant
motion is no longer a constant of motion.

The phase space flow defined by means of Eq.~1! might
have a nonzero phase space compressibilityk @2–5#

k5(
i j

2N
]Bi j

]xi

]H
]xj

. ~12!

The compressibility is useful to characterize the statisti
mechanical properties@11–13#. In the following, according
to the point of view given in Ref.@15#, the phase space wil
be considered an Euclidean space~i.e., without a metric! and
flat even using canonical generalized coordinates. In fact
curvilinear abscissa along a general phase space path h
clear physical meaning and the concept of metric is me
ingful only in Lagrangian configuration space. Phase sp
1-2
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in canonical coordinates isflat according to a group theore
ical meaning~i.e., translations with respect to different coo
dinate axis commute! and Euclidean axis can be define
When a noncanonical transformation is applied translati
with respect to different coordinate axis could no long
commute and phase space can be consideredcurved. From
this perspective there is still no need to introduce a met
but the geometrical measure of phase space can be i
duced. Considering a general transformationx→x8 the inte-
gration element changes according to

dx5
u]xu

u]x8u
dx85Jdx8, ~13!

where the JacobianJ describes all thegeometriceffects of
the transformation of coordinates. It is worth to remark th
the general bracket in Eq.~1! is already known to be cova
riant with respect to canonical@14# and noncanonical@15,16#
transformation of coordinates. If the flow in time is consi
ered then another JacobianJt can be defined

Jt5U ]x~ t !

]x~0!
U, ~14!

arising from the relation between the coordinates at tim
and thesame kindof coordinates at timet. In the following
section it will be shown, in agreement with the results
Refs.@11–13#, how the dynamical properties described byJt
affects thestatisticalweight of phase space.

III. STATISTICAL MECHANICS

In molecular dynamics calculations what is typica
achieved is the knowledge of a dynamical quantity, saya,
along the computed timet spanning the total intervalT.
Given this time averages are calculated as

^a&5
1

TE0

T

dt a~ t !. ~15!

The connections of the time average to the statistical
chanics of Gibbs, treating ensemble averages, is usually
sumed by invoking the ergodic hypothesis and assuming
the limit T→` is numerically achieved. Then Eq.~15! is, by
hypothesis, equal to the ensemble average

^a&5E dx2Nr~x!a„x~T!…. ~16!

To write Eq. ~16! a distribution functionr not depending
explicitly on time has been considered, assuming in prac
an equilibrium ensemble. The eventual presence of the J
bian of Eq.~13! can be reabsorbed in the definition ofr(x)
and its presence will be no longer explicitly considered. C
sistency requires that bothH andB must be time indepen
dent.

Equation~16! describes what is usually called the Heise
berg picture of statistical mechanics@17# according to which
r is stationary, acting as a weight over initial condition
02110
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while the dynamical variables evolve in time. The equili
rium condition ensures that upon averaging over initial co
dition the time dependence under the integral disappears
the equilibrium average in the left-hand side~lhs! of Eq. ~16!
is stationary.

To check the statistical ensemble Eq.~16! can be rewritten
in the Schro¨dinger picture@17# according to which phase
space variables likea are fixed in time while the ensembl
distribution functionr evolves in time. To do this it is useful
using Eqs.~2! and the non-Hamiltonian bracket, to introduc
the Liouville operator

i L̂5Bi j

]H
]xj

]

]xi
5$ . . . ,H%. ~17!

Reminding that in the present caseB andH are not explic-
itly time dependent the propagator can be defined as

Ĝ~T!5exp~ i L̂T!. ~18!

The propagator allows to advance in time general ph
space functionsa(x) representing microscopic dynamic
variable:

a„x~T!…5Ĝ~T!a„x~0!…. ~19!

Equation~16! then can be rewritten as

^a&5E dx2Nr~x!Ĝ~T!a„x~0!%. ~20!

To get the Schro¨dinger picture from Eq.~20! the action of the
propagatorĜ(T) must be transferred froma to r which
amounts in practice to the calculation of the adjointĜ†(T).
It is known that the adjoint can be calculated integrating
parts @20#. If there is a nonzero compressibilityk of phase
space, as given in Eq.~12!, then by expanding in seriesĜ(T)
under the integral and integrating by parts, assuming the v
ishing of the boundary terms, one finds that the expressio
the adjointĜ†(T) acting onr involves the compressibilityk
~i.e., the Liouville operatori L̂ is not Hermitian!

Ĝ†~T!5exp@2T~ i L̂1k!#. ~21!

Equation~21! defines the adjoint of the Liouville operator

~ i L̂!†52 i L̂2k. ~22!

Equation ~22! shows that, besides the lack of time
translational invariance, whenkÞ0 the flow in phase spac
is not even time reversible. By defining a time evolving d
tribution function

r„x~T!…5Ĝ†~T!r„x~0!…. ~23!

Equation~16! is finally rewritten as

^a&5E dx2N@Ĝ†~T!r„x~0!…#a„x~0!…. ~24!
1-3
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It is easy to recognize in Eq.~23! the generalized Liouville
equation

]r

]t
52 i L̂r2kr. ~25!

Equation ~23! has been derived starting from the no
Hamiltonian algebraic bracket in phase space given in
~1!. Equation~23! defines a non-Hamiltonian flows for th
distribution functionr if the bracket in Eq.~1! does not
satisfy the Jacobi relation, Eq.~5! or Eq. ~6!. A non-
Hamiltonian Liouville equation, in a somewhat differe
form than that of Eq.~25!, has been suggested in Re
@11,12# and extensively used in Ref.@13#. Yet the form of Eq.
~25! is preferable both because it is known since 1838 fr
the work of Liouville, see Refs.@21–23# for general discus-
sions and comments also valid for the nonequilibrium ste
state case~not treated in the present work!, and because Eq
~25! has been easily derived in the present work starting fr
the non-Hamiltonian bracket and without entering too di
cult and subtle discussion on the, very peculiar, geometr
phase space.

A nonzero compressibility has important effects on t
statistical mechanics. In fact it is clear that ifkÞ0 then the
Liouville operator is not Hermitian. Moreover, the presen
of a nonzerok modifies the statistical measure of pha
space determining, in general, the ensemble in which a
ages are calculated. In the following, non-Hamiltonian sta
tical averages are discussed.

The generalized Liouville Eq.~25! ensures the invarianc
in time of the normalization

d

dtE dxr~x!50. ~26!

From Eq.~25! is also easy to establish the total time var
tion of r,

dr

dt
~x!52k~x!r~x!. ~27!

The distribution function in phase space can be derived
integrating with respect to time Eq.~27!. So doing between
T0 to T one finds

logr„x~T!…2 logr„x~T0!…52E
T0

T

dtk„x~ t !…. ~28!

As shown in Refs.@11,12# the compressibility is related to
the JacobianJt associated to the phase space flow by
equation similar to Eq.~28!

d

dt
logJt~x!5k~x!. ~29!

Equation~29! ensures that the compressibility is exactly i
tegrable with respect to time. Letw indicate the primitive
function of k. When Eq.~29! is integrated from 0 toT it
gives
02110
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logJt„x~T!…2 logJt„x~0!…5w„x~T!…2w„x~0!…. ~30!

It is worth to remark that Eq.~30! has been derived unde
the assumption that bothH andB are time independent. Thi
condition implies that the compressibility in Eq.~12! and its
primitive function w do not depend explictly on time, as
must be in an equilibrium ensemble.

By definition Jt(0)51 and, thus, it follows thatw(0)
50. Thus setting the time originT050 in Eq. ~28! the
simple form of the distribution function given in Refs.@11–
13# is obtained

r„x~T!…5r„x~0!…exp@2w„x~T!…#. ~31!

The distribution in Eq.~31! is consistently derived from the
integration of the Liouville equation, Eq.~25!, by setting
T050, i.e., fixing once and for all the time origin and, thu
breaking time-translational invariance. As a matter of fac
has already been shown in Eq.~11! that the absence of time
translational invariance is a subtle consequence of the fai
of the Jacoby relation in the non-Hamiltonian case.

By putting the distribution function in the form given i
Eq. ~31! back into the Liouville equation, Eq.~25!, and doing
simple algebra one can put the Liouville equation into t
equivalent form suggested in Refs.@11–13#, but the non-
Hermitian property of the Liouville operator is then maske

From the condition of derivation of Eq.~31! it is clear that
r is not explicitly time dependent, i.e.,]r/]t50, and the
Liouville equation can be written as

2@ i L̂r1k#r~x!50, ~32!

so that Eq. ~31! defines consistently an equilibrium en
semble.

To characterize the equilibrium ensemble it is importa
to fix the form of the distribution function at timeT50. This
can be achieved by reminding that the time independ
HamiltonianH is conserved by the non-Hamiltonian brack
in Eqs.~2!. Yet following the analysis of Ref.@13# it is also
to be considered that ifa r5a r(x), with r 51, . . . ,n, are
microscopic constant of motion, i.e.,$a,H%50, then any
function of the formF(H,a1 , . . . ,an) will be a solution of
the Liouville equation@17#. However, the HamiltonianH is
qualitatively different from all the other microscopic con
stant of motion. Simple algebraic definitions, asȧ r50, does
not allow to establish a thermodynamic~macroscopic! en-
semble. Instead the hypothesis of statistical mechanics is
only special microscopic functions survives the process
averaging over statistical fluctuations. These functions,
H, and for some systems the total linear momentumP and
total angular momentumL , are connected to the symmetrie
of the system under study. As suggested in Ref.@13# other
constant of motion could turn out to be important to define
macroscopic ensemble. Yet there is no general metho
discover such quantities and one must check in each si
case. Following the work of Ref.@13#, if Eqs. ~2! are ergodic
andci , i 51, . . . ,k are statisticallyrelevantconserved quan-
tity besideH, the form to be expected from solutions of E
~27! is
1-4
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r~x!5d~H2E!)
i 51

k

d~ci2 c̃i !exp@2w~x!#. ~33!

As remarked in Ref.@13#, Eq. ~33! must be used to check th
statistical ensemble provided by the specific no
Hamiltonian phase space flow employed. As already sho
in Refs. @11–13# the JacobianJt associated to flow in time
enters explicitly, throughw, into the definition of the distri-
bution function and this result has been rederived in t
section using the generalized Liouville equation in the fo
of Eq. ~25!.

IV. DYNAMICAL PROPERTIES

General non-Hamiltonian equations of motion drastica
change the dynamical properties of a system. Yet there
class of dynamical systems, which is the one actually
ploited in molecular dynamics simulations, where many r
evant degrees of freedom are weakly coupled to few a
tional coordinates. These systems are usually referred
extended systems@1#. Nosé-Hoover thermostat@2–4# and
Nosé-Hoover chains@5# are well known examples. For thi
class of systems the equations of motion for the relev
coordinates are in quasi-Newtonian form and in accorda
with the analysis of Ref.@3# their dynamics can have a rea
istic meaning. In particular the validity, in the thermod
namic limit, of equilibrium correlation functions has bee
explicitly shown for the case of the Nose´-Hoover thermostat
in Ref. @18#. Given the existence of this class of system
which is in practice very important, it is also important
formulate the features of non-Hamiltonian correlation fun
tions and linear response theory. Thus, in this and in
following section dynamical properties are discussed.

It is worth to remark that the absence of time-translat
invariance, shown by Eq.~11!, has subtle but important ef
fects. As a matter of fact applying the non-Hamiltoni
propagator given in Eq.~18! to $a,b% one gets

Ĝ~T!$a~0!,b~0!%5$a~T!,b~T!%1O~T!. ~34!

Equation ~34! is rather boring in some sense because
means that time-translation invariance of the bracket is v
only to orderO(T) in time. There is no simple way to evalu
ate theO(T) terms in the right-hand side~rhs! of Eq. ~34!.
To show this the particular case whenc1 andc2 are constants
of motion will be considered as an example

$ci ,H%5 i L̂ci50, i 51,2. ~35!

Equation ~35! can also be expressed asci(T)5ci(0), i
51,2. It is easy to find that

~ i L̂!n$c1 ,c2%5
dn21

dtn21
R, n51, . . . ,̀ , ~36!

so that propagating forward in time the bracket of the t
constants of motion one obtains
02110
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Ĝ~T!$c1~0!,c2~0!%5$c1~T!,c2~T!%1 (
n51

`

Tn
dn21

dtn21
R.

~37!

As for the compressibilityk one can show it affects the
properties of correlation functions. In fact, whenkÞ0 the
Liouville operator is not a Hermitian operator but its adjoi
is given byi L̂†52 i L̂2k. This simple equation implies fea
tures of the correlation functions that are different from t
Hamiltonian case. In the case of a static average, we ha

^aḃ&52^ȧb&2^kab&, ~38!

while if the dynamic is Hamiltonian one has^aḃ&50. In an
analogous manner, one can derive that the stationary p
erty of the correlation function is no longer valid

d

ds
^b~ t1s!a~s!&52^kb~ t1s!a~s!&. ~39!

It is worth to remark that, despite Eq.~39!, for some ex-
tended systems the stationarity of the correlation function
relevant dynamical properties might not be ruined. To sh
this one can take as example a system coupled to a N´-
Hoover @2–4# thermostat~yet the discussion will be also
valid for coupling to Nose´-Hoover chains@5#!. Let mi ,qi ,pi ,
i 51, . . . ,n be masses, coordinates and momenta o
N-particle systems.F($q%) will be the interaction potential.
h, ph are the thermostat variables andmh the associated
inertial parameters. The conserved Nose´ Hamiltonian is

HN5(
i 51

n pi
2

2m
1

ph
2

mh
1F~$q%!13nkBTh5HT13nkBTh,

~40!

whereT is the external temperature andkB Boltzmann con-
stant. The distribution function in the extended phase sp
takes the form

rN5d~HN2E!exp~2bHT!, ~41!

and it is an even function of the momentapi andph . Instead
the compressibility is and odd function of the momentu
ph , k523Nph /mh . So if a andb in Eq. ~39! are functions
only of ($q%,$p%) then the rhs in Eq.~39! is null on average.

V. LINEAR RESPONSE THEORY

To derive the formalism of linear response theory one
usual considers that a system with HamiltonianH0 is per-
turbed at timet50 by an external time dependent forceF(t)
coupling to the dynamical variablea. The perturbation can
be represented by the interaction HamiltonianHI

HI52aF~ t !. ~42!

The total Hamiltonian governing the motion will be

H~ t !5H01HI~ t !, ~43!
1-5
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and it will no longer be a constant of motion, being explicit
time dependent. Yet using the algebraic non-Hamilton
bracket one could introduce the Liouville operator

i L̂5Bi j

]H0

]xj

]

]xi
2F~ t !Bi j

]a

]xj

]

]xi
5 i L̂01 i L̂a . ~44!

The average ofb(t) is related toF(t) by

^b~ t !&5E
0

t

ds x~ t2s!F~s!, ~45!

x(t) is the so called response function and it can be ev
ated starting from

^b~ t !&5E dx b~x!r~x,t !. ~46!

Assuming that the external field is small the distributi
function can be written as an unperturbed plus a small p
turbed part

r5r01dr. ~47!

When L̂ is not Hermitian, the equation of motion for th
distribution function is given by Eq.~25! and under the effec
of a time dependent perturbation the compressibility is
plicitly time dependent

k5
]Bi j

]xi

]H0

]xj
2F~ t !

]Bi j

]xi

]a

]xj
5k01k I~ t !. ~48!

The Liouville equation to first order in the perturbation
then

]dr

]t
52 i L̂0dr2 i L̂Ir02k0dr2k I~ t !r0 . ~49!

The solution is given by

dr~ t !5E dt1F~ t !exp@2~ t2t1!~ i L̂01k0!#

3S $r0 ,a%1
]Bi j

]xi

]a

]xj
r0D . ~50!

The response function is

x~ t !5E dx b~x!exp@2t~ i L̂01k0!#

3S $r0 ,a%1
]Bi j

]xi

]a

]xj
r0D . ~51!

Now if the time dependence is transferred onb the compress-
ibility k disappear from the propagator and one gets

x~ t !52E dxr0$b~ t !,a%52^$b~ t !,a%&0 , ~52!
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where the termb(t)(]Bi j /]xi)(]a/]xj )r0 has been cancele
by a term of opposite sign appearing when going, by in
gration by parts, fromb(t)$r0 ,a% to r0$b(t),a%. Equation
~52! shows a form of the response function equal to the o
of the Hamiltonian case. Yet the simple form of Eq.~52! is
quite rigid. The derivation has already shown that additio
terms, containing the derivatives ofB, appear when doing
integration by parts. As a results other forms of the respo
functions, usually derived within Hamiltonian dynamic
may not be valid within a non-Hamiltonian algebra and m
be checked case by case.

VI. CONCLUSIONS

In this paper it has been shown that the equilibrium s
tistical mechanics of non-Hamiltonian systems can be c
sistently and thoroughly treated by means of a generali
bracket defining flows in phase space. The bracket does
satisfy the Jacoby relation and, thus, it defines an algebra
is not invariant under time translations. Phase space c
pressibility and the standard non-Hamiltonian Liouvil
equation have been easily derived from the bracket form
the equations of motion. The compressibility breaks
time-reversal invariance of the dynamics and modifies
statistical weight of phase space.

The stationary property of general correlation functions
broken by the compressibility. Yet in some relevant ca
correlations of a subset of the coordinates might not be
fected by this problem. A specific form of the response fun
tion in the linear regime has also been derived.

The statistical mechanics of non-Hamiltonian systems
equilibrium can be studied by different mathematical la
guages. Some authors have used a metric in phase spac
a peculiar form of the Liouville equation. In their approac
the equations of motion for the dynamical variables must
provided by some other means. In this paper the general
Liouville equation, in a form known since Liouville’s origi
nal work, and the phase space compressibility have b
used. It has been shown that when the physics, symme
and conserved quantities, are carefully considered the re
obtained using the two languages are equivalent. The m
difference is that in the approach presented in this pape
the statistical ingredients naturally arise from the formali
of the non-Hamiltonian equations of motion. For such a r
son the algebraic bracket formalism promises to be a m
flexible tool to invent various types of dynamics with th
statistical mechanics under control.

Further analysis is required to investigate the conditio
of applicability of general non-Hamiltonian dynamics to ca
culate transport coefficients or to treat nonequilibrium e
sembles.
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