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Time-delay-induced stabilization of coupled discrete-time systems
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This paper shows that the time-delay-induced stabilization occurs in discrete-time systems on numerical
simulations. The stability analysis proves that this phenomenon never occurs in the discrete-time systems that
have an odd-number property. This property is well known as the weak point of the delayed feedback control
of chaos. Furthermore, we show that the phenomenon never occurs in any one-dimensional discrete-time

system.
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Coupled nonlinear oscillators show several interesting X,(N+1)=f[x,(n)]+bu,(n)
phenomena both on numerical and real experiments. The a: _
ya(n)_g[xa(n)]i

phenomena have been investigated in a wide range of fields.
The dynamics of weak-coupled oscillators can be described
by the phase dynamics which is useful for theoretical analy- _[XB(”“L 1)=1xg(n)]+bug(n)
sis. In the case of strong coupling, however, we have to deal A yp(n)=g[Xg(n)],
with not only the phase but also the amplitude of oscillation.
In such case, it was reported tranplitude deatttan occur  where x,, 5(n) e R™ are the system variablesi, g(n) e R
in coupled oscillators. This phenomenon is a coupling-andy, (n) € R are the input and output signafsR™— R™
induced stabilization of the origin in the oscillatdfis2]. For ~ denotes the nonlinear functiome R™ is the input matrix and
two coupled oscillators, Aronson, Ermentrout, and Kopellg:R"— R is the output function. These subsysteks, are
have theoretically investigated this phenomenon in dg3il  coupled by

In real coupled systems, there exists a time-delay effect

due to the finite speed of data propagation. Nevertheless, Ug(n)=elyg(n—7) =y, ()}, (13
most studies on coupled oscillators did not consider the time-
delay coupling. In recent years, several researchers have ug(n)=ely,(n—7)—yg(n)}. (1b)

studied the time-delay coupled oscillatoé—6]. Reddy,
Sen, and Johnstajv] showed that the time-delay coupling ¢ R is coupling strength aneé>0 denotes the delay time
induces the amplitude death even for two identical oscilla{see Fig. L It should be noticed that each of input signals
tors. This phenomenon can be considered as a time-delay,, 5(n) include other output delayed signayg; ,(n— 7).
induced stabilization of the origin in the coupled systems.The steady state of subsysteds, ; without coupling €
Their result has gained more and more atten{®®]. The  =0) is given byx;=f(X;). The location of steady statg
time-delay-induced amplitude death has been investigated inever changes even by delayed coupling; in other words, the
detail [10]; furthermore, experimental observations of elec-delayed coupling changes only the stability of state.

tronic circuits[11], living oscillators[12], and the thermo- For the first example, we use the delayed logistic sub-
optical oscillatord13] have been reported. systemd 14],

In the present paper, we investigate a time-delay-induced
stabilization of steady states in two identical discrete-time
systems coupled by a delay connection. Our main purposess, -{ |x,,(n+1) PX,2(N{1—X,1(n)}
are as follows{i) we observe the stabilization on numerical _
simulations;(ii) we prove that the stabilization without time Ya(N)=Xq1(N), 23
delay never occurgjii) we prove that the stabilization never
occurs in the class of discrete-time systems. The feature of
this paper is that our results do not depend on the degree of
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systems; in other words, they can be valid not only for low-
but also high—di.mensionql sys.tems._ ' e e
Let us consider two identical discrete-time subsystems ;- & [° &
20( 1 [ ] [ ]
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*Electronic address: kkonishi@fun.ac.jp FIG. 1. Delay coupled discrete-time systems.
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FIG. 2. Behavior of systemspE&2.1). (a) Isolated subsystem
(e=0) and(b) nondelay coupling£=0.5, 7=0) system .

Xpr(n+1)] Xg2(N) {1 ()
S5 [+ )] | pXga(m{1—xg(n)} g
yp(n)=Xg1(N),
(2b)

coupled by (1). The steady state ix;=[(p—21)/p, (p
—1)/p]". The parameter is fixed go=2.1. Figure 2a)
shows the behavior of subsysted), without coupling &
=0). The limit cycle (quasiperiodic orbjt is observed
around the unstable steady staje This cycle is maintained
for the nondelay coupling7=0, £=0.5) as shown in Fig.

2(b). The bifurcation diagram of the nondelay coupled sys-

tems for the range [ 0,1] is shown in Fig. 8a): it can be

seen that there does not exist stabilization. On the other

hand, the delay coupling induces the stabilization of th
steady state for a range ef [see Fig. 8)]. This is the

time-delay-induced stabilization in discrete-time systems;
therefore, we can accomplish the first purpose of this paper.
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FIG. 3. Bifurcation diagram foe. (a) Nondelay coupling £
>0, 7=0) and(b) delay coupling £€>0, 7=1).

FIG. 4. Behavior of systemspg=1.95, p,=0.1). (8 Isolated
subsystem £ =0) and(b) nondelay coupling £=0.5, 7=0) sys-
tem?,,.

For the second example, we use the following subsystems

[15]:
Xo(N+1)=f[X,(N)]+Uuy(n)
E“'[ YoM =X,(N), e
_ Xg(n+1)="1[Xxz(n)]+ug(n)
’3[ yp(N)=Xg(n), (30

coupled by(1). The nonlinear function is described by

pi(x+1)+p,, x<—-0.5
f(x)=1{ P1X+t P2, |x|<0.5
p1(x—=1)+p,, x>0.5.

®rhe steady state ig=p,/(1—p;). Figure 4a) indicates the

chaotic behavior of isolateds&0) subsysten®, for p;
'=1.95,p,=0.1. The behavior of the coupled system without
delay £=0.5,7=0) is shown in Fig. &). We plot the bi-
furcation diagram for the nondelay coupled systers Q) in
Fig. 5@). Like the first example, the stabilization does not
occur in a nondelay coupled system. Figuréls) &nd 5c)
show the bifurcation diagram of delayed coupled system for
7=1,2. In contradiction to the first example, there does not
exist a time-delay-induced stabilization in systésn

We summarize the above numerical resu(fy: the non-
delay coupling does not cause stabilization for either system;
(2) the time-delay-induced stabilization depends on the sys-
tem structure. These results lead us to the following two
problems.(a) Does the nondelay coupling not cause stabili-
zation? (b) Under what condition does the time-delay-
induced stabilization never occur? The proble@sand (b)
correspond to our main purpos@s9 and(iii ). We shall solve
these problems theoretically below.

Linearizing subsystems , ; around the steady staig,
we obtain

£a(n+1)=Ag,(n)+bAu,(n)

AE“'{ Ay, (M)=ck,(n), “@
. &s(n+1)=A&z(n)+bAug(n)

Azﬁ'( Ayg(n)=cgy(n), ©
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FIG. 5. Bifurcation diagram fore. (a) Nondelay coupling
(>0, 7=0), (b) delay coupling >0, r=1), and(c) delay cou-
pling (¢>0, 7=2).

coupled by

Aug(n)=efAyg(n—7)=Ay,(n)}, (6a)
Aug(n)=e{Ay,(n—7)=Ayg(n)}, (6b)
where £,(n):=x,(n)—X¢, &p(N):=xp(N)—X¢, Ay,(n)

=Yo(N) —9(Xs), Ayg(n):=yp(n)—g(xs), A:=df(x)/dx, c
:=dg(xs)/dx. We assume thatA(b,c) is controllable and
observableA is a Jacobi matrix at the steady state The
relation between the inpuku, 5(n) and outputAy, s(n)
signals of each systetX.,, ; can be described by frequency
domain description:

Ya(2)=G(2)U(2), Yp(2)=G(2)Upg(2).

Y. p5(2),U,g(2) are thez transformations ofAy, z(n),

Aua,ﬁ(n) [Yuz,ﬁ(z)::Z[Aya,ﬁ(n)]v Ua,ﬁ(z)
=Z[Au, g(n)]]. The transfer function is given by

o

G(Z): _C(Zlmxm_A)ilb;

d(z)

where the characteristic polynomial id(z)=defzlxm
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H(z,e,7)
- £2 'G(2){1+£G(2)}
{1+eG(2)—ez "G(2)H1+£G(2)+ez "G(2)}

_ez2'n(2){d(2) +en(2)}
" hy(z,e,nhy(z,e,7)

where  hy(z,e,7)=2"d(2) +en(z)(z"—1), hy(z,e,7)
=7"d(z) +en(z)(z"+1). It should be noted that the stabil-
ity of the steady stat&,(n)=Xz(n) =Xx; in the coupled sys-
tem depends only on the characteristic polynomial of
H(z,e,7) [i.e.,hi(z,e,7)hy(z,e,7)].

In the case of nondelay coupling€0, ¢#0), we have
the transfer function

en(2)[d(2)+&n(2)]

H(z,8,0)= a2

The characteristic polynomial df(z,&,0) is d(z)?. There-
fore, if the steady stat®; in the isolated subsystems is un-
stable[i.e., d(z) is an unstable polynomiglthen the steady
statex,(n) =xg(n)=X; in the nondelay coupled system is
also unstabldi.e., d(z)? is an unstable polynomihlAs a
result, we give an answer to the problef@ mentioned
above: if the steady state in isolated subsystems is un-
stable, then the nondelay coupling never causes any systems
stabilization. A similar result was derived for the continuous
time systemg3].

Now let us consider the second problem. The characteris-
tic polynomial of H(z,e,7) can be described by
hy(z,e,7)h,(z,&,7), whereh;(z,e,7) (i=1,2) are continu-
ous inz. Furthermore, it is obvious that

lim hy(z,e,7)=+o, Vr=0.

Z— +

Vee[0,1], (7)

Forz=1, we haveh;(1,e,7)=d(1). If d(z)=0 has an odd
number of real roots greater than 1, thefl) is less than
zero. From Eq.(7) and d(1)<0, it is obvious that there
exists at least one real ropt-1 of hy(z,e,7)=0. Therefore,
h,(z,e,7) is an unstable characteristic polynomial for any
(e,7). We summarize the above result as follows: If the Ja-
cobi matrixA has an odd number of real eigenvalues greater
than 1(i.e., A has the odd-number propertthen the stabi-
lization never occurs for any>0, e #0.

We should note the following two points. First, this prop-
erty is a sufficient condition for the steady state to be un-
stable. In other words, we cannot guarantee that the state is
stable, even if the property is not satisfied. Second, this prop-

—A]. It is well known that the eigenvalues of Jacobi matrix €ty is similar to the delayed feedback cont@FC) of

A are equivalent to the roots dfz)=0. Hence, the stability

of the steady state in isolated subsystems depends only d

the characteristic polynomial(z).

chaos[16—19. The derivation of our result has similarity to
hat in Ushio’s papef17].
First of all, we consider the delayed logistic systé

The linearized dynamics of the coupled system consistind N& Jacobi matriA aroundx; is

of %, 5 and coupling(1) can be described by the linear sys-

tem consisting oA, , ; and coupling6). The transfer func-
tion of the linear system is

0 1
1-p 1
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Forp=2.1, we have lim hy(z,e,7)=—ce.
Z—>—®
0.5233 [ 0 1
Xs= s = .
" los23 -11 1 If the polynomial hy(—1e,7) satisfieshy(—1, &,7)=d

. . -1)=—1-A> =
The steady stat®; is unstable because of the elgenvalueﬁ(ess1 tha n} 1A| noo’t:;nvcé(réf’gr e?/;:saﬁ; IAe\ist_(:)Lneﬂ:got

\=0.5i3.4/2 outside of the unit circle. From the answer ;o) o icsic polynomial is unstable. On the other hand, in
to problem(a), we can guarantee that the nondelay coupllngthe case of odd we have
never causes the stabilization in syst&n This theoretical '
result agrees with Fig.(d). In contrast, we cannot guarantee
stabilization caused by the delay coupling, sificeoes not lim hy(z,e,7)=+c.
have the odd-number property. e
Second, we consider systefB) as an example. Fop,
=1.95 andp,=0.1, the steady state and Jacobi matrix arelf the polynomial h,(—1,e,7) satisfieshy(—1,e,7)=—d
X;=—0.1053,A=1.95. The steady statg is unstable dueto (—1)=1+A<0, thenh,(z,e,7)=0 has at least one root
A=1.95>1. From the answer to problefa), we can guar- less than—1. As a result, for odd- and A< —1, the char-
antee that the nondelay coupling never causes the stabilizacteristic polynomial is unstable.
tion in system(3). This theoretical result agrees with Fig. = We summarize the above discussions: the time-delay-
5(a). Furthermore, we can guarantee that the delay couplinghduced stabilization never occurs in any one-dimensional
never causes the stabilization in systé3)) sinceA has the subsystem. This result agrees with the numerical example of
odd-number property. This result agrees with the numericagystem(3). From this theoretical result and the numerical
simulations in Figs. &) and 5c). example of systeni2), we notice that at least two variables
This paper has considered the sufficient conditions fomre required for the stabilization.
steady state to be unstable; while we have not derived the This paper has investigated the time-delay-induced stabi-
necessary and sufficient condition yet. It would be possibldization of two identical coupled discrete-time systems, and
for us to derive such condition by applying the Schur stabil-has shown two theoretical results. On the basis of our results,
ity algorithm [20] to the characteristic polynomial we think that the mechanism of stabilization is related to
hi(z,e,7)hy(z,e,7); however, the derivation of the simple suppression of chaos by the DFC. Hence, the results of re-
and general condition is not easy. cent research in DFC would be used for investigation of
Now let us consider the problem of stability of the steadytime-delay-induced stabilization. Furthermore, our approach
state in one-dimensional subsystems. The Jacobi matrix sat this paper may be useful for large size coupled systems.
isfies |A|>1, since the isolated subsystems=0) behave This work was partially supported by the Ministry of Edu-
oscillatory. ForA>1, the odd-number property is satisfied, cation, Culture, Sports, Science and Technology of Japan,
so that the polynomiah,(z,&,7)h,(z,&,7) is unstable. For Grant-in-Aid for Young ScientistéB) (Grant No. 13750430
A< -1, we shall discuss below. In the case of ewerwe and the Special Research Funds of Future University—

obtain Hakodate.
[1] K. Bar-Eli, Physica D14, 242(1985. Lett. 85, 3381(2000.
[2] R.E. Mirollo and S.H. Strogatz, J. Stat. Phg§, 245(1990. [12] A. Takamatsu, T. Fujii, and I. Endo, Phys. Rev. L&%, 2026
[3] D.G. Aronson, G.B. Ermentrout, and N. Kopell, PhysicdD (2000.
403 (1990. [13] R. Herrero, M. Figueras, J. Rius, F. Pi, and G. Orriols, Phys.
[4] M.K.S. Yeung and S.H. Strogatz, Phys. Rev. L&®2, 648 Rev. Lett.84, 5312(2000.
(1999. [14] 3.M.T. Thompson and H. B. StewaNpnlinear Dynamics and
[5] G. Kozyreff, A.G. Vladimirov, and P. Mandel, Phys. ReV6E Chaos(Wiley, New York, 1986.
016613(2001). [15] K. Konishi and H. Kokame, Phys. Lett. 248 359(1998.
[6] B.F. Kuntsevich and A.N. Pisarchik, Phys. Rev6E 046221  [16] K. Pyragas, Phys. Lett. A70, 421(1992.
(2001. [17] T. Ushio, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
[7] D.V. Ramana Reddy, A. Sen, and G.L. Johnston, Phys. Rev. 43, 815(1996.
Lett. 80, 5109(1998. [18] K. Konishi, M. Ishii, and H. Kokame, IEEE Trans. Circuits
[8] S.H. Strogatz, Naturd_ondon 394, 316 (1998. Syst., I: Fundam. Theory App#6, 1285(1999.
[9] See http://focus.aps.org/story/v6/st15 [19] H. Nakajima and Y. Ueda, Physica T11, 143 (1998.
[10] D.V. Ramana Reddy, A. Sen, and G.L. Johnston, Physica 020] S.P. Bhattacharyya, H. Chapellat, and L.H. Ké&&bpust Con-
129 15(1999. trol: The Parametric Approach(Prentice Hall, Englewood

[11] D.V. Ramana Reddy, A. Sen, and G.L. Johnston, Phys. Rev.  Cliffs, NJ, 1995.

017201-4



