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Dynamics and stability of solitary waves in optical-microwave interaction
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We study the dynamics and the stability of localized bound states of optical and microwave fields, which are
linked together by a quadratic nonlinearity. The system is an example of an intense interaction between low and
high frequency waves, as appears in many areas of physics. Perturbed solitary waves show a number of regular
but damped oscillations with strong radiation from the microwave. It is demonstrated that these oscillations are
caused by the excitation of several quasibound asymmetric linear modes of the solitary wave. The associated
eigenvalues are found to be complex leading to a decay of the oscillations as observed numerically. Additional
quasibound linear modes with a complex eigenvalue corresponding to exponential growth also exist, but due to
physical constraints cannot be excited. Therefore, in contrast to systems solely with high frequency waves, the
stability of the solutions is retained.
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[. INTRODUCTION trum of the microwave gives rise to an intriguing stable be-
havior.

Cascading effects between a fundamental and a second In this work we first introduce the system of equations
harmonic in media with a second-order nonlinearity are nowand discuss solitary wave solutions. Then we investigate
a well understood topifl]. In particular, the mutual locking  their response on perturbations and perform a linear stability
between both waves has been a subject of intensive invesfnalysis.
gation (for a review, see for example, R¢2]). Here, phase
modulation of the fundamental wave due to interaction with Il. EVOLUTION EQUATIONS AND SOLITARY
the second harmonif3,4] leads to an effective third-order WAVE SOLUTIONS
nonlinearity allowing propagation of bound states between . : . , .
fundamental and second harmonic, i.e., solitary waves. How- | € mutual interaction of an optical with a microwave

ever, a less investigated effect in second-order nonlinearitigdU!S€ In a traveling wave structure is governed by the fol-

which can also lead to cascading effects is optical rectifical?Ving set of suitably scaled evolution equatidss]:

tion (OR) [5], meaning the generation of a static or quasi-

. T . 3
static electric field from a coherent light source. AL T i|u 2=0 )
OR and the electro-optic effeGEOE) are known to con- gz ot T My3™ ot e ’
nect the propagation of high frequency optical and quasi-dc
microwave pulses in traveling wave structures, e.g., electro- 2
. : . , 9 0, d .0
optic modulator$6]. The resulting set of evolution equations f—— = — —Up|Ug— iy —=[UxUpm] = 0. 2)
B . . . ) 2 2 m|Yo yﬁt oYm
[7,8] almost coincides with those derived to describe the in- 0z ot

teraction between short and long waves in hydrodynamics

[9] or plasma physicElQ]. Due to the distinct spectral prop- The two interacting waves are described by completely dif-
erties of the two interacting waves, the mathematical exprederent expressions because of their distinct spectral origin.
sions used to describe their evolution are extremely differentu,, is the real valued amplitude of the microwave whose
A real valued Korteweg de Vrie€KdV) type equation ac- spectrum is centered arourg=0. In contrast, the fast os-
counts for the evolution of the long waves. In contrast, acillating term of the high frequency optical component has
slowly varying envelope approximation is applied to the highalready been removed and all the evolution is due to its
frequency components and a Sadfirger-like equation is complex slowly varying envelope,. The coordinate cor-
obtained for the complex envelope of the optical field. Theresponds to the propagation direction and the time in a
whole set of evolution equations allows for bright solitary reference frame moving with the speed of the optical pulse.
wave solutiong11,12), where the joint action of microwave The paramete$ describes the velocity mismatch between
generation by OR and of the back coupling of the quasistatithe waves. It causes linear microwaves to leave the optical
electrical signal on the optical wave via the EOE mediates apulse into a preferred direction and therefore to break the
effective cubic nonlinearity13]. Here we show that a short- symmetry.c,,==*=1 ando,=*1 correspond to the sign of
wave—long-wave interaction, where the wavelengths of thehe dispersion of the microwave and the optical wave, re-
interacting waves differ by orders of magnitudes, gives risespectively.

to completely different and somehow unexpected dynamical In the above set of equations we have scaled the most
effects. In particular, the absence of a gap in the linear specelevant nonlinear terms, i.e., the OR and the EOE, to unity.
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Consequently the parametgr which ensures energy conser- 70
vation, is normally extremely smallf<10 %). Hence, en- 60k
ergy losses of the optical wave due to the generation of qua-
sistatic electrical fields are almost negligible. We have 50t
checked that this very small term has no qualitative and al- 2 |
most no quantitative effect on the field dynamics. Hence, it 5 40
will be neglected by putting/=0 in the following. 2 3ol
For vanishingy, respective conservation laws simplify >
considerably. The energy of the optical wave and something 20
like an effective mass of the microwave, which are defined 10t
as
. % 3
Eopt:f |U0(Z,t)|2dt t
FIG. 1. Calculated amplitude profiles of solitary wave solution
and with 6=10, B=—50. Solid curve microwavel,; dashed curve
optical waveu.
Mm=f Un(z,t)dt, (3 Note that for a real valued optical fielt,s Egs.(7) and(8)

coincide with those obtained in second-harmonic generation
(SHG) cascadindg2,15], where the microwave plays a simi-
Yar role as the second harmonic field. To allow for bright
solitary wave solutions with evanescent tails the dispersion
1 [ 3 E of the microwaver,, and the velocity mismatch must have
Sy=—-| tun(z,t)dt as —S,=6— —opt (4)  the same signg,,6>0, which expresses the fact that the
My o 0z Mm speed of the soliton must differ from any velocity of a linear
microwave. Also, the wave number of the optical wave has
Hence the center of gravity of the microwave moves alwayso be distinct from that of any other linear wave of the opti-
with a constant velocity, which is determined by the con-cal spectrum. ConsequentBo,<0 must hold. Here we re-
served quantities given above. In the absence of an opticakrict ourselves to overall normal dispersion and assume
excitation, the microwave components always travel into one= 5 =1. It can be shown that for this choice of parameters,
direction, whereas a stationary field distribution requires 4y, is always positive and therefod ,>0 must hold.
balance between effective mass of the microwave, energy of Respective field profiles of solitary waves can be obtained
the optical component, and velocity mismatch. for each propagation constant by solving E(@. and (8)
Although the above system of Eqd) and(2) is nonin-  humerically by means of a shooting techniqaé]. Figure 1

tegrable by means of the inverse scattering transfdél,  shows the calculated amplitude profile of a solitary wave for
there exists a two-parameter family of bright solitary wavesihe parameters= 10, 8= —50.

These are characterized by a propagation congaantd by

a certain velqcity. To simplify the analysis we restrict our- IIl. BEHAVIOR UNDER PERTURBATION

selves to stationary solutions with respect to the chosen ref-

erence frame. Moving solutions can be generated from rest- In the next step, we investigate the dynamical behavior of
ing ones by varying the velocity mismatch and using athe solitary wave solutions. A solution of Eq¥,) and (8)
simple transformation. In what follows we are looking for was determined numerically, perturbed and propagated ac-

are conserved. A third conservation law determines the m
tion of the center of gravity of the microwave,

soliton solutions of the form cording to Egs(1) and(2) by means of a Crank Nicholson
scheme. The perturbation was performed in a similar manner
Un(Z,t)=updt), (5) to Ref.[17]. The aim was to keep the total power of the pulse
constant while using an initial profile for the amplitudes
Ug(Z,t) =Uod t)exp(iBz), (6)  Umdzt),
where B is the propagation constant. Introducing the ansatz 0t)= 024 Uns 04 0) d_ 2
Egs.(5) and(6) into Egs.(1) and(2) and integrating Eq(1) Um,o 0.0) = | Ums,0d1) gdz dtzumsyoé ) '
once we obtain Euzmsyogt)h:(,
dZ (9)
. — 2_
UdeZUmS BUmst |Uod*=0, ™ where ¢ represents the perturbation amplitude.
Figure 2 shows the outcome of a representative numerical
42 experiment. The perturbed solitary wave shows quite regular
E_UOSJF BUgst Upndos=0. (g)  oscillations around its stationary state. In contrast to, e.g.,
2 dt? SHG solitons[17], there is a strong radiation from the mi-
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systems, for example, the generalized KdV equdti@), the
generalized nonlinear Schitimger equatio19,20 or, as in-
dicated above, the system describing SHG solitary waves
[17].

To investigate the stability behavior and the influence of
internal modes in more detail, we perform a linear stability
analysis. To this end we assume the real valued soliton solu-
tion U, Uy to be known and introduce small perturbations
€mdZ,t) asum(z,t)=undt) +en(z,t) anduy(z,t) =[uqt)
+€,(z,t)]exp(B2). Inserting this ansatz into Egdl) and(2)
results in the linearized set of equations,

aem+5aem Pen 0 ., . .
40 Jz gt o3 at[uos(fo €,)]=0, (10

lug I20
de, 1 9e,
|E_:8€o_§ o2 — (UpsEmt Umseo) = 0. (11

®) The small perturbations are expressed as

. _— . 1 1
~ FIG. 2. Persistent oscillations of_ per_turbed sollt_ary wave solu- emzéxm(t)exm)\z)+ EX’r;(t)eXp(*D\* 2), (12
tion; £€=0.2, soliton parameters as in Fig. (B) amplitude of the

microwaveu,, ; (b) absolute value of the optical wavVe,|.

1
crowave and a certain damping of the oscillations is ob- €0=5 [ Xo(1) +Yo(t) JeXpirz)
served(see Fig. 3. Further numerical simulations showed
that a number of discrete oscillation frequencies exists and 1 . L
even beating may occur. However, we never observed the + Q[Xo(t)_Yo(t)] exp—ir*2), (13
underlying solitary wave to decay even for perturbations
comparable with the soliton amplitude or for extremely longwhere X, , and Y,, refer to the in-phase and in-quadrature

propagation distances~5000 (not shown herg components of the perturbations. Note that the microwave is
real and is perturbed by the in-phase component only. The
IV. LINEAR STABILITY ANALYSIS following eigenvalue problem results:
It has been showf17] that regular, long-lived oscillations LE=\E, (14)

of solitary waves correspond to internal eigenmodes or non-
trivial, discrete bound states of the respective linearizedwhere the eigenvectdE(t) =[ X,(t),X(t),Yo(t)]". The op-
problem. They are found in a large variety of nonintegrableeratorL in the present case is given by

| a3 5d . d |, duss 0
g ‘dt TR
1 d?
L= 0 0 _5@_ —Ums | - (15)
1 d?
~ Uos _Eﬁ_ﬁ_ums 0

For a solutiorE(t) with corresponding eigenvaluethe vec-  nent Im(\)<0 results in exponential growth, and hence is
tors E*(t), E(—t), andE*(—t) are also solutions with ei- recognized as corresponding to an instability of the station-
genvalues—\*, —\, and\*, respectively. Excitation of a ary solution. In contrast, a perturbation with a linear mode
perturbation with a negative imaginary eigenvalue compowith positive imaginary part will eventually decay. The
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FIG. 3. Damped oscillation of perturbed soliton: peak amplitude

of the microwaveu,,; all parameters as in Fig. 2.

eigensystem, Eq(15), has two trivial eigensolutions at
:0,
dup/dt
E=| du/dt |, (16)
0

which corresponds to a position shift in both waves and

0
E=| O |, 17
iUgs

nent. Hence, due to the third time derivative there is no gap
in the continuum of the microwave.

This seems to contradict the requirements for the exis-
tence of bright solitary waves. Usually localized pulses exist
in complete gaps of the linear spectrum. Hence, they have
only evanescent waves available to form their low power
tails. If this is not the case, stationary solutions can, in prin-
ciple, couple to respective extended phase-matched waves.
The consequence is the decay of a localized pulse due to the
resulting energy losses. From this point of view the existence
of localized solitary waves, which coexist with extended
waves, seems to be an exceptional case. In fact, solitons
which are located in the continuous spectrum have been
found recently in systems with quadratic and cubic nonlin-
earities[21]. These so-called embedded solitons exist only
for discrete wave numbers where the amplitude of extended
waves vanishes leading to isolatéat zero family soliton
solutions. They were found to be unstable because energy
reducing perturbations prevent the soliton from returning to
its original wave number.

Although there is also no gap in the system discussed
here, solitons belong to a two-parameter family and appear
to be very robust. This surprising result is due to the particu-
lar properties of the KdV-type equation, which determines
the shape of the microwave field. Because the equation of the
microwave can be integrated once, the resulting expression
(7) has a parabolic dispersion and allows only for evanescent
linear waves provided that,,6>0. However, if we investi-
gate dynamical properties or deal with the linearized prob-
lem and nonvanishing eigenvalukst0 no integration can
be performed and no gap appears. Equivalently, &6)

which corresponds to a phase shift in the optical wave. Th%uggests that for any realwe will always find an eigenso-

asymptotic solutions foft|—o of the optical perturbation
functions X,,Y, are obtained by setting,,s and uys in EqQ.
(15) to zero, giving

Xo,Yoxexp + Qot), (18)

with

Qo=V2(—=BEN) (Xo=FY,). (19

lution which possesses nondecaying and oscillating tails for
t— *oo,

However, we still have to explain why only a few well-
defined frequencies can be excitegte Fig. 2 although the
spectrum of unbound linear states is continuous. There must
be an additional constraint, which selects particular frequen-
cies. The constraint is due to the physical requirement that
the microwave can radiate in one direction only determined
by the sign of the velocity mismatch. This is a conse-
quence of the lowest order dispersion term containing the

A similar consideration of the microwave perturbation func-third derivative in Eq.(1). Figure 2 also demonstrates this

tion X, gives X,xexp@mt) for |t|—c with three possible
solutions forQ),,

Qp=i(p-—py), (20)
3 1
Qm=t£(p++p_)+§i(p+—p_), (21
where
p. =3+ N2+[(8/3)3+ (N /2)2]Y2 (22)

Bound eigenstates of the optical field can exist for Re(
<|B|. In contrast, for each real we find a solution with

constraint by the observed single-sided radiation. Hence, all
linear waves, which have a nonzero amplitude at both sides
t— = cannot be excited. Only half-sided solutions of the
linearized problem can influence the stability of the isolated
solitary wave.

Therefore, we solve the eigenvalue problem @4) for a
vanishing field at one boundary only by means of the Evans
method in a similar fashion to Ref22]. In general, this
corresponds to a scattering problem where we are particu-
larly interested in the cases where the transmission vanishes.
The validity of this technique was verified using a finite dif-
ference computation. As shown in Fig. 4, at discrete values
of \, half-sided eigenmodes with vanishing tails for either
t—oo or t— —oo appear within the otherwise dense band of
continuum modes. Interestingly, a large number of discrete

infinitely extended oscillatory tails of the microwave compo- modes can exist depending on the system paramétess
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TABLE I. Oscillation frequencies and damping constants of per-
2 2 turbed solitary wavesp= —50. ReQ)cac and ImQ\),c are real
i and imaginary parts of calculated eigenvalne Re(\),o, and
A IM(\) prop COrrespond to oscillation of soliton perturbed with inter-
& ' nal mode.
g
1 é ReO‘)ca\lc Imo\)calc ReO\)prop |m()\)prop
0.1 8.83 0.155 8.88 0.141
-2 1 17.6 0.235 17.6 0.238
-4 -2 0 2 4 6 8 10 32.1 0.107 32.0 0.128
t
1 3 . . - -
d the soliton intact. As shown in Table I, the damping rate of
0.5} — . internal oscillations is in good agreement with the imaginary
- : . - - part of the discrete eigenvalues In)( Here, the soliton so-
% 0 —f % ﬂ’\})&\(}(;\){; lutions were perturbed with particular modes in a similar
i \é V "2 manner to Fig. 5.
-05 E. Considering the symmetry properties of the eigensystem
: ¥ discussed earlier, we also obtain a set of discrete solutions by
=1 S S b) reflection symmetry around=0 with oscillating tails on the
4 opposite side. They correspond to the physical situation that
4 2 0 2 4 6 8

t incoming waves are just absorbed by the soliton leading to a
. ) _resonant excitation of oscillations. Therefore, respective ei-
FIG. 4._ Inte_rnal_one-S|ded quasibound modes of the SO"tarygenvaIues have a negative imaginary part Nj¢0, but
;V;‘éek igﬁg:t(ejr\'/g Ege).()lia:)B zrelal g::hggxg;ur(\?; r;gllfjg gf)iﬂih play no role in the absence of an external source of radiation.
solid curve Ref)—48.2 - - The location of all these different types of eigenvalues in
- the complex plane is sketched in Fig. 7. In doméin we
find a dense band of radiation modes with both microwave
below). To check if the one-sided internal modes are indee@nd optica| eigenfunctions are unbound. Dom@h repre-
the cause of the soliton oscillations in Flg 2, a soliton SOlU-SentS eigenmodes with bound Optica] and unbound micro-
tion was perturbed with a particular internal mode and subyygyve eigenfunctions. Domairf8) and(4) correspond to dis-
sequently propagated. As shown in Fig. 5, discrete oscillagrete right-sided and left-sided asymmetric perturbation
tions can be excited separately and both the calculateflinctions, respectively.
eigenvalue and the oscillation frequencies are in good agree- |t should be noted that eigenfunctions with oscillating
ment, as seen in Table I. tails or “quasibound modes” have also been found and
The eigenvalues of these half-sided modes show additiorproven to be responsible for soliton oscillations in the SHG
ally a small imaginary component If>0 (see Fig. 6  system[17]. There the corresponding eigenvalue lies in the

indicating a decay of respective perturbations. Hence, thgap of the fundamental but in the continuum of the second
energy loss due to the outflow of microwave power causes Barmonic.

decay of respective oscillatior(see Fig. 3 while leaving

0.3
64
0.2
63.5} I
o 63l B 0.1
=) =< il
62.5¢ E 0 v
621 -0.1
61.5 : -0.2
0 0.5 1
z
-50 -25 0 25 50
FIG. 5. Excitation of a soliton with its internal modes. The peak Re[A]
amplitude of the microwave is shown. Soliton parameters as in Fig.
4. Solid curve, excitation with an internal mode with R¢€ 32.1 FIG. 6. Development of eigenvaluésin complex plane with

(circular frequency of oscillatiof) =32.0); dashed curve, excita- varying parameterd (8= —50); solid curves, right-sided quasi-
tion with an internal mode with R&() =48.2 (circular frequency of  bound internal modes; dashed curves, left-sided quasibound modes.
oscillation () =47.8). Depicted are the first four discrete modes.

016611-5



K. BUBKE, D. C. HUTCHINGS, U. PESCHEL, AND F. LEDERER PHYSICAL REVIEW &7, 016611 (2003

Im(.)
@) 0.25;
m @ |5 x @ Re®)

= s 0.2

X X .

Bl N Bl ) =

) E 0.15
FIG. 7. Schematic structure of the spectrum of the linear eigen- 0.1r
value problem Eqs(14) and (15): (1) both microwave and optical 0.05

eigenfunctions are unbouridRe(\)|>1|8|, Im(\)=0], (2) bound '
optical and unbound microwave eigenfunctiofsymmetrig, [0 0
<|Re(\)|<|B|,Im(\)=0], (3) location of decaying quasibound 10

modes[Im(\)>0], (4) location of exponentially growing quasi-

bound mode$Im(\)<0], (5) trivial modes §=0). ) ) )
FIG. 9. Imaginary part of eigenvaluasvs soliton parametef

Figure 8 shows the calculated eigenvaliess a function (8= —50). Depicted are the first four discrete modes; the number-
of the parameteB and 6. For decreasing and hence de- ing corresponds to eigenmodes in Fig. 6.
creasing velocity mismatch, a number of eigenvalues emerge
from the boundary of the continuous spectrum of the optical As shown in Fig. 9, higher order modes are more weakly
wave. Note that in Fig. @) only the eigenvalues of the first damped than lower order ones. This coincides with our ob-
ten modes are shown. However, we did not find an uppeservation that a symmetric perturbation corresponding to Eq.
limit for the number of half-sided modes. For large velocity (9) leads to an initial strong excitation of the fundamental
mismatch, i.e., for larg®, there are no internal eigenmodes mode, whereas after a certain propagation length the dynam-
leading to a threshold for the appearance of soliton oscillaics is governed by a beating of oscillations with frequencies
tions. A similar threshold exists in the case of SHG solitonscorresponding to higher order modes.
[23] for the bifurcation of an internal mode from the continu-  Even for strong perturbations, we never found any soliton
ous spectrum, where for large phase mismatch between fume decay into linear radiation. A simple explanation of this
damental and second harmonic the soliton does not suppambustness is based on the conservation law (Bg.For a

an internal mode. solitary wave solution satisfying Eqé7) and(8), the center
500.0 . ‘ , , of gravity of the microwave is at rest. But, a decay into linear
10. Z radiation would result in a constant flow of microwave en-
400.0 | «31_0 ergy into one direction. Hence, the center of gravity of the
& / whole microwave distribution would shift eventually in con-
33000 | 0 K tradiction to Eq.(4). Therefore, the main portion of the mi-
5 -B crowave component must remain localized and only waves
C 5000 | e with M,=0 can be emitted.
100.0 | 1 V. CONCLUSIONS
@ We have studied solitary waves in a system describing the

®%0 1000 2000 3000 4000 5000 interaction between a microwave and an optical wave in a
second-order nonlinear medium. The equations are similar to
a system of long-wave—short-wave interaction, which can be
found in a variety of other physical systems. Perturbed soli-
tons show persistent oscillations with strong radiation from
the microwave. These oscillations stem from eigenmodes of
the linearized problem. It is found that the solitary waves are
always located in the continuum of the microwave. Apart
from the dense band of continuum modes discrete half-sided
modes with complex eigenvalues exist. As the microwave is
] physically constrained to radiate in one direction only, only
(b) modes which lead to regular, damped oscillations are ex-
- cited. Whereas for large mismatch none of these degenerate
1% 10 states exist, a number of discrete eigenvalues bifurcate from
the border of the continuous spectrum of the optical wave
FIG. 8. Real part of eigenvalues Ré(of one-sided discrete With decreasing velocity mismatch. No upper limit to the
internal modes as a function of soliton parametéas.o=20, the ~number of quasibound states seems to efése Fig. 8
gap of the optical wave is marked by a dotted liti®; eigenvalues  Eigenstates which lead to soliton instability were not found.
of the first ten modes witl= —50; the numbering corresponds to Soliton decay is prohibited by the physical conservation laws
eigenmodes in Fig. 6. for the system.

2
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