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Exponentially fitted symplectic integrator
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In this paper a procedure for constructing efficient symplectic integrators for Hamiltonian problems is
introduced. This procedure is based on the combination of the exponential fitting technique and symplecticness
conditions. Based on this procedure, a simple modified Runge-Kutta-Nystezond-order algebraic expo-
nentially fitted method is developed. We give explicitly the symplecticness conditions for the modified Runge-
Kutta-Nystran method. We also give the exponential fitting and trigonometric fitting conditions. Numerical
results indicate that the present method is much more efficient than the “classical” symplectic Runge-Kutta-
Nystram second-order algebraic method introduced by M.P. Calvo and J.M. Sanz{SerSai. Compuit.

(USA) 14, 1237(1993]. We note that the present procedure is appropriate for all near-unimodal systems.
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[. INTRODUCTION have very good properties when applied to the solution of
oscillating problemgsee, for instance, Reff6—11]).
Hamiltonian systems of ordinary differential equations In this paper we introduce a procedure for constructing
can be found in many areas of mechanics, physics, opticgfficient symplectic integrators for Hamiltonian problems.
chemistry, and elsewhef@]. Hamiltonian systems of ordi- This procedure is based on the combination of the exponen-
nary differential equations can be written as tial fitting technique and symplecticness conditions. We de-
velop a simple modified Runge-Kutta-Nystncsecond-order
algebraic exponentially fitted method based on the above
o H o H procedure. In Sec. Il we present the modified Runge-Kutta-
p=- i 4 “ops 1<s<DF, (1) Nystram method and we give its symplecticness conditions.
In Sec. Ill we present the conditions that are necessary in
order that the method integrates exactly any linear combina-
wheres denotes the number of degrees of freedom. We notgon of exponential functions, and we construct the exponen-
here thatH =H(p,q) is a sufficiently smooth and real func- tial fitting Runge-Kutta-Nystnm method. In Sec. IV we
tion of 2s real variables. We also note that the dot denotegresent the conditions that are necessary in order that the
differentiation with respect to timérom now on, the time method integrates exactly a single harmonic oscillator, and
will be represented by). we construct the trigonometric fitting Runge-Kutta-Nystro
During the last decades, many symplectic or canonicamethod. In Sec. V we present some numerical results for
integrators have been developed for the numerical solutioperiodic and oscillatory problems. Finally, conclusions are
of the problem(1) (see Refs[3,4] and references thergin presented.
When a one-step numerical methGahich uses a con-

stant step siz@) is used for the approximate solution of the ||. SYMPLECTIC MODIFIED RUNGE-KUTTA-NYSTRO M

above problem, a transformation in phase spag@,,do) IS METHOD

defined. This space approximates the solution with a step . )

size equal tch starting from the initial point ,do). When For the numerical solution of the problem,

classical one-step methods, such as explicit Runge-Kutta

methods, are used for the integration of Hamiltonian prob- q’'=f(qa), 2
lems, the above transformation is nonsymplec¢tiee Ref.

[5]). consider the following m-stage modified Runge-Kutta-

In recent years, much research has been done oiystran method(see, for details, Ref13]):
exponential-type methods. This is because these methods

m
O0n=010n-11 hngn—ﬁ‘hZJZO Bif;, (3
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where i-1 7i2
> a =5, l<ism (12)
=0 2

i—1

f.=f| g,_1+hyiq,_1+h%> a . f.|, i=0(1)m,
T -2 TG sy AT IIl. EXPONENTIAL FITTING MODIFIED SYMPLECTIC

(5) RUNGE-KUTTA-NYSTRO M METHOD

anda, b, andg are smooth functions depending on the prod- Requiring the above modified Runge-Kutta-Nystro
uct of the frequency and the step sizd, andy,=0 and method to integrate exactly the exponential function
Ym=1. exp(*v x) we have the following equations:

If we transform the problen(2) into the system of first-
order equations,

exp(W) =gy +g,W+ (Bo+ )W+ ,3171W3+,3131,0W4=
p'=f(a), a'=p, ©) (13)

then the above method),(5) can be written as

eX[XW):g3+(b0+ bl)W+ bl'ylW2+ blalyoWS, (14)

I
Gn=010n-1+ NP1 +h? Y Bif;, (7)
j=0 where
m w=v h
pn:gspn—1+hj20 bjf;, ®)  Assuming that
where
y1=1, g3=1 (15
i-1
fi=f| q,_1+hyph_1+ hZZ a f; 9) and solving the system of equatiotikl), (13), and(14) the
j=0

following coefficients for the modified exponential fitting

symplectic Runge-Kutta-Nystno method are obtained:
and yo=0 andy,=1. ymp g y

In this paper we restrict our attention to the simplest of
the above method, i.e., we investigate the aasel. 1
It is known (for more details see Refgd] and[5]) that the g:=1, bozi,
symplecticness conditions come from the requirement

2 _
dpn+10dgn. 1 =dp,Ldap, . (10) g :_EW +(2wH2)[1-expw)]
27 2 w exp(w) ’
We note here that the proposed mapp, @n)
—(Pn+1,0n+1) is volume preserving if Eq10) holds.
For example, for casm=1, and based on the above for- W+ 2[1— expw)]
mula, the following symplecticness conditions are obtained b,=- 5
for the modified Runge-Kutta-Nystno method(8),(9): w(2+2w+w?)
9:195=1, 1 W2+ (2w+2)[1—expw)]
0" w exp(w) ’
Bo93—bog2=0,
B195— 0192+ 91b17,=0, C1[2+w—2exgw)]S(w) 18
Y2 w4 2w+ wiexpw) |
B1bo—b1Bo+g1bia; o=0. (12)

We also note here that for the above Runge-Kutta\Vhere
Nystran method we make use of the well-known simplify-
ing assumption$14], S(w)=w?—2 exgw)+2w+ 2.
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For small values of), the above formulas are subject to
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Denote byw,, for k=—1,1, the zeros of Eq.18). [Set

heavy cancellations. In this case, the following Taylor seriew,=0, althoughw is not a root ofp(w). wy is, in fact a

expansions must be used:

1.1 . 1 1 1 1
— T2 a8 A T ab T W6 T T
G2 =1+ gW —gWit oW = 7o W 336"~ 190"
1 1 1
8__ 9 10
12960" ~100800" " 887040"
1 1 1
_ 11 12_ 13
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1
—————————————————————————— 14 ...
14370048000
11 .1 . 3 1 1 59
Wl Wl o wWA L WS Wb T
1= W W T 0 TR T W 1o20Y
L 6L . 340 . 5279 . 66907
3240" ~100800" 887040 ' 8709120"
444079 ., 967429
9434880d" " 1117670400
L 21879951
14370048008
11 . 1 . 1 1 1
—_ . B S o1 = 6
Po=3t 12V~ 16W T 30W 122V T 57
1 1 1 1
_ 7 8__ 9 10
3820" "25920"  201600" " 1774080"
1
_ w1l 12
17418248 " 188697600
1 1

e B e .
2235340800" 28740096008

1o la 1o T o5 69 o 217 .
Pi=oW 16" T 50" T288" T 2240" T 11520"
1571 5 4799 9 91997 10

~253600" 806400" " 11975048’

400010 ., 65503 ., 19954621 .
87091200 75675600 13412044800

2870310203 .
1494484992000 17

We note here that in the cases wharis allowed to be

complex and the denominator,

p(W)=w(2+2w+w?)exp(w), (18

is equal to zero, the procedure described below is followed.

removable singularity for the coefficients as functionsvof

If w=wy, use the coefficients of the classical method of
Calvo and Sanz-Serna.

If w#w, for anyk andp(w) is not close to O then use Eq.
(16).

If w#w, but p(w) is close to 0, then Eq16) cannot be
used as given because the coefficients are ill conditioned.
Instead, find the two polesv,<wy,; such thatw,<w
<w,, 1, expand the coefficients in Euler-MacLaurin series

__20 a(w—w)|,

wherew= (w,+w,,)/2, and use truncated MacLaurin ex-
pansions instead of the Taylor expansion at the originich
need not convergeSuch a MaclLaurin expansion converge
with radiusp= (W, 1 —W;)/2.

IV. TRIGONOMETRIC FITTING MODIFIED SYMPLECTIC
RUNGE-KUTTA-NYSTRO M METHOD

Requiring the above modified Runge-Kutta-Nystro
method to integrate exactly the differential equation
d?y/dt?=—v?y, we have the following equations

cogW)=g;—(Bo+ L)W+ Bra; gw?,
Siﬂ(W)=gZW—,81a1,0W3,

—sin(w) = — (bo+b;)w+b;a; g3,

cogw) =gz~ by yW?, (19
where
w=v h.
Assuming that
=1 (20

and solving the system of equatio(ikl),(19) the following
coefficients for the modified trigonometric fitting symplectic
Runge-Kutta-Nystnm method are obtained:

2
w2cogw) — 2cogw) — 2w sin(w)

_1 To
gz—z

w[w2cogw) — 2cogw) — 2w sin(w)]

1
g3=Cog W)+ Ww sin(w) — Ecos(w)wz,
1 1
bl_w sm(w)—zwcoiw) ,

bo=— %[wzcos(w) —2 cogw) —2w sin(w)],
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’BO_SW—TZ’

:% T3+ 6w sin(2w) —w3sin(2w) @

w?[w? cogw) — 2 cogw) — 2w sin(w)]

B1

where

=8w[w sin(2w) — 1+ cog2w) | —4[sin(2w)

+w3cog 2w)]—w?sin(2w),

T,=8[cogw)—cog3w)]+4w[ 1l si(w)—5sin3w)]
— 24w?[ cogw) — cog 3w) ]+ 16w3sin(3w)
—2w*[cogw) + 3 cog3w)]—w°[ sin(w) +sin(3w)],

T,=—4w?sin(2w) + w3cog 2w) +w*+ 4w sin(2w)

—6w?coq 2w) + 2w?
and

=4[ cog2w) — 1—w?cog2w)].
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b=3+i2—£4 1 oe 1 8
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+ o
201180672 008
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Bo=5 12"~ 50" 2016V " 103680"
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14,

1 1 17
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wi2
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14 (22)

It can be seen that whem— 0 the above method becomes

For small val_ues ob th_e above formula; are subject to the classical symplectic second-order algebraic Runge-Kutta-
heavy cancellations. In this case the following Taylor seriesNystrom method mentioned in the paper of Calvo and Sanz-

expansions must be used.
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4.

Serna[1].
We note here that in the cases when the denominator,

p(w)=(W?—2)cogw)—2w sin(w), (23

is equal to zero the procedure described below is followed.

Denote byw,, fork=...,—-2,—1,1,2 ..., thezeros of
Eq. (23). [Setwy=0, althoughwy is not a root ofp(w). wy
is, in fact, a removable singularity for the coefficients as
functions ofw.]

If w=w,, use the coefficients of the classical method of
Calvo and Sanz-Serna.

If w#w, for anyk andp(w) is not close to O then use Eg.
(22).

If w#w, but p(w) is close to 0, then Eq21) cannot be
used as given because the coefficients are ill conditioned.
Instead, find the two polesv,<wy,; such thatw,<w
<w,, 1, expand the coefficients in Euler-MacLaurin series

Z a(w—w),

wherew= (w,+w,,)/2, and use truncated MacLaurin ex-
pansions instead of the Taylor expansion at the offgimich
need not convergeSuch a MacLaurin expansion converges
with radiusp = (W, 1 —w,)/2.
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TABLE |. Comparison of the absolute maximum error in the  TABLE Il. Comparison of the absolute maximum error in the
approximations obtained to the inhomogeneous problem using thapproximations obtained to the Duffing’s equation using the classi-
classical second-order symplectic Runge-Kutta-Nystrmethod cal second-order symplectic Runge-Kutta-Nystranethod [1]

[1] [which is indicated as methoth)] and the trigonometrically [which is indicated as metho@)] and the trigonometrically fitted
fitted symplectic Runge-Kutta-Nystm one[which is indicated as  symplectic Runge-Kutta-Nystno one [which is indicated as
method(b)]. The empty areas indicate that the error is greater thammethod(b)]. The empty areas indicate that the error is greater than

1 (or overflow occurs 1 (or overflow occurk
Step sizeh Method (a) Method (b) Step sizen Method (3 Method (b
L 4.4x10°* 2 3.9x10°*
L 1.3x10°* ; :olxx 18:2
i 1.5x 1072 1 3.4x10°1 5.6x1074
L 2.2x10°3 1 7.0X 102 6.8x107°
i 4.4x10°4 i 1.7X 102 8.7x10°6
< 1.0x10°4 i 4.9x10°3 1.2x10°6
L 2.6X10°° i 1.8x10°3 2.0x1077
L 6.6x10°° A 8.2x 104 3.9x10°8
o 2.8x10°* 1.7x10°®
B. Duffing’s equation
V. NUMERICAL EXAMPLES FOR PERIODIC We consider the nonlinear undamped Duffing equation,
AND OSCILLATORY PROBLEMS y'+y+ y3: Bcog wX), (26)

In this section we apply the symplectic Runge-Kutta-
Nystram method to four problems. The first is an inhomoge-whereB=0.002 andw=1.01. The analytical solution of the
neous problem, the second is the nonlinear undamped Dufftbove equation is given by
ing equation, the third is the “almost” periodic orbit problem
studied by Stiefel and Bett{d 2], and the fourth is Kepler's 3 .
problem. Y= 2 Agi1c0§ (21 +1)wx], 27

where A;=0.200179477 536A3=0.24 694 614 310°, Ag
_ _ =0.30401610°, andA;=0.37410°.
We consider the following problem Equation (26) has been solved numerically for<(x
v . B s <1000 using the above mentioned methods with boundary
y'=—100y+99sinx, y(0)=1, y'(0)=11, (24 . L qiions of the form

A. Inhomogeneous equation

whose analytical solution ig(x) = cos 1&+ sin 10+ sinx. YO =ArtAstAst Az, y(0)=0, (28)

Equation (24) has been solved numerically for<<  \here thea, are given as above. For this problens1. In
<1000 using the classical second-order algebraic symplectigape || we present the absolute maximum error.
Runge-Kutta-Nystrm method[1] [which is indicated as
method (a)] and the trigonometrically fitted symplectic
Runge-Kutta-Nystrm one [which is indicated as method
(b)]. For this problemy=10. In Table | we present the ab-  We consider the following “almost” periodic orbit prob-
solute maximum error which is equal to lem studied by Stiefel and Bettj4.2]:

C. An orbit problem studied by Stiefel and Bettis

Z'+z=0.006", z(0)=1, z'(0)=0.9995, zeC,
x=1000
Abserr=max |Analyt(x) — Approx(x)
x=0

, (25 (29

whose analytical solution is given by

where Abserr is the absolute maximum error, Anayt(s Z(x)=u(x)+iv(x), uveR,
the analytical solution, and Approx) is the approximate
solution. u(x)=cosx+ 0.000% sinx,
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TABLE Ill. Comparison of the absolute maximum error in the ~ TABLE IV. Comparison of the absolute maximum error in the
approximations obtained to the problem of Stiefel and Bettis usingapproximations obtained to the two-body problem using the classi-
the classical second-order symplectic Runge-Kutta-Ngstro cal second-order symplectic Runge-Kutta-Nystranethod [1]
method[1] [which is indicated as Metho@)] and the trigonometri- [which is indicated as Methoth)] and the trigonometrically fitted
cally fitted symplectic Runge-Kutta-Nystro one [which is indi-  symplectic Runge-Kutta-Nystno one [which is indicated as
cated as Methodb)]. The empty areas indicate that the error is Method(b)]. The empty areas indicate that the error is greater than

greater than 1or overflow occurk 1 (or overflow occurg

Step sizeh Method (a) Method (b) Step sizeh Method (a) Method (b)
4 3.9x 10*; =5 1.0x10°*
: re -
3 1.1x10°? = 3.9x10°*
: 2.7x10°3 25 3.1x10°t 25x10°°
z 6.5x10°* > 4.2x10°? 1.6x10°°
i 8.3x10°* 1.6x10°* > 8.0x10 3 9.9x10°8
3 2.1x10°* 4.1x10°° 555 4.0x10°3 4.8x10°°
& 5.2x10°2 1.0x10°® a5 2.0x10°3 2.4x10°%°
s 1.3x1072 251078

-
N
00!

For this problemv = \/1/r, wherer = [(y?>+2%)?%. In Table

IV we present the absolute maximum error. We note here that

we have obtained similar results with the change of the ini-
The solution(30) represents motion on a perturbation of a 12l conditions of the problem.

circular orbit in the complex plane. From.the above results it can been seen that the present
We write Eq.(29) in the equivalent form method is much more accurate than the classical one.

v(Xx)=sinx—0.000% cosx. (30

u”+u=0.00lcox, u(0)=1, u’(0)=0, VI. CONCLUSIONS
An approach for constructing efficient symplectic Runge-
v"+v=0.001sirx, v(0)=0, v’'(0)=0.9995. Kutta-Nystran methods is introduced in this paper. The

(31 present approach is based on the combination of the well-

known exponential fitting technique and the symplecticness

The equivalent system of equatioi31) has been solved conditions. Using this approach we can construct exponen-
numerically for O<sx<1000 using the above mentioned tjally and trigopnometrically fitted symplectic Runge-Kutta-

methods. For this problem=1. In Table Il we present the Nystrom methods. Based on this approach, a very simple

absolute maximum error. one-stage exponentially and trigonometrically fitted sym-
plectic Runge-Kutta-Nystra method is developed for the
D. Kepler's problem numerical solution of Hamiltonian problems. Numerical ex-

amples indicate that the present method is more efficient than
the classical one. We note that the proposed method has simi-
lar efficiency in systems of coupled oscillators with different
frequencies. We also note that the role of symplecticity is
" y Y z very crucial since the symplectic exponentially fitted meth-
- (y2+22)%2’ z= _(y2+—22)3/2' ods give much better results in large intervals of integration
than the symplectic methods and the classical methods, i.e.,
methods without the symplecticness conditions.
y(0)=1, y'(0)=0, z(0)=0, z'(0)=1, (32 All computations were carried out using double precision
arithmetic(16 significant digits accuragy

We consider the following system of coupled differential
equations, which is well known as Kepler’s problem:

whose analytical solution is given by
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