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Density waves in traffic flow of two kinds of vehicles
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Through the car-following model, the traffic flow of two types of vehidlears and truckson a single-lane
flow is studied, in which drivers on different vehicles have different sensitivities and the safety distance is
assumed to be the same for all vehicles. The linear analysis is carried out to determine the condition of critical
stability. With the nonlinear analysis, it proves that the small fluctuation of the vehicle density near the critical
stable state satisfies the Korteweg—deVries equation and different sensitivities affect only the soliton evolution.
When the headway in the critical state is more than the safety distance, the density around the soliton peak
exceeds the density of the critical stable state, which can be explained as the formation of traffic jam. Con-
trarily, when the headway state is less than the safety distance, drivers will increase the headway to avoid the
jam. The direct approach of the soliton perturbation shows that drivers’ sensitivity will increase the soliton’s
amplitude continuously. Moreover, the increase of the number of trucks in the traffic flow will slow down the
evolution of the amplitude.
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[. INTRODUCTION portion of trucks in the total number of vehicles will reduce
the stablity of the traffic flowf21]. This interesting finding
For many years, traffic pr0b|ems have been physicistsattracts us to StUdy how the soliton wave is formed in the
enthusiasm. A lot of models have been proposed for thenfnodel and how the proportion of trucks affects the soliton
for instance, the car-following modgl—3], the cell automa- Wave.

ton model[4 6], the gas kinetic modglr,8], and the hydro- an((j) \lj;r:?c?g %Ie?oacsit; t?nblv‘\a/hsiggu&oenli\gggrtgr?alc)?s?sStggtte(rjri?r?gg
dynam[c moc_:iel[9—12], among V\.’h'Ch t.he car-.foIIoWIng the critical stable state. So long as the traffic flow deviates
model is particularly important owing to its conciseness.

. ) ; . away from the critical state a little, we can work out a
In a traffic flow, the fluctuation of vehicle density may Korteweg—de VriegKdV) equation of the fluctuation. When

form a density wave due to the interaction between vehicleshe headway of the critical stable flow is larger than the
Since the density wave on some sections of a highway Cagafety distance, namely, the critical density of the critical
become high, people naturally consider its formation to bestaple state is less than the density determined by the safety
related to a traffic jami11-15. At present, traffic flows in  gistance, the soliton solution obtained from the KdV equa-
different models are exhibited quite differently. In particular, tion indicates that the density around the soliton peak will
the soliton waves that describe the density fluctuation in difexceed the critical density. This phenomenon shows that the
ferent traffic models may have different forms. Research irsoliton of the density wave promotes the formation of the
some models show the existence of a causality relation beraffic jam [2]. But on the contrary, when the headway is
tween the soliton wave and traffic congestid2—15, but  smaller than the safety distance, the solution then indicates
this relation becomes uncertain in othgt4]. Therefore, itis that the density will be reduced by increasing the headway.
necessary to determine whether there exists a causality rel&his result means that drivers tend to increase the distance to
tion between the soliton wave and traffic congestion for eacl&void forming a traffic jam.

model. In this paper, we use nonlinear analysis to study the Unlike the usual physical models, drivers’ subjective in
relation for the car-following model of two types of vehicles. response to the running of vehicle flows is considered spe-
Because the typical car-following model is normally discon-cially in the traffic problem, which is determined by the sen-
tinuous[2], in order to carry out the analysis, a simple way is Sitivity parametera in Bando mode[2]. It is obvious that

to transform the discontinuous form into a continuous onedrivers of different vehicles have different sensitivities in this
Moreover, the headway in the car-following model is a func-

model. With the nonlinear analysis, we find that different
tion of the vehicle density and its high-order derivatidé], sensitivities only influence the evolution of the soliton wave
so the density fluctuation appears in the acceleration equ

hrough a little perturbation. The direct approach of the soli-
tion with an explicit expressiofl7]. The nonlinear theory

on perturbation demonstrates that the evolution of the soli-
figures out that solitons can come forth from a system witHon wave's amp_htugle IS o_btamed and _the perturbation in-
both nonlinear and dispersion effects when these effects afgcases the soliton’s amplitude at all times. Moreo_ver, the
balanced 19,20 With the nonlinear and dispersion term in increase of the_num,ber of trl_Jcks in the traffic flow will slow
the acceleration equation of car-following model, naturally,down the amplitude’s evolution.
the soliton wave can be formed and affect the traffic flows.

The stimulation of the traffic flow is worked out, which
indicates the asymptotic stability phenomenon in our model The car-following model numbers each vehicle by an in-
[21]. In addition, it also points out that increasing the pro-tegern. The nth vehicle has the acceleration determined by
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its actual velocityv, and the desired speafb,) as follows

. . — .. — ik p
[2]: vioton(ik)v=alV'(pp)pk—vi] +aVv'(pn) 2on
l}n:a[v(bn)_vn]v 1) sz)
whereb,, is the headway from it to the vehicle in front. In the B 6_Pr21 : @)

above equation, the overdot represents the derivative with
respect to time. The optimal velocity(b,)=tanhp,—h)  The linear analysis shows that the critical disturbance travels
+tanhfy) in Bando model is employed as the desired speegvith a speed11]

in EQ. (1), in which h. is assumed to be the safety distance. . .

The parametea stands for the driver’s sensitivity and it is c(pn)=V(pn)+pnV' (pn)- ©)]
equal to the inverse of the driver’s reaction time.

The traffic flow investigated here consists of two types ofAssuming that the density fluctuation is very small, the sta-
vehicles, in whichm trucks are inserted in the column of  blility condition for a traffic flow of two types of vehicles
cars. In this flow, the cars are numbered from 1l tand|  can be written a$21]
+m+1 tom+n while the trucks are numbered from-1 to

| +m. Because the drivers of different vehicles have different n+m-=2V'(b)(n/ac+mlar)>0, ©)
sensitivities, s@c is the sensitivity parameter of car drivers

and a7 is of truck drivers. Obviously, we can suppoag

>ar. In addition, the safety distande. is regarded as the n+m

same for all vehicles. sechi(b—ho) <5 T mvan: (10

The basic equation{l) is discontinous. Its continuous
form is more appropriate for the linear and nonlinear analy+or the critical stable state of a traffic flow, stability condi-
sis. In accordance with the definition of the flow densitytion can be expressed ag=2secR(bc—h.) and 1ppc

p(x,t), the continuity equation and headway functlofx,t) =sech *\ac/2+h, for a car flow, andar=2 secR(bt
in the car-following model can be written as follows6]: —h,) and 1p,r= sech‘1m+ h. for a truck flow. Other-
wise, for the traffic flow of two types of vehicles, the expres-
pit(pv)y=0 2 sion (10) determines the vehicle density in the critical state

to be 1p,=sech\(n+m)/2(n/ac+m/a7)+h,, which
and .
can be rewritten agl6]

bl Px P 3 Up,=sech Wa+h,, (11)

in which a=(n+m)/(n/ac+m/ay) is defined formally as

respectively. Moreover, the continuous dynamic equationthe average sensitivity. Equatidgfil) shows that the traffic
satisfied by vehicle velocity can be rewritten[d$] flow with more trucks will have the lower average sensitiv-

ity, or its critical stable state has the lower vehicle density.
@) This phenomenon was observed in the previous simulation

[21]. Supposingy=b,—h; is the difference between the

headway of the critical stable state and the safety distance,
All terms in the above equation have been defined clearlyve can obtain another equation from Egj1) as follows:
according to the traffic problem. It is obvious that E¢3).
and(4) have the trivial solutiomp,=A andv,=V(A) for an y=by—hc=In[ \/;i \/g]- (12)

arbitrary constanA. . L .
According to the linear analysis method, the traffic flow isThe real valuey requires the average sensitivity to satisfy

assumed to deviate from a trivial solutipq infinitesimally the inequalitya=2 for a critical stable state. When the head-

[11]. We can decompose the density and the speed into WY is more than the safety distancer 0 can be derived.
linear combination of Fourier mode, respectively, and eaclP" the contrary, we can get<0. Moreover, the relation
of them grows or decays with its own growth rate. Thus ar<a=2sec(b—hJ)<ac, pnc>pn>prr and be<b

Px 4 Pxx

vt+va=a[V(p)—v]+aV’(p) —p+6 > |-
p

2

we have <b; can be attained.
p(x,t)\ [p p IIl. NONLINEAR ANALYSIS
( ):( “)+2 (Ak)exmkxﬂ—akt). (5)
v(x,t)) \vn/ K oy, The slowly varying behavior of a traffic flow near the

o _ _ critical stable state is one important concern for us. In order
Substituting these expressions into E@.and (4), we can  to describe this behavior, the slow scales of the space vari-

get the equations of the deviatign ando, as follows: ablex and time variablé will be introduced as follow$11].
. . . For the small parameter>0, we can define the following
Pt prvk(ik) Foupp(ik) =0, (6)  slow variablesX andT as
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X=¢e(x—ct), T=¢&%t. (13 In order to discuss the effect of tlkeorder correction, we
write T=Cyt, X=C,y, andp=C,u. When
c is the travel speed of the critical disturbance as determined
by Eg.(8). In the reference frame that moves with the speed C,=—6p2C3/secky (18)
¢, both the traffic flow's density(x,t) and the vehicle speed
v(x,t) near the critical stable state have small fluctuationand
which can be written agl1]

1/5
2 c o | ety (19

p(X,t)=pnr+e"p(X,t) (14) > | 120%anhy
and Eq. (16) can be transformed into

v(x,t)=vp+ €20 (X,1). (15)

) ) U+ 6uuy,+uyy,=&| 6Bpy, tanhyu,,— ( pp, ttanhy

The termse2p(X,T) and £%v(X,T) represent the fluctua-
tions of the density and the vehicle speed, respectively. Sub- 804 1
stituting the expressiond4) and(15) into Egs.(2) and (4), _ 1)18pB" , Pr 20
we can get the dynamical equation about the density pertur- 2) sechy B 4|

bation as

When theg-order term is neglected, the above equation is
V'a. just the KdV equation. With the new parametgr the one-
soliton solution of the equation is written awu

- — — aa V'
pr+[2V'+prV"]ppx+ B O

z_phpxx ~ 5. 2cech o e
=2n°sechZ, hereZ= n(y—47t). Thee-order term deter-
—Y = —, mines the time evolution of the parameter By applying
( VAV av _ V_A (16) the direct approach of the soliton perturbation, we H@z-
Ph 2 4P pXX 3php4x ’ 25]
where a=—4p V' \V'=—p,%secBy, and V'= ?j_": 4if°° d7 HsecRzZ 21)
n - ,

—ZV’ph’l(l—tanhy). This equation describes the density
fluctuation in the flow. If this flow consists of only cars, we

will have a=ac, but if the flow consists of only trucks we Where

will have a=ar. 1\18%8
quatlon(16) is the n_onllnear. Kd\/ equation with the per- H= GBpgltanhyuyy (Ph tanhy— - f;% u2y
turbation term & term); its solution is the perturbed soliton. sechy

In the following text, we will give the nonperturbed soliton -

solution of the KdV equation first, and then determine the I pLu _

soliton evolution by the perturbation calculation. B ¥
Neglecting thes-order term, the equation remained is just

the KdV equation with its one-soliton solution written as  For the traffic flow of two types of vehicles with the sen-

follows [18]: sitivities ac anday, the integral in Eq(21) should be writ-
ten as
p=Asech[k,(X+vT)]. (17 dn e[ (H oH
_ _ _ _ L — = f —dZsecHZ+f —dZsecRz

In this equation, the parametey is determined by the initial dt 49| J)-=ac Jiar
perturbation. The soliton’s amplitude As= ki/tanhy and its ol
velocity isv=1%p;, *k?seciy. " f 2 dzsecRz|. 22)

This soliton solution reflects how the vehicle density de- Je8c

viates from that of the critical stable state. When the head-

way is larger than the safety distance, namely; 0, the  The linear relation between spectrum parameteesidk; is
critical stable state has lower vehicle density, the positive?=Bk; with a proportion coefficienB. According to Eg.
soliton amplitudeA>0 can be obtained. Such a solution (22), the evolution equation df; can be obtained as
means that the vehicle density around soliton peak exceeds

the critical density and this phenomenon can be regarded as dky _ —DK3 (23)
the formation of the traffic janj2]. Contrarily, when the dt 18

headway is smaller than the safety distance, nameis0,

the negative amplitud&<0 can be attained, which means The factor D= p,, *(secky/12p3tanhy)*{M a/ac+ (M,
that drivers tend to increase the distance to avoid the traffie- M3)(a/a;—al/ac)] is very complex. The symbolM,
jam. M,, andM ; are expressed as
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M ;=16 tanhy/5+ 4k2(2p,/7 tanhy—4/15),  (24)

M, =6 tanhy(U—4U3%3+3U°/5), (25)

M 3= 4k?[(3pp/4 tanhy—1)(2U — 17U%/3+6U°— 15U 7/7)

+U3%2—4U°/5+5U7/14], (26)
with the definitions U=tanhJ,—tanhJ;, J;=kyme/2
+(kysecRylpy)e(1+4k2e?6)t, and  J,=—k;me/2

+ (k;sechy/pp)e(1+4k3e2/6)t.
According to Eq.(11), both the parameterg and py, are
the functions of the trucks’ numben. So the factoD is also

PHYSICAL REVIEW B7, 017601 (2003

hicles coexist in a system, the traffic flow will become very
complicated. In this paper, analytical results of the car-
following model for two types of vehicles are obtained, part
of which accords with the simulation finished by Mason.
With our results, we have proved that the difference between
different types of vehicles only affects the evolution of the
determined soliton amplitude.

A traffic jam may be formed where the headway of the
critical stable state is larger than the safety distance, because
the soliton describing the density fluctuation has a positive
amplitude. On the other hand, when the headway is smaller
than the safety distance, drivers tend to increase the distance

the function of the numbem. In the reasonable value range t0 avoid the traffic jam.

of ¢ andk, it can be found that the derivative of the factor

The perturbation on the soliton solution coming from the

D with respect tom is always less than zero, which means difference between two types of vehicles is calculated, which
thatdk, /dt= Dkf.g tends to decrease with the increase of theconcludes that increasing the proportion of trucks in the total

numberm. Due to this property of the fact@, the soliton’s

number of vehicles will slow down the variation of the ve-

amplitude in the car flow changes the fastest. Otherwise, ificle density.

the traffic flow is purely a column of trucks, the soliton’s

amplitude will change most slowly. Generally, increasing the

proportion of trucks in the total number of vehicles will slow

down the variation of the vehicle density.

IV. SUMMARY
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In our real life, it is quite rare to see the traffic flow 10075021 and the Plastic Shape Simulate & Mould Technol-
consisting of only one kind of vehicle. When various ve- ogy Laboratory.
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