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Time-delay-induced stabilization of coupled discrete-time systems
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~Received 29 July 2002; published 29 January 2003!

This paper shows that the time-delay-induced stabilization occurs in discrete-time systems on numerical
simulations. The stability analysis proves that this phenomenon never occurs in the discrete-time systems that
have an odd-number property. This property is well known as the weak point of the delayed feedback control
of chaos. Furthermore, we show that the phenomenon never occurs in any one-dimensional discrete-time
system.
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Coupled nonlinear oscillators show several interest
phenomena both on numerical and real experiments.
phenomena have been investigated in a wide range of fie
The dynamics of weak-coupled oscillators can be descri
by the phase dynamics which is useful for theoretical ana
sis. In the case of strong coupling, however, we have to d
with not only the phase but also the amplitude of oscillatio
In such case, it was reported thatamplitude deathcan occur
in coupled oscillators. This phenomenon is a couplin
induced stabilization of the origin in the oscillators@1,2#. For
two coupled oscillators, Aronson, Ermentrout, and Kop
have theoretically investigated this phenomenon in detail@3#.

In real coupled systems, there exists a time-delay ef
due to the finite speed of data propagation. Neverthel
most studies on coupled oscillators did not consider the ti
delay coupling. In recent years, several researchers h
studied the time-delay coupled oscillators@4–6#. Reddy,
Sen, and Johnston@7# showed that the time-delay couplin
induces the amplitude death even for two identical osci
tors. This phenomenon can be considered as a time-de
induced stabilization of the origin in the coupled system
Their result has gained more and more attention@8,9#. The
time-delay-induced amplitude death has been investigate
detail @10#; furthermore, experimental observations of ele
tronic circuits @11#, living oscillators@12#, and the thermo-
optical oscillators@13# have been reported.

In the present paper, we investigate a time-delay-indu
stabilization of steady states in two identical discrete-ti
systems coupled by a delay connection. Our main purpo
are as follows:~i! we observe the stabilization on numeric
simulations;~ii ! we prove that the stabilization without tim
delay never occurs;~iii ! we prove that the stabilization neve
occurs in the class of discrete-time systems. The featur
this paper is that our results do not depend on the degre
systems; in other words, they can be valid not only for lo
but also high-dimensional systems.

Let us consider two identical discrete-time subsyste
Sa,b ,
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Sa :H xa~n11!5f @xa~n!#1bua~n!

ya~n!5g@xa~n!#,

Sb :H xb~n11!5f @xb~n!#1bub~n!

yb~n!5g@xb~n!#,

where xa,b(n)PRm are the system variables,ua,b(n)PR
andya,b(n)PR are the input and output signals.f:Rm→Rm

denotes the nonlinear function.bPRm is the input matrix and
g:Rm→R is the output function. These subsystemsSa,b are
coupled by

ua~n!5«$yb~n2t!2ya~n!%, ~1a!

ub~n!5«$ya~n2t!2yb~n!%. ~1b!

«PR is coupling strength andt.0 denotes the delay time
~see Fig. 1!. It should be noticed that each of input signa
ua,b(n) include other output delayed signalsyb,a(n2t).
The steady state of subsystemsSa,b without coupling («
50) is given byxf5f(xf). The location of steady statexf
never changes even by delayed coupling; in other words,
delayed coupling changes only the stability of state.

For the first example, we use the delayed logistic s
systems@14#,

Sa :H Fxa1~n11!

xa2~n11!
G5F xa2~n!

pxa2~n!$12xa1~n!%
G1F1

0Gua~n!

ya~n!5xa1~n!,
~2a!

FIG. 1. Delay coupled discrete-time systems.
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Sb :H Fxb1~n11!

xb2~n11!
G5F xb2~n!

pxb2~n!$12xb1~n!%
G1F1

0Gub~n!

yb~n!5xb1~n!,
~2b!

coupled by ~1!. The steady state isxf5@(p21)/p, (p
21)/p#T. The parameter is fixed atp52.1. Figure 2~a!
shows the behavior of subsystemSa without coupling («
50). The limit cycle ~quasiperiodic orbit! is observed
around the unstable steady statexf . This cycle is maintained
for the nondelay coupling (t50, «50.5) as shown in Fig.
2~b!. The bifurcation diagram of the nondelay coupled s
tems for the range«P@0,1# is shown in Fig. 3~a!: it can be
seen that there does not exist stabilization. On the o
hand, the delay coupling induces the stabilization of
steady state for a range of« @see Fig. 3~b!#. This is the
time-delay-induced stabilization in discrete-time system
therefore, we can accomplish the first purpose of this pa

FIG. 2. Behavior of systems (p52.1). ~a! Isolated subsystem
(«50) and~b! nondelay coupling («50.5, t50) systemSa .

FIG. 3. Bifurcation diagram for«. ~a! Nondelay coupling («
.0, t50) and~b! delay coupling («.0, t51).
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For the second example, we use the following subsyste
@15#:

Sa :H xa~n11!5 f @xa~n!#1ua~n!

ya~n!5xa~n!,
~3a!

Sb :H xb~n11!5 f @xb~n!#1ub~n!

yb~n!5xb~n!,
~3b!

coupled by~1!. The nonlinear function is described by

f ~x!5H p1~x11!1p2 , x,20.5

p1x1p2 , uxu<0.5

p1~x21!1p2 , x.0.5.

The steady state isxf5p2/(12p1 ). Figure 4~a! indicates the
chaotic behavior of isolated («50) subsystemSa for p1
51.95,p250.1. The behavior of the coupled system witho
delay («50.5,t50) is shown in Fig. 4~b!. We plot the bi-
furcation diagram for the nondelay coupled system (t50) in
Fig. 5~a!. Like the first example, the stabilization does n
occur in a nondelay coupled system. Figures 5~b! and 5~c!
show the bifurcation diagram of delayed coupled system
t51,2. In contradiction to the first example, there does
exist a time-delay-induced stabilization in system~3!.

We summarize the above numerical results:~1! the non-
delay coupling does not cause stabilization for either syst
~2! the time-delay-induced stabilization depends on the s
tem structure. These results lead us to the following t
problems.~a! Does the nondelay coupling not cause stab
zation? ~b! Under what condition does the time-dela
induced stabilization never occur? The problems~a! and ~b!
correspond to our main purposes~ii ! and~iii !. We shall solve
these problems theoretically below.

Linearizing subsystemsSa,b around the steady statexf ,
we obtain

DSa :H ja~n11!5Aja~n!1bDua~n!

Dya~n!5cja~n!,
~4!

DSb :H jb~n11!5Ajb~n!1bDub~n!

Dyb~n!5cjb~n!,
~5!

FIG. 4. Behavior of systems (p151.95, p250.1). ~a! Isolated
subsystem («50) and~b! nondelay coupling («50.5, t50) sys-
tem Sa .
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coupled by

Dua~n!5«$Dyb~n2t!2Dya~n!%, ~6a!

Dub~n!5«$Dya~n2t!2Dyb~n!%, ~6b!

where ja(n)ªxa(n)2xf , jb(n)ªxb(n)2xf , Dya(n)
ªya(n)2g(xf), Dyb(n)ªyb(n)2g(xf), Aªdf(xf)/dx , c
ªdg(xf)/dx . We assume that (A,b,c) is controllable and
observable.A is a Jacobi matrix at the steady statexf . The
relation between the inputDua,b(n) and outputDya,b(n)
signals of each systemDSa,b can be described by frequenc
domain description:

Ya~z!5G~z!Ua~z!, Yb~z!5G~z!Ub~z!.

Ya,b(z),Ua,b(z) are the z transformations ofDya,b(n),
Dua,b(n) †Ya,b(z):5Z@Dya,b(n)#, Ua,b(z)
ªZ@Dua,b(n)#‡. The transfer function is given by

G~z!5
n~z!

d~z!
5c~zIm3m2A!21b,

where the characteristic polynomial isd(z)5det@zIm3m
2A#. It is well known that the eigenvalues of Jacobi mat
A are equivalent to the roots ofd(z)50. Hence, the stability
of the steady state in isolated subsystems depends onl
the characteristic polynomiald(z).

The linearized dynamics of the coupled system consis
of Sa,b and coupling~1! can be described by the linear sy
tem consisting ofDSa,b and coupling~6!. The transfer func-
tion of the linear system is

FIG. 5. Bifurcation diagram for«. ~a! Nondelay coupling
(«.0, t50), ~b! delay coupling («.0, t51), and~c! delay cou-
pling («.0, t52).
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H~z,«,t!

5
«z2tG~z!$11«G~z!%

$11«G~z!2«z2tG~z!%$11«G~z!1«z2tG~z!%

5
«ztn~z!$d~z!1«n~z!%

h1~z,«,t!h2~z,«,t!
,

where h1(z,«,t)5ztd(z)1«n(z)(zt21), h2(z,«,t)
5ztd(z)1«n(z)(zt11). It should be noted that the stabi
ity of the steady statexa(n)5xb(n)5xf in the coupled sys-
tem depends only on the characteristic polynomial
H(z,«,t) @i.e., h1(z,«,t)h2(z,«,t)].

In the case of nondelay coupling (t50, «Þ0), we have
the transfer function

H~z,«,0!5
«n~z!@d~z!1«n~z!#

d~z!2
.

The characteristic polynomial ofH(z,«,0) is d(z)2. There-
fore, if the steady statexf in the isolated subsystems is un
stable@i.e., d(z) is an unstable polynomial#, then the steady
statexa(n)5xb(n)5xf in the nondelay coupled system
also unstable@i.e., d(z)2 is an unstable polynomial#. As a
result, we give an answer to the problem~a! mentioned
above: if the steady statexf in isolated subsystems is un
stable, then the nondelay coupling never causes any syst
stabilization. A similar result was derived for the continuo
time systems@3#.

Now let us consider the second problem. The characte
tic polynomial of H(z,«,t) can be described by
h1(z,«,t)h2(z,«,t), wherehi(z,«,t) ( i 51,2) are continu-
ous inz. Furthermore, it is obvious that

lim
z→1`

h1~z,«,t!51`, ;«P@0,1#, ;t>0. ~7!

For z51, we haveh1(1,«,t)5d(1). If d(z)50 has an odd
number of real roots greater than 1, thend(1) is less than
zero. From Eq.~7! and d(1),0, it is obvious that there
exists at least one real rootz.1 of h1(z,«,t)50. Therefore,
h1(z,«,t) is an unstable characteristic polynomial for a
(«,t). We summarize the above result as follows: If the J
cobi matrixA has an odd number of real eigenvalues grea
than 1~i.e., A has the odd-number property!, then the stabi-
lization never occurs for anyt.0, «Þ0.

We should note the following two points. First, this pro
erty is a sufficient condition for the steady state to be u
stable. In other words, we cannot guarantee that the sta
stable, even if the property is not satisfied. Second, this pr
erty is similar to the delayed feedback control~DFC! of
chaos@16–19#. The derivation of our result has similarity t
that in Ushio’s paper@17#.

First of all, we consider the delayed logistic system~2!.
The Jacobi matrixA aroundxf is

A5F 0 1

12p 1G .
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For p52.1, we have

xf5F0.5238

0.5238G , A5F 0 1

21.1 1G .
The steady statexf is unstable because of the eigenvalu
l50.56 iA3.4/2 outside of the unit circle. From the answ
to problem~a!, we can guarantee that the nondelay coupl
never causes the stabilization in system~2!. This theoretical
result agrees with Fig. 3~a!. In contrast, we cannot guarante
stabilization caused by the delay coupling, sinceA does not
have the odd-number property.

Second, we consider system~3! as an example. Forp1
51.95 andp250.1, the steady state and Jacobi matrix
xf520.1053,A51.95. The steady statexf is unstable due to
l51.95.1. From the answer to problem~a!, we can guar-
antee that the nondelay coupling never causes the stab
tion in system~3!. This theoretical result agrees with Fi
5~a!. Furthermore, we can guarantee that the delay coup
never causes the stabilization in system~3!, sinceA has the
odd-number property. This result agrees with the numer
simulations in Figs. 5~b! and 5~c!.

This paper has considered the sufficient conditions
steady state to be unstable; while we have not derived
necessary and sufficient condition yet. It would be poss
for us to derive such condition by applying the Schur sta
ity algorithm @20# to the characteristic polynomia
h1(z,«,t)h2(z,«,t); however, the derivation of the simpl
and general condition is not easy.

Now let us consider the problem of stability of the stea
state in one-dimensional subsystems. The Jacobi matrix
isfies uAu.1, since the isolated subsystems («50) behave
oscillatory. ForA.1, the odd-number property is satisfie
so that the polynomialh1(z,«,t)h2(z,«,t) is unstable. For
A,21, we shall discuss below. In the case of event, we
obtain
e

a

e
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lim
z→2`

h1~z,«,t!52`.

If the polynomial h1(21,«,t) satisfies h1(21, «,t)5d
(21)5212A.0, thenh1(z,«,t)50 has at least one roo
less than21. In other words, for event and A,21, the
characteristic polynomial is unstable. On the other hand
the case of oddt, we have

lim
z→2`

h2~z,«,t!51`.

If the polynomial h2(21,«,t) satisfiesh2(21,«,t)52d
(21)511A,0, then h2(z,«,t)50 has at least one roo
less than21. As a result, for oddt andA,21, the char-
acteristic polynomial is unstable.

We summarize the above discussions: the time-de
induced stabilization never occurs in any one-dimensio
subsystem. This result agrees with the numerical exampl
system~3!. From this theoretical result and the numeric
example of system~2!, we notice that at least two variable
are required for the stabilization.

This paper has investigated the time-delay-induced st
lization of two identical coupled discrete-time systems, a
has shown two theoretical results. On the basis of our res
we think that the mechanism of stabilization is related
suppression of chaos by the DFC. Hence, the results of
cent research in DFC would be used for investigation
time-delay-induced stabilization. Furthermore, our appro
in this paper may be useful for large size coupled system
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