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In this paper a procedure for constructing efficient symplectic integrators for Hamiltonian problems is
introduced. This procedure is based on the combination of the exponential fitting technique and symplecticness
conditions. Based on this procedure, a simple modified Runge-Kutta-Nystro¨m second-order algebraic expo-
nentially fitted method is developed. We give explicitly the symplecticness conditions for the modified Runge-
Kutta-Nyström method. We also give the exponential fitting and trigonometric fitting conditions. Numerical
results indicate that the present method is much more efficient than the ‘‘classical’’ symplectic Runge-Kutta-
Nyström second-order algebraic method introduced by M.P. Calvo and J.M. Sanz-Serna@J. Sci. Comput.
~USA! 14, 1237~1993!#. We note that the present procedure is appropriate for all near-unimodal systems.
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I. INTRODUCTION

Hamiltonian systems of ordinary differential equatio
can be found in many areas of mechanics, physics, op
chemistry, and elsewhere@2#. Hamiltonian systems of ordi
nary differential equations can be written as

ṗs52
]H

]qs
, q̇s5

]H

]ps
, 1<s<DF, ~1!

wheres denotes the number of degrees of freedom. We n
here thatH5H(p,q) is a sufficiently smooth and real func
tion of 2s real variables. We also note that the dot deno
differentiation with respect to time~from now on, the time
will be represented byt).

During the last decades, many symplectic or canon
integrators have been developed for the numerical solu
of the problem~1! ~see Refs.@3,4# and references therein!.

When a one-step numerical method~which uses a con-
stant step sizeh) is used for the approximate solution of th
above problem, a transformation in phase spacefh(p0 ,q0) is
defined. This space approximates the solution with a s
size equal toh starting from the initial point (p0 ,q0). When
classical one-step methods, such as explicit Runge-K
methods, are used for the integration of Hamiltonian pr
lems, the above transformation is nonsymplectic~see Ref.
@5#!.

In recent years, much research has been done
exponential-type methods. This is because these met
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have very good properties when applied to the solution
oscillating problems~see, for instance, Refs.@6–11#!.

In this paper we introduce a procedure for construct
efficient symplectic integrators for Hamiltonian problem
This procedure is based on the combination of the expon
tial fitting technique and symplecticness conditions. We
velop a simple modified Runge-Kutta-Nystro¨m second-order
algebraic exponentially fitted method based on the ab
procedure. In Sec. II we present the modified Runge-Ku
Nyström method and we give its symplecticness conditio
In Sec. III we present the conditions that are necessar
order that the method integrates exactly any linear comb
tion of exponential functions, and we construct the expon
tial fitting Runge-Kutta-Nystro¨m method. In Sec. IV we
present the conditions that are necessary in order that
method integrates exactly a single harmonic oscillator, a
we construct the trigonometric fitting Runge-Kutta-Nystro¨m
method. In Sec. V we present some numerical results
periodic and oscillatory problems. Finally, conclusions a
presented.

II. SYMPLECTIC MODIFIED RUNGE-KUTTA-NYSTRO ¨ M
METHOD

For the numerical solution of the problem,

q95f~q!, ~2!

consider the following m-stage modified Runge-Kutta
Nyström method~see, for details, Ref.@13#!:

qn5g1qn211hg2q̇n211h2(
j 50

m

b j f j , ~3!

q̇n5g3q̇n211h(
j 50

m

bj f j , ~4!

-
,
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where

f i5 f S qn211hg i q̇n211h2(
j 50

i 21

ai , j f j D , i 50~1!m,

~5!

anda, b, andb are smooth functions depending on the pro
uct of the frequencyv and the step sizeh, and g050 and
gm51.

If we transform the problem~2! into the system of first-
order equations,

p85f~q!, q85p, ~6!

then the above method~4!,~5! can be written as

qn5g1qn211hg2pn211h2(
j 50

i

b j f j , ~7!

pn5g3pn211h(
j 50

m

bj f j , ~8!

where

f i5 f S qn211hg ipn211h2(
j 50

i 21

ai , j f j D ~9!

andg050 andgm51.
In this paper we restrict our attention to the simplest

the above method, i.e., we investigate the casem51.
It is known~for more details see Refs.@4# and@5#! that the

symplecticness conditions come from the requirement

dpn11∧dqn115dpn∧dqn . ~10!

We note here that the proposed map (pn ,qn)
→(pn11 ,qn11) is volume preserving if Eq.~10! holds.

For example, for casem51, and based on the above fo
mula, the following symplecticness conditions are obtain
for the modified Runge-Kutta-Nystro¨m method~8!,~9!:

g1g351,

b0g32b0g250,

b1g32b1g21g1b1g150,

b1b02b1b01g1b1a1,050. ~11!

We also note here that for the above Runge-Ku
Nyström method we make use of the well-known simplif
ing assumptions@14#,
01670
-

f

d

-

(
j 50

i 21

ai , j5
g i

2

2
, 1< i<m. ~12!

III. EXPONENTIAL FITTING MODIFIED SYMPLECTIC
RUNGE-KUTTA-NYSTRÖ M METHOD

Requiring the above modified Runge-Kutta-Nystro¨m
method to integrate exactly the exponential functi
exp(6v x) we have the following equations:

exp~w!5g11g2w1~b01b1!w21b1g1w31b1a1,0w
4,

~13!

exp~w!5g31~b01b1!w1b1g1w21b1a1,0w
3, ~14!

where

w5v h.

Assuming that

g151, g351 ~15!

and solving the system of equations~11!, ~13!, and~14! the
following coefficients for the modified exponential fittin
symplectic Runge-Kutta-Nystro¨m method are obtained:

g151, b05
1

2
,

g252
1

2

w21~2w12!@12exp~w!#

w exp~w!
,

b152
w12@12exp~w!#

w~212w1w2!
,

b052
1

4

w21~2w12!@12exp~w!#

w exp~w!
,

b15
1

2

@21w22 exp~w!#S~w!

w~212w1w2!exp~w!
, ~16!

where

S~w!5w222 exp~w!12w12.
1-2
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For small values ofv, the above formulas are subject
heavy cancellations. In this case, the following Taylor ser
expansions must be used:

g2511
1

6
w22

1

8
w31

1

20
w42

1

72
w51

1

336
w62

1

1920
w7

1
1

12 960
w82

1

100 800
w91

1

887 040
w10

2
1

8 709 120
w111

1

94 348 800
w122

1

1 117 670 400
w13

1
1

14 370 048 000
w141•••,

b15
1

2
2

1

12
w21

1

8
w32

3

40
w41

1

72
w51

1

42
w62

59

1920
w7

1
61

3240
w82

349

100 800
w92

5279

887 040
w101

66 907

8 709 120
w11

2
444 079

94 348 800
w121

967 429

1 117 670 400
w13

1
21 379 951

14 370 048 000
w141•••,

b05
1

2
1

1

12
w22

1

16
w31

1

40
w42

1

144
w51

1

672
w6

2
1

3840
w71

1

25 920
w82

1

201 600
w91

1

1 774 080
w10

2
1

17 418 240
w111

1

188 697 600
w12

2
1

2 235 340 800
w131

1

28 740 096 000
w141•••,

b15
1

12
w22

1

16
w31

1

90
w41

7

288
w52

69

2240
w61

217

11 520
w7

2
1571

453 600
w82

4799

806 400
w91

91 997

11 975 040
w10

2
409 919

87 091 200
w111

65 503

75 675 600
w121

19 954 621

13 412 044 800
w13

2
2 870 310 293

1 494 484 992 000
w141•••. ~17!

We note here that in the cases whenw is allowed to be
complex and the denominator,

p~w!5w~212w1w2!exp~w!, ~18!

is equal to zero, the procedure described below is follow
01670
s

.

Denote bywk , for k521,1, the zeros of Eq.~18!. @Set
w050, althoughw0 is not a root ofp(w). w0 is, in fact a
removable singularity for the coefficients as functions ofw.#

If w5wk , use the coefficients of the classical method
Calvo and Sanz-Serna.

If wÞwk for anyk andp(w) is not close to 0 then use Eq
~16!.

If wÞwk but p(w) is close to 0, then Eq.~16! cannot be
used as given because the coefficients are ill condition
Instead, find the two poleswk,wk11 such that wk,w
,wk11, expand the coefficients in Euler-MacLaurin serie

(
i 50

`

ai~w2w̄! i ,

wherew̄5(wk1wk11)/2, and use truncated MacLaurin ex
pansions instead of the Taylor expansion at the origin~which
need not converge!. Such a MacLaurin expansion converg
with radiusr5(wk112wk)/2.

IV. TRIGONOMETRIC FITTING MODIFIED SYMPLECTIC
RUNGE-KUTTA-NYSTRÖ M METHOD

Requiring the above modified Runge-Kutta-Nystro¨m
method to integrate exactly the differential equati
d2 y/dt252v2y, we have the following equations

cos~w!5g12~b01b1!w21b1a1,0w
4,

sin~w!5g2w2b1a1,0w
3,

2sin~w!52~b01b1!w1b1a1,0w
3,

cos~w!5g32b1g1w2, ~19!

where

w5v h.

Assuming that

g151 ~20!

and solving the system of equations~11!,~19! the following
coefficients for the modified trigonometric fitting symplect
Runge-Kutta-Nystro¨m method are obtained:

g152
2

w2cos~w!22cos~w!22w sin~w!
,

g25
1

4

T0

w@w2cos~w!22cos~w!22w sin~w!#
,

g35cos~w!1w sin~w!2
1

2
cos~w!w2,

b15
1

w S sin~w!2
1

2
w cos~w! D ,

b052
1

4
@w2cos~w!22 cos~w!22w sin~w!#,
1-3
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b05
T1

8wT2
,

b15
1

4

T316w sin~2w!2w3sin~2w!

w2@w2 cos~w!22 cos~w!22w sin~w!#
, ~21!

where

T058w@w sin~2w!211cos~2w!#24@sin~2w!

1w3cos~2w!#2w4sin~2w!,

T158@cos~w!2cos~3w!#14w@11 sin~w!25sin~3w!#

224w2@cos~w!2cos~3w!#116w3sin~3w!

22w4@cos~w!13 cos~3w!#2w5@sin~w!1sin~3w!#,

T2524w2sin~2w!1w3cos~2w!1w414w sin~2w!

26w2cos~2w!12w2

and

T354@cos~2w!212w2cos~2w!#.

For small values ofv the above formulas are subject
heavy cancellations. In this case the following Taylor ser
expansions must be used.

g1512
1

8
w41

1

72
w61

29

1920
w82

349

100 800
w10

2
14 197

8 709 120
w121

708 709

1 117 670 400
w141•••,

g2512
1

6
w22

3

40
w41

11

1008
w61

787

51 840
w82

15 361

4 435 200
w10

2
922 799

566 092 800
w121

63 783 803

100 590 336 000
w141•••,

g3511
1

8
w42

1

72
w61

1

1920
w82

1

100 800
w10

1
1

8 709 120
w122

1

1 117 670 400
w141•••,

b05
1

2
1

1

16
w42

1

144
w61

1

3840
w82

1

201 600
w10

1
1

17 418 240
w122

1

2 235 340 800
w141•••,
01670
s

b15
1

2
1

1

12
w22

1

80
w41

1

2016
w62

1

103 680
w8

1
1

8 870 400
w102

1

1 132 185 600
w12

1
1

201 180 672 000
w141•••,

b05
1

2
2

1

12
w22

3

80
w41

11

2016
w61

787

103 680
w8

2
15 361

8 870 400
w102

922 799

1 132 185 600
w12

1
63 783 803

201 180 672 000
w141•••,

b152
1

12
w21

1

90
w41

17

1120
w62

1571

453 600
w8

2
78 083

47 900 160
w101

95 971

151 351 200
w12

1
55 282 547

373 621 248 000
w141•••. ~22!

It can be seen that whenw→0 the above method become
the classical symplectic second-order algebraic Runge-Ku
Nyström method mentioned in the paper of Calvo and Sa
Serna@1#.

We note here that in the cases when the denominator

p~w!5~w222!cos~w!22w sin~w!, ~23!

is equal to zero the procedure described below is followe
Denote bywk , for k5 . . . ,22,21,1,2, . . . , thezeros of

Eq. ~23!. @Setw050, althoughw0 is not a root ofp(w). w0
is, in fact, a removable singularity for the coefficients
functions ofw.#

If w5wk , use the coefficients of the classical method
Calvo and Sanz-Serna.

If wÞwk for anyk andp(w) is not close to 0 then use Eq
~21!.

If wÞwk but p(w) is close to 0, then Eq.~21! cannot be
used as given because the coefficients are ill condition
Instead, find the two poleswk,wk11 such that wk,w
,wk11, expand the coefficients in Euler-MacLaurin serie

(
i 50

`

ai~w2w̄! i ,

wherew̄5(wk1wk11)/2, and use truncated MacLaurin ex
pansions instead of the Taylor expansion at the origin~which
need not converge!. Such a MacLaurin expansion converg
with radiusr5(wk112wk)/2.
1-4
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V. NUMERICAL EXAMPLES FOR PERIODIC
AND OSCILLATORY PROBLEMS

In this section we apply the symplectic Runge-Kut
Nyström method to four problems. The first is an inhomog
neous problem, the second is the nonlinear undamped D
ing equation, the third is the ‘‘almost’’ periodic orbit problem
studied by Stiefel and Bettis@12#, and the fourth is Kepler’s
problem.

A. Inhomogeneous equation

We consider the following problem

y952100y199 sinx, y~0!51, y8~0!511, ~24!

whose analytical solution isy(x)5cos 10x1sin 10x1sinx.
Equation ~24! has been solved numerically for 0<x

<1000 using the classical second-order algebraic symple
Runge-Kutta-Nystro¨m method @1# @which is indicated as
method ~a!# and the trigonometrically fitted symplecti
Runge-Kutta-Nystro¨m one @which is indicated as metho
~b!#. For this problemv510. In Table I we present the ab
solute maximum error which is equal to

Abserr5 max
x50

x51000

uAnalyt~x!2Approx~x!u, ~25!

where Abserr is the absolute maximum error, Analyt(x) is
the analytical solution, and Approx(x) is the approximate
solution.

TABLE I. Comparison of the absolute maximum error in th
approximations obtained to the inhomogeneous problem using
classical second-order symplectic Runge-Kutta-Nystro¨m method
@1# @which is indicated as method~a!# and the trigonometrically
fitted symplectic Runge-Kutta-Nystro¨m one@which is indicated as
method~b!#. The empty areas indicate that the error is greater t
1 ~or overflow occurs!.

Step sizeh Method ~a! Method ~b!

1
4 4.431021

1
8 1.331021

1
16 1.531022

1
32 2.231023

1
64 4.431024

1
128 1.031024

1
256 2.631025

1
512 6.631026

1
1024 2.831021 1.731026
01670
-
-
ff-

tic

B. Duffing’s equation

We consider the nonlinear undamped Duffing equation

y91y1y35Bcos~vx!, ~26!

whereB50.002 andv51.01. The analytical solution of the
above equation is given by

y~x!5(
i 50

3

A2i 11cos@~2i 11!vx#, ~27!

whereA150.200 179 477 536,A350.24 694 614 31023, A5
50.30 401 61026, andA750.37 41029.

Equation ~26! has been solved numerically for 0<x
<1000 using the above mentioned methods with bound
conditions of the form

y~0!5A11A31A51A7 , y8~0!50, ~28!

where theAi are given as above. For this problemv51. In
Table II we present the absolute maximum error.

C. An orbit problem studied by Stiefel and Bettis

We consider the following ‘‘almost’’ periodic orbit prob
lem studied by Stiefel and Bettis@12#:

z91z50.001eix, z~0!51, z8~0!50.9995i , zPC,

~29!

whose analytical solution is given by

z~x!5u~x!1 iv~x!, u,vPR,

u~x!5cosx10.0005x sinx,

he

n

TABLE II. Comparison of the absolute maximum error in th
approximations obtained to the Duffing’s equation using the cla
cal second-order symplectic Runge-Kutta-Nystro¨m method @1#
@which is indicated as method~a!# and the trigonometrically fitted
symplectic Runge-Kutta-Nystro¨m one @which is indicated as
method~b!#. The empty areas indicate that the error is greater t
1 ~or overflow occurs!.

Step sizeh Method ~a! Method ~b!

2 3.931021

1 5.131022

1
2 5.031023

1
4 3.431021 5.631024

1
8 7.031022 6.831025

1
16 1.731022 8.731026

1
32 4.931023 1.231026

1
64 1.831023 2.031027

1
128 8.231024 3.931028
1-5
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v~x!5sinx20.0005x cosx. ~30!

The solution~30! represents motion on a perturbation o
circular orbit in the complex plane.

We write Eq.~29! in the equivalent form

u91u50.001 cosx, u~0!51, u8~0!50,

v91v50.001 sinx, v~0!50, v8~0!50.9995.
~31!

The equivalent system of equations~31! has been solved
numerically for 0<x<1000 using the above mentione
methods. For this problemv51. In Table III we present the
absolute maximum error.

D. Kepler’s problem

We consider the following system of coupled different
equations, which is well known as Kepler’s problem:

y952
y

~y21z2!3/2
, z952

z

~y21z2!3/2
,

y~0!51, y8~0!50, z~0!50, z8~0!51, ~32!

whose analytical solution is given by

y~x!5cos~x!, z~x!5sin~x!. ~33!

The above system of equations~32! has been solved numer
cally for 0<x<1000 using the above mentioned metho

TABLE III. Comparison of the absolute maximum error in th
approximations obtained to the problem of Stiefel and Bettis us
the classical second-order symplectic Runge-Kutta-Nystr¨m
method@1# @which is indicated as Method~a!# and the trigonometri-
cally fitted symplectic Runge-Kutta-Nystro¨m one @which is indi-
cated as Method~b!#. The empty areas indicate that the error
greater than 1~or overflow occurs!.

Step sizeh Method ~a! Method ~b!

4 3.931021

2 8.231022

1 4.731022

1
2 1.131022

1
4 2.731023

1
8 6.531024

1
16 8.331021 1.631024

1
32 2.131021 4.131025

1
64 5.231022 1.031025

1
128 1.331022 2.531026
01670
l

.

For this problemv5A1/r , where r 5A(y21z2)3. In Table
IV we present the absolute maximum error. We note here
we have obtained similar results with the change of the
tial conditions of the problem.

From the above results it can been seen that the pre
method is much more accurate than the classical one.

VI. CONCLUSIONS

An approach for constructing efficient symplectic Rung
Kutta-Nyström methods is introduced in this paper. Th
present approach is based on the combination of the w
known exponential fitting technique and the symplecticn
conditions. Using this approach we can construct expon
tially and trigonometrically fitted symplectic Runge-Kutta
Nyström methods. Based on this approach, a very sim
one-stage exponentially and trigonometrically fitted sy
plectic Runge-Kutta-Nystro¨m method is developed for th
numerical solution of Hamiltonian problems. Numerical e
amples indicate that the present method is more efficient t
the classical one. We note that the proposed method has s
lar efficiency in systems of coupled oscillators with differe
frequencies. We also note that the role of symplecticity
very crucial since the symplectic exponentially fitted me
ods give much better results in large intervals of integrat
than the symplectic methods and the classical methods,
methods without the symplecticness conditions.

All computations were carried out using double precisi
arithmetic~16 significant digits accuracy!.
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g
TABLE IV. Comparison of the absolute maximum error in th

approximations obtained to the two-body problem using the cla
cal second-order symplectic Runge-Kutta-Nystro¨m method @1#
@which is indicated as Method~a!# and the trigonometrically fitted
symplectic Runge-Kutta-Nystro¨m one @which is indicated as
Method~b!#. The empty areas indicate that the error is greater t
1 ~or overflow occurs!.

Step sizeh Method ~a! Method ~b!

16
125 1.031021

8
125 6.331023

4
125 3.931024

2
125 3.131021 2.531025

1
125 4.231022 1.631026

1
250 8.031023 9.931028

1
500 4.031023 4.831029

1
1000 2.031023 2.4310210
1-6



s rt

l
ods

EXPONENTIALLY FITTED SYMPLECTIC INTEGRATOR PHYSICAL REVIEW E67, 016701 ~2003!
@1# M.P. Calvo and J.M. Sanz-Serna, SIAM J. Sci. Comput.~USA!
14, 1237~1993!.

@2# V.I. Arnold, Mathematical Methods of Classical Mechanic,
2nd ed.~Springer-Verlag, New York, 1989!.

@3# Y.B. Suris, Zh. Vychisl. Mat. Mat. Fiz.29, 202 ~1989!, in
Russian.

@4# J.M. Sanz-Serna, Acta Numerica1, 243 ~1992!.
@5# M.P. Calvo and J.M. Sanz-Serna, SIAM J. Sci. Comput.~USA!

14, 936 ~1993!.
@6# T.E. Simos and P.S. Williams, Comput. Chem.~Oxford! 23,

513 ~1999!.
@7# T.E. Simos, The Royal Society of Chemistry38, 142 ~2000!.
@8# T.E. Simos and J. Vigo-Aguiar, Int. J. Mod. Phys. C10, 1453
01670
~2001!.
@9# M. Hochbruck and C. Lubich,BIT 39, 620 ~1999!.

@10# A. Iserles, DAMTP, University of Cambridge Technical Repo
No. NA 2000/12, 2000~unpublished!.

@11# S. Blanes and P.C. Moan, J. Comput. Appl. Math.142, 313
~2002!.

@12# E. Stiefel and D.G. Bettis, Numer. Math.13, 154 ~1969!.
@13# J. Butcher,The Numerical Analysis of Ordinary Differentia

Equations, Runge-Kutta Methods and General Linear Meth
~Wiley, Chichester, 1987!.

@14# J.M. Sanz-Serna and M.P. Calvo,Numerical Hamiltonian
Problems~Chapman and Hall, London, 1994!.
1-7


