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Density waves in traffic flow of two kinds of vehicles
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Through the car-following model, the traffic flow of two types of vehicles~cars and trucks! on a single-lane
flow is studied, in which drivers on different vehicles have different sensitivities and the safety distance is
assumed to be the same for all vehicles. The linear analysis is carried out to determine the condition of critical
stability. With the nonlinear analysis, it proves that the small fluctuation of the vehicle density near the critical
stable state satisfies the Korteweg–deVries equation and different sensitivities affect only the soliton evolution.
When the headway in the critical state is more than the safety distance, the density around the soliton peak
exceeds the density of the critical stable state, which can be explained as the formation of traffic jam. Con-
trarily, when the headway state is less than the safety distance, drivers will increase the headway to avoid the
jam. The direct approach of the soliton perturbation shows that drivers’ sensitivity will increase the soliton’s
amplitude continuously. Moreover, the increase of the number of trucks in the traffic flow will slow down the
evolution of the amplitude.
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I. INTRODUCTION

For many years, traffic problems have been physici
enthusiasm. A lot of models have been proposed for th
for instance, the car-following model@1–3#, the cell automa-
ton model@4–6#, the gas kinetic model@7,8#, and the hydro-
dynamic model @9–12#, among which the car-following
model is particularly important owing to its conciseness.

In a traffic flow, the fluctuation of vehicle density ma
form a density wave due to the interaction between vehic
Since the density wave on some sections of a highway
become high, people naturally consider its formation to
related to a traffic jam@11–15#. At present, traffic flows in
different models are exhibited quite differently. In particul
the soliton waves that describe the density fluctuation in
ferent traffic models may have different forms. Research
some models show the existence of a causality relation
tween the soliton wave and traffic congestion@12–15#, but
this relation becomes uncertain in others@11#. Therefore, it is
necessary to determine whether there exists a causality
tion between the soliton wave and traffic congestion for e
model. In this paper, we use nonlinear analysis to study
relation for the car-following model of two types of vehicle
Because the typical car-following model is normally disco
tinuous@2#, in order to carry out the analysis, a simple way
to transform the discontinuous form into a continuous o
Moreover, the headway in the car-following model is a fun
tion of the vehicle density and its high-order derivative@16#,
so the density fluctuation appears in the acceleration e
tion with an explicit expression@17#. The nonlinear theory
figures out that solitons can come forth from a system w
both nonlinear and dispersion effects when these effects
balanced@19,20#. With the nonlinear and dispersion term
the acceleration equation of car-following model, natura
the soliton wave can be formed and affect the traffic flow

The stimulation of the traffic flow is worked out, whic
indicates the asymptotic stability phenomenon in our mo
@21#. In addition, it also points out that increasing the pr
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portion of trucks in the total number of vehicles will reduc
the stablity of the traffic flow@21#. This interesting finding
attracts us to study how the soliton wave is formed in
model and how the proportion of trucks affects the solit
wave.

Our model has stable solution with the constant den
and vehicle velocity, in which the linear analysis determin
the critical stable state. So long as the traffic flow devia
away from the critical state a little, we can work out
Korteweg–de Vries~KdV! equation of the fluctuation. When
the headway of the critical stable flow is larger than t
safety distance, namely, the critical density of the critic
stable state is less than the density determined by the sa
distance, the soliton solution obtained from the KdV equ
tion indicates that the density around the soliton peak w
exceed the critical density. This phenomenon shows that
soliton of the density wave promotes the formation of t
traffic jam @2#. But on the contrary, when the headway
smaller than the safety distance, the solution then indica
that the density will be reduced by increasing the headw
This result means that drivers tend to increase the distanc
avoid forming a traffic jam.

Unlike the usual physical models, drivers’ subjective
response to the running of vehicle flows is considered s
cially in the traffic problem, which is determined by the se
sitivity parametera in Bando model@2#. It is obvious that
drivers of different vehicles have different sensitivities in th
model. With the nonlinear analysis, we find that differe
sensitivities only influence the evolution of the soliton wa
through a little perturbation. The direct approach of the so
ton perturbation demonstrates that the evolution of the s
ton wave’s amplitude is obtained and the perturbation
creases the soliton’s amplitude at all times. Moreover,
increase of the number of trucks in the traffic flow will slo
down the amplitude’s evolution.

II. MODEL AND STABILITY ANALYSIS

The car-following model numbers each vehicle by an
tegern. The nth vehicle has the acceleration determined
©2003 The American Physical Society01-1
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its actual velocityvn and the desired speedV(bn) as follows
@2#:

v̇n5a@V~bn!2vn#, ~1!

wherebn is the headway from it to the vehicle in front. In th
above equation, the overdot represents the derivative
respect to time. The optimal velocityV(bn)5tanh(bn2hc)
1tanh(hc) in Bando model is employed as the desired sp
in Eq. ~1!, in which hc is assumed to be the safety distanc
The parametera stands for the driver’s sensitivity and it i
equal to the inverse of the driver’s reaction time.

The traffic flow investigated here consists of two types
vehicles, in whichm trucks are inserted in the column ofn
cars. In this flow, the cars are numbered from 1 tol and l
1m11 to m1n while the trucks are numbered froml 11 to
l 1m. Because the drivers of different vehicles have differ
sensitivities, soaC is the sensitivity parameter of car drive
and aT is of truck drivers. Obviously, we can supposeaC
.aT . In addition, the safety distancehc is regarded as the
same for all vehicles.

The basic equation~1! is discontinous. Its continuou
form is more appropriate for the linear and nonlinear ana
sis. In accordance with the definition of the flow dens
r(x,t), the continuity equation and headway functionb(x,t)
in the car-following model can be written as follows@16#:

r t1~rv !x50 ~2!

and

b;
1

r
2

rx

2r3
2

rxx

6r4
1•••, ~3!

respectively. Moreover, the continuous dynamic equat
satisfied by vehicle velocity can be rewritten as@16#

v t1vvx5a@V̄~r!2v#1aV̄8~r!F rx

2r
1

rxx

6r2G . ~4!

All terms in the above equation have been defined cle
according to the traffic problem. It is obvious that Eqs.~3!

and~4! have the trivial solutionrh5A andvh5V̄(A) for an
arbitrary constantA.

According to the linear analysis method, the traffic flow
assumed to deviate from a trivial solutionrh infinitesimally
@11#. We can decompose the density and the speed in
linear combination of Fourier mode, respectively, and e
of them grows or decays with its own growth ratesk . Thus
we have

S r~x,t !

v~x,t ! D 5S rh

vh
D 1(

k
S r̂k

v̂k
D exp~ ikx1skt !. ~5!

Substituting these expressions into Eqs.~2! and ~4!, we can
get the equations of the deviationr̂k and v̂k as follows:

r̂ksk1rhv̂k~ ik !1vhr̂k~ ik !50, ~6!
01760
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v̂ksk1vh~ ik !v̂k5a@V̄8~rh!r̂k2 v̂k#1aV̄8~rh!F ik r̂k

2rh

2
k2r̂

6rh
2G . ~7!

The linear analysis shows that the critical disturbance trav
with a speed@11#

c~rh!5V̄~rh!1rhV̄8~rh!. ~8!

Assuming that the density fluctuation is very small, the s
blility condition for a traffic flow of two types of vehicles
can be written as@21#

n1m22V8~b!~n/aC1m/aT!.0, ~9!

or

sech2~b2hc!,
n1m

2~n/aC1m/aT!
. ~10!

For the critical stable state of a traffic flow, stability cond
tion can be expressed asaC52sech2(bC2hc) and 1/rhC

5sech21AaC/21hc for a car flow, andaT52 sech2(bT

2hc) and 1/rhT5sech21AaT/21hc for a truck flow. Other-
wise, for the traffic flow of two types of vehicles, the expre
sion ~10! determines the vehicle density in the critical sta
to be 1/rh5sech21A(n1m)/2(n/aC1m/aT)1hc , which
can be rewritten as@16#

1/rh5sech21Aā1hc, ~11!

in which ā5(n1m)/(n/aC1m/aT) is defined formally as
the average sensitivity. Equation~11! shows that the traffic
flow with more trucks will have the lower average sensit
ity, or its critical stable state has the lower vehicle dens
This phenomenon was observed in the previous simula
@21#. Supposingg5bn2hc is the difference between th
headway of the critical stable state and the safety dista
we can obtain another equation from Eq.~11! as follows:

g5bn2hc5 ln@Aā6Aā#. ~12!

The real valueg requires the average sensitivity to satis
the inequalityā>2 for a critical stable state. When the hea
way is more than the safety distance,g.0 can be derived.
On the contrary, we can getg,0. Moreover, the relation
aT,ā52 sech2(b2hc),aC , rhC.rh.rhT and bC,b
,bT can be attained.

III. NONLINEAR ANALYSIS

The slowly varying behavior of a traffic flow near th
critical stable state is one important concern for us. In or
to describe this behavior, the slow scales of the space v
ablex and time variablet will be introduced as follows@11#.
For the small parameter«.0, we can define the following
slow variablesX andT as
1-2
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X5«~x2ct!, T5«3t. ~13!

c is the travel speed of the critical disturbance as determi
by Eq. ~8!. In the reference frame that moves with the spe
c, both the traffic flow’s densityr(x,t) and the vehicle spee
v(x,t) near the critical stable state have small fluctuati
which can be written as@11#

r~x,t !5rh1e2r̂~x,t ! ~14!

and

v~x,t !5vh1e2v̂~x,t !. ~15!

The terms«2r̂(X,T) and «2v̂(X,T) represent the fluctua
tions of the density and the vehicle speed, respectively. S
stituting the expressions~14! and ~15! into Eqs.~2! and ~4!,
we can get the dynamical equation about the density pe
bation as

r̂T1@2V̄81rhV̄9#r̂r̂X1
V̄8

6rh
r̂XXX5«

rh

a
F V̄8a

2rh
r̂XX

2S rhV̄8V̄91
V̄82

2
1

aV̄9

4rh
D r̂XX

2 2
V̄82

3rh
r̂4xG , ~16!

where a524rhV̄8,V̄852rh
22sech2g, and V̄95

22V̄8rh
21(12tanhg). This equation describes the dens

fluctuation in the flow. If this flow consists of only cars, w
will have a5aC , but if the flow consists of only trucks we
will have a5aT .

Equation~16! is the nonlinear KdV equation with the pe
turbation term (« term); its solution is the perturbed soliton
In the following text, we will give the nonperturbed solito
solution of the KdV equation first, and then determine t
soliton evolution by the perturbation calculation.

Neglecting the«-order term, the equation remained is ju
the KdV equation with its one-soliton solution written a
follows @18#:

r̂5A sech2@k1~X1vT!#. ~17!

In this equation, the parameterk1 is determined by the initia
perturbation. The soliton’s amplitude isA5k1

2/tanhg and its
velocity is v5 2

3 rh
23k1

2sech2g.
This soliton solution reflects how the vehicle density d

viates from that of the critical stable state. When the he
way is larger than the safety distance, namely,g.0, the
critical stable state has lower vehicle density, the posit
soliton amplitudeA.0 can be obtained. Such a solutio
means that the vehicle density around soliton peak exce
the critical density and this phenomenon can be regarde
the formation of the traffic jam@2#. Contrarily, when the
headway is smaller than the safety distance, namely,g,0,
the negative amplitudeA,0 can be attained, which mean
that drivers tend to increase the distance to avoid the tra
jam.
01760
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In order to discuss the effect of the«-order correction, we
write T5C1t, X5C2y, and r̂5C1u. When

C1526rh
3C2

3/sech2g ~18!

and

C252S sech2g

12rh
3tanhg

D 1/5

, ~19!

Eq. ~16! can be transformed into

ut16uuy1uyyy5«F6Brh
21tanhguyy2S rh

21tanhg

2
1

2D18rh
3B4

sech2g
u2y

2 1
rh

21

B
u4yG . ~20!

When the«-order term is neglected, the above equation
just the KdV equation. With the new parameterh, the one-
soliton solution of the equation is written asu
52h2sech2Z, hereZ5h(y24h2t). The«-order term deter-
mines the time evolution of the parameterh. By applying
the direct approach of the soliton perturbation, we have@22–
25#

dh

dt
5

«

4hE2`

`

dZ H sech2Z, ~21!

where

H56Brh
21tanhguyy2S rh

21tanhg2
1

2D18rh
3B4

sech2g
u2y

2

1
rh

21

B
u4y5

Ĥ

a
.

For the traffic flow of two types of vehicles with the se
sitivities aC andaT , the integral in Eq.~21! should be writ-
ten as

dh

dt
5

e

4h F E
2`

J1 H

aC
dZ sech2Z1E

J1

J2 H

aT
dZ sech2Z

1E
J2

` H

aC
dZ sech2ZG . ~22!

The linear relation between spectrum parametersh andk1 is
h5Bk1 with a proportion coefficientB. According to Eq.
~22!, the evolution equation ofk1 can be obtained as

dk1

dt
5Dk1

3«. ~23!

The factor D5rh
21(sech2g/12rh

3tanhg)3/5@M1a/aC1(M2

1M3)(a/aT2a/aC)# is very complex. The symbolsM1 ,
M2, andM3 are expressed as
1-3
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M1516 tanhg/514k1
2~2rh/7 tanhg24/15!, ~24!

M256 tanhg~U24U3/313U5/5!, ~25!

M354k2@~3rh/4 tanhg21!~2U217U3/316U5215U7/7!

1U3/224U5/515U7/14#, ~26!

with the definitions U5tanhJ22tanhJ1, J15k1m«/2
1(k1sech2g/rh)«(114k1

2«2/6)t, and J252k1m«/2
1(k1sech2g/rh)«(114k1

2«2/6)t.
According to Eq.~11!, both the parametersg andrh are

the functions of the trucks’ numberm. So the factorD is also
the function of the numberm. In the reasonable value rang
of « andk1, it can be found that the derivative of the fact
D with respect tom is always less than zero, which mea
thatdk1 /dt5Dk1

3« tends to decrease with the increase of
numberm. Due to this property of the factorD, the soliton’s
amplitude in the car flow changes the fastest. Otherwise
the traffic flow is purely a column of trucks, the soliton
amplitude will change most slowly. Generally, increasing
proportion of trucks in the total number of vehicles will slo
down the variation of the vehicle density.

IV. SUMMARY

In our real life, it is quite rare to see the traffic flo
consisting of only one kind of vehicle. When various v
g

01760
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hicles coexist in a system, the traffic flow will become ve
complicated. In this paper, analytical results of the c
following model for two types of vehicles are obtained, pa
of which accords with the simulation finished by Maso
With our results, we have proved that the difference betw
different types of vehicles only affects the evolution of t
determined soliton amplitude.

A traffic jam may be formed where the headway of t
critical stable state is larger than the safety distance, bec
the soliton describing the density fluctuation has a posit
amplitude. On the other hand, when the headway is sma
than the safety distance, drivers tend to increase the dist
to avoid the traffic jam.

The perturbation on the soliton solution coming from t
difference between two types of vehicles is calculated, wh
concludes that increasing the proportion of trucks in the to
number of vehicles will slow down the variation of the v
hicle density.
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