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Multibarrier tunneling
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We study the tunneling through an arbitrary number of finite rectangular opaque barriers and generalize
earlier results by showing that the total tunneling phase time depends neither on the barrier thickness nor on the
interbarrier separation. We also predict peculiar features of the system considered, namely the independence of
the transit time(for nonresonant tunnelingand the resonant frequency on the number of barriers crossed,
which can be directly tested in photonic experiments. A thorough analysis of the role played by interbarrier
multiple reflections and a physical interpretation of the results obtained is reported, showing that multibarrier
tunneling is a highly nonlocal phenomenon.
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[. INTRODUCTION generalization of the Hartman effect for double-barrier tun-
neling.

A renewed interest in a typical quantum phenomenon Convincing qualitative explanations of these two findings
such as the tunnel effect has been recently achieved due to(iaamely, that the tunneling phase time is independent of the
long series of experiments aimed to measure the tunnelinbarrier thickness as well as of the interbarrier separation for
transit time (for reviews see, for instance, R¢fl]). While  opaque barriejshave been reported. When considering a
such experiments involving electrons are usually difficult togiven wave packet entering a potential barrier region, a re-
realize(mainly due to the smallness of the electron de Bro-shaping phenomenon occurs in which the traveling edge of
glie wavelength at usual temperaturasd even of uncertain the pulse is preferentially attenuated with respect to the lead-
interpretation, the observations on photonic tunne[i2g6]  ing one, thus simulating a group velocity greater todth,3].
have by now provided clear data on this subject. Despite thin practice, the Hartman effect in the tunneling through a
different phenomena studied in several experiméatsler-  thick barrier is explained from the fact that inside the barrier
sized waveguides, photonic band gap, total internal reflecro phase accumulates, and the entire phase shift comes only
tion) and the different frequency ranges for the light usedfrom the boundaries, thus being substantially independent of
(from the optical to the microwave regiprell such experi- the thickness[12]. Furthermore, when two barriers are
ments have shown that, in the limit of opaque barriers, theresent, the transit time independence on the barrier separa-
transit time to travel across a barrier of widthis usually tion can, instead, be understood in terms of an effective ac-
shorterthan the corresponding one required for gt eva-  celeration of the forward travelling waves in the interbarrier
nescent propagation through the same region of width region, which arises from a destructive interference between
This result can be interpretéd] in terms of a superluminal the two barrierd11].
group velocityv 4> c which, however, does not violate Ein- Further noticeable results have been recently achieved in
stein causality, since the signal velocity relevant for {1t  Ref.[12], where it has been shown that a wave packet travels
is never measured. Nevertheless, we prefer to look at thi zero timea region withN arbitrary s-function barriers.
experimental result as an observation of the simple Hartman In this paper, we extend all these findings by considering
effect [8]: for opaque barriers the tunneling phase time isthe case olN successive opaque barriers with finite widths
independent of the barrier width. Although several defini-and heights. While we confirm all previous results, we gen-
tions of the tunneling timéalso related to the different ex- eralize them by showing that some peculiar tunneling prop-
perimental setups usgdxist[1] and a general consensus on erties are independent of the number of the barriers crossed
this is still lacking, it seems that all the experimental results(Sec. I). Furthermore, in order to establish a quantitative
can be successfully interpreted in terms of phase fige interpretation of the involved phenomena, in Sec. Il we

Further light has been put on the problem by recent exstudy the role of multiple reflections in double-barrier tun-
periments involving double-barrier penetratidt®]. In fact,  neling and show how strongly the total tunneling phase time
while the above effect has been confirmed in such a systemepends on nonlocal effects. Finally, in Sec. IV we discuss
too (far from the resonances of the structyrebservations the results obtained and give our conclusions.
show that the transit time is also independent of the separa- In view of the formal analogy13] between the Schro
tion distance between the barriefsupposed to be thigk  dinger equation and the electromagnetic Helmholtz equation,
This peculiar phenomenon has been studied theoretically iour study applies to matter particle tunneling as well as to
Ref.[11], where the authors have provided a straightforwarcevanescent propagation of photonic wave packets. This is a

straightforward consequence of the fact that in both cases the
starting point is basically the sami@ our case it is Eq(2)]
*Email address: Salvatore.Esposito@na.infn.it [9], on interchanging the roles of angular frequenreyand
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V(x) ‘
‘I’(X.t)=J don(w)p(x)e™',
Y%
where 7(w) is the envelope function. Keeping this in mind,
ob— 1 = for the sake of simplicity we deal with only stationary solu-
' 0 a L Lu ATV tions as in Eq(2).

An alternative parametrization for the wave function
FIG. 1. Potential barriev(x) with N equally spaced rectangular (which is especially useful for larghl) is that of writing
bumps of given height and width. #(x) in Eq. (2) in terms of the periodic and evanescent
) ) Bloch wave functions of the corresponding periodic barrier
wave vectork into the corresponding ones of enerByand  potential. This approach also allows to obtain closed expres-
momentunp through the Planck—de Broglie relations. Thus, sions for the reflection and transmission coefficients for an
throughout this paper, we indifferently use particle or waveahitrary number of barriefd 4]. However, we prefer to start
terminology unless the meaning of what we are doing beyjjth Eq. (2) which is a direct generalization of the corre-
comes unclear. sponding expression usually considered in one-barrier sys-
tems, in view of our discussion on analogies and departures
Il. TUNNELING THROUGH N SUCCESSIVE BARRIERS between theN-barrier and single-barrier cases. As noted in
Ref. [9], the explicit dependence on the frequency of the
(real) wave vectok in the barrier-free regions and imaginary
wave vectori y in the barrier ones enters only the final ex-
pression for the phase time. As long as possible we do not
. : use a particular dispersion relation in order to draw general
Vo, (i—Dl=x<(i-1)L+a (1) featureps which are IcD:ommon to the particle and to thge wave
0, otherwise, case.

The 4N unknown coefficientsk, T,A,;,B; are obtained
fori=1,2,... N. For the sake of simplicity, we choose the from the 4\ matching conditions for the functiog and its
heightV, of the potential barriers, as well as the widtlof  derivative 4’ at the discontinuity pointx+ (i— 1)L, x=(i
each barrier, to be the same for llrectangular barriers. We —1)L+a of the potential. Note that the quantiti®sand T
further assume equally spaced barriérs,a being the inter-  have the meaning dfotal) reflection and transmission coef-

Let us consider a wave packet moving along xhaxis
and entering at=0 a region with a potential barri&(x) as
depicted in Fig. 1:

V(X)=

barrier distance. ficient from the N-barrier system, respectively, and satisfy
The propagation of the wave packet through t_he barrierghe unitarity conditionR|?+|T|?=1.
is described by a scalar fielt representing the Schimger We have produced BATHEMATICA symbolic code in or-

wave function in the particle case or some scalar componerier to obtain explicit analytic expressions for all the coeffi-
of the electric or magnetic field in the photonic case. This iscients appearing in Eq$3)—(6). However, we here report
the solution of the Schringer equation or the Helmholtz only the interesting result obtained for the transmission co-
equation with potential or refractive index in E@) and, in  efficient T(N) for an N-barrier system in the opaque barrier
both cases, it takes the following form: approximatiot ya>1. In this limit the quantityT(N) can

. . be factorized in the following way:
i (X), (i—l)L=x=(i—1)L+a

B (i=12,...N) ) T(N)e*=Co&(N) A(N), @)
0= Yoi1(X), otherwise @
(i=0,1,2...N), o 4i xk
with: (k+ix)®
Pr(x) =R Re Ik, 3 EN)=[e™ )",
(4 F(N)=

2xk cosk(L—a)— (k- x?)sink(L—a)
_ A akx—(i-1)L] Caik[x—(i—1)L]
Waiea(X)=Aairs Baiae Note that only the real term& and F depend ona,L,N,
X(i=12,...N-1), (5 while the complex factoC, does not. As a consequence,
since the tunneling phase timeis defined as
Pon+1(x) = Tk (N=DL, (6)

Obviously, the physical field is represented by a wave packet!For general expressions obtained using the parametrization in
with a given spectrum ifw: terms of Bloch wave functions, see REf4].
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do

"~ do

8

T

and the quantity

4iyk
(k+ix)?

|

is independent o&,L,N, we arrive at the general conclusion

p=arg T(N)e'ka = arg{

k2 _ X2
=arctan———

2xk ©)

thatthe tunneling phase time for a system of N opaque bar-

riers depends neither on the barrier width and interbarrier
distance nor on the number of the barriers

Let us now discuss the effects of the real terms in &j.
on the tunneling probabilitP+(N)=|T(N)|?:

2

4xk aoN
Pr(N)= P [e™¥7]
} 2vk 2(N-1)
2xk cosk(L—a)— (k?— x?)sink(L—a)
(10

We easily recognize that the last factor in Efj0), coming
from the termZ(N) is responsible for the resonance struc-
ture of the transmission probability. The fact(N), is, of
course, absent in the case of only one barrier, Nes,1 or
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the same value of the tunneling time for crossing only one
barrier (see abovg we see that, when resonant tunneling
takes placethe total time required to cover the distance L
(one barrier lengtla plus one interbarrier distande—a) is
zera This, however, is only a mathematical result since, in
the actual situation, the physical phase time is the sum of the
off-resonance time considered abdfer which the property
just outlined holdsand the time required to cross the reso-
nance, which is typically much larger than the off-resonance
time, being proportional to the absolute thickness of the po-
tential structure. In the following, we only consider the in-
teresting case of nonresonant tunneling.

[II. MULTIPLE REFLECTIONS AND NONLOCALITY

In order to have a physical interpretation of the results
obtained previously, we now consider the effect of single
barriers on the propagation of the wave packet through the
entire N-barrier system, by invoking the superposition prin-
ciple. For xsthe sake of simplicity, we will study the case of
a system of two opaque barriers.

A. Partial coefficients

For N=2, in the barrier-free regions, Eq8)—(6) reduce
to the following:
lﬁl(x) — eikx+ Re_ikx,
lfl3(X):A3eikX+ B3e7ikx, (13)

1/15()() — Teik(fo),

N#1 butL=a. However, no resonance can occur even in
the partiCUlar case in which the interbarrier distance is tuneq\/here the expncit expressions for the coefficients are re-
in a way thatL—a=va/k(»=0,1,2...). In this case, ported in the Appendix. Let us now denote wih,T, and
waves moving forward and backward in the interbarrier reR, T, the (partia) reflection and transmission coefficients of
gions interfere between them such that no resonance tak@ge first and second barrier, respectively. In the region with

place. The resonance condition for the tunneling probability, <o the reflected wave is described by the term

is, from Eq.(10), the following:

tank(L—a)= (13)

k2_X2'

It is worthwhile to observe that Eq11) does not depend on

Re "*=R,;e ™+ B;Te ', (14)
while for x>L +a the transmitted one is described by

TekOD = A, T,elkb), (15

N, so thatthe resonant frequency is the same irrespective oBy taking into account multiple reflections from the two bar-

the number of barriers to be crossedote, however, that the
N—1 coincident resonances of E(LO) of the ideal case
studied here split intdN—1 closely spacedbut differeny
resonances in real physical systems. For example, in crysta
in the limit of infinite N, these merge into the band structure
of the periodic barrier potential.

Finally, we point out an intriguing consequence of the
resonance condition. Let us write Ed.1) as follows:

tang tank(L—a)=1, (12

where ¢ is given in Eq.(9), and take the derivative of Eq.
(12) with respect to the angular frequenaey By using Eq.
(8), we easily recognize that+ =0, where 7, is the
(phase time for traveling the interbarrier distande-a in

riers in the region witha<x<L, we see that the forward
traveling wave is described by the term

Is, Aze™* =T [1+R;Ry+ (RRy) 2+ - - - 1€, (16)
while the backward one is described by
Bye K¥= AR,e k(L) (17)
Then, by introducing the quantity
S=§ (Rle)lz;, (18)
=) 1-R;R;

which accounts for multiple reflections, from E¢$4)—(17)

vacuum. Keeping in mind that the total tunneling time haswe obtain
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R=R;+B3T,, For future reference, we also consider the partial coefficients
RY,T9,R3, TS in the approximation of no multiple reflec-
T=A3T,, (19 tions, as considered in Refll]. These are obtained from
Egs.(19) by settingS=1. We have
A;=T,S,
B AN, R;=Ros+Ro, (25)
T1=Togt+Tq ,

By solving these equations with respect to the partial reflec-
tion and transmission coefficients, we get while RS, T9 are the same as in Eq1).

Note, however, that in Refl11] the authors have consid-

1:m, ered the case of no multiple reflections and, moreover, they
1- B% also neglected the second teBgyT, in the first equation in
Eq. (19) corresponding to backward waves in the O re-
As;—B3R gion transmitted from the first barrier, reflected from the sec-
T1=—1_82 , (200 ond one and again transmitted from the first barrier. In this
3 approximation, the quantityR? in Eq. (25) should be re-
B placed by the following one:
_ 8 kL
RZ—A—se , _ _
R0=Rog+ Lt K pkaag-2n
. T K+ix (k+iy)?
2T Ay

While the parametrization of the wave function considered in
In the opaque barrier limiga>1, for the second barrier we Ref.[11] s, of course, permitted and leads to correct results,
obtain nevertheless, the partial coefficients they obtained have no
‘ direct physical meaning, as we will show below.
R,=Roge'", (21)
T2=TOBe“‘L, B. Unitarity conditions
The interpretation of the quantitid®;, T, andR,,T, as
while for the first barrier: reflection and transmission coefficients of the first and sec-
ond barrier is derived from the unitarity conditions satisfied
R1=Ros™Ro*Re, (22 py these coefficients. In fact, sinckR|?+|T|?=1 and

2 2_ :
Ti=Tos+ Tot Tr, |IRog|*+ | Togl“=1, we find that

Where IRy|?+[T4?=1, (26)
K—iy dixk |Ro|?+]T2?=1.
OB~ |+ - 5 X, . . . . .
X (k+ix) It is easily recognizable as well that, assuming no multiple
reflection, the total probability for scattering from the first
dixk o barrier islower than 1:
o= —— €& e X (23
(k+IX) |Rg|2+|Tg|2:1_]:'Ze—2)(a, (27)
are the reflection and transmission coefficients Correspondin%_ _ ) )
to a one-barrier systemN(=1) and this _revealmg t_hat something _ha_s been forgotte_n._ Obviously,
multiple reflections are the missing terms and it is worth to
k—iy\® 2 2iK(L- ) 242 observe that the probability for this phenomenon to occur,
Ro= —(m Fee e which from Eq.(27) we deduce to be&=2e™?X?, is given by
k—iy)® Pr=|Rg|?+|Tr/?= F?e 223, (28)
R= _ ) fZelkLefzxa,
k+ix Thus the quantitieR®g and T, which must be added to the
i\ 2 no multiple reflection coefficient®? and TS, in order to
To= _X Fe?k(L-a)g-ikLg—xa (24)  obtain the complete oneR; and T, respectively, can be
k+ix interpreted as the terms describing the phenomenon of mul-
s tiple reflections between the first and second barrier.
Toz — k—ix Fe—xa Incidentally, by using the parametrization of REf1], we
R kK+iy ' obtain an unphysical scattering probabilgyeaterthan 1,
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|§0|2+ |-|-o|z: 1+ F2e2x@ This relation leads to the obvious conclusion that the tunnel-
1 1 ’ . . . . K
ing time 7 is the sum of the partial timé&r, andr, spent to

, o ) ) , ) _travel across the first and second barrier, respectively, plus
which makes it impossible to give a direct physical meaningyg time ¢ required by multiple reflections in the interbarrier
to RY, T9. region of lengthL —a. However, it is interesting to evaluate

The meaning of the picture just outlined is then quitethe explicit expressions for these times and, from Eg6)
trivial. R, and T, corresponding to the second barrier arewe get
simply given by the one-barrier coefficieRgg, Tog times a
phase factor which takes into account the fact that the second

barrier starts ak=L, while the reference point in our dis- $1= o~ 5 +ka, (32)
cussion is ax=0. Instead,R; and T, related to the first
barrier are given by the sum of two terms: the first one cor- bo—KL= o, (33)

responds to the no multiple reflection coefficients, while the

second one describes the phenomenon of multiple refle¢ypere bo=arg Toge' ) is the one-barrier tunneling phase

tions. However, it is remarkable thab multiple reflection  time For opagque barriers, the leading ternSiis, from Egs.
coefficients Rand T} in Egs. (25) do not coincide with the (1g)(21), and(22), the following:
one-barrier coefficients § and Tog. This is an obvious

consequence of the fac_t that the scattering probability from (k+iy)?2 2xk
the first barrier,neglectingmultiple reflections, cannot be Szﬂ —ikLi2 RN
equal to unity and the extra ternf&, and To in Egs. (25) X 2xk coskL/2—(k“— x“)sinkL/2

must be present in order to achieve the probability constraint

in Eq. (27). On the other hand, the scattering probability,and thus

including multiple reflections, must be equal tgdccording

to Eq.(26)], so that we can deduce th_at the qu.a.ntit?@sand bs=— o+ & _ka (34)

T are related to the multiple reflection coefficiefg and 2

Tr. Itis very easy to obtain from Eq$24) thatRg andTq

differ from Rg and Tk just by a phase factqdepending ol. ~ While the time required to cross the second barrier equals

anda): exactly the one-barrier tunneling phase tifisee Eq.(33)],
from Eqgs.(32) and(34) we see that

) (29 1+ ¢s=0, (35
Rr  Tr
that is,the time spent in traveling from the starting edge of
Then, multibarrier tunneling is a highly nonlocal phenom-the first barrier to the starting edge of the second one is.zero
enon driven by multiple reflections, whose influence on theSomething similar to this statement has already been sug-
determination of the reflection and transmission coefficientgjested in literaturé¢see, for instance, Reff11]), but now we
is (indirectly) present even in the case in which they arehave a quantitative proof for that. Moreover, we can also
neglected. deduce that, due to multiple reflections, the time to cross the
first barrier is usuallgifferentfrom the one-barrier tunneling

C. Tunneling phase time phase time since

Let us now consider the tunneling phase timia Eq. (8) bo— dr
corresponding to the double-barrier crossing considered here o~ ¢1=T. (36)
and introduce the quantities
b= arg{-l—leika}, where

= Tot=2¢y+kL—2ka,
b= argT,e'ka}, (30) PoardTel =240 :
dr=arg{Tr}=2¢

are the phases corresponding to the tefigsand Tg, the

whose derivatives with respect to frequency give the hasequality holding true only in the case in which the interbar-
) . . pect 4 Y9 e PhasHa - distance coincides with the barrier width, i.e5 2a.
times for the first-barrier crossing, the second-barrier cross-

ing, and the time associated to multiple reflections, respec-_______
tively. SinceT=T,T,S from Egs.(19), the total tunneling
phase is given by

ps=arg[Sek—1

°Note that the timer, corresponds to the phage — kI, since the
traveling along the distande is already taken into account i,
+ ¢ or, in other words, in the expression for the coeffici€atin
¢=p1+(p—KL)+ ¢s. (31 Eqg. (21) we have already considered the shift from 0 to x=L.
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IV. CONCLUSIONS Finally, we point out that our findings also agree with the
recent results reported in Rdf12], according to which a
In this paper we have studied the tunneling of a particle owave packet travels in zero time a region wNhs-function

a photonic wave packet through an arbitrary numieof barriers. In fact, as said above, the total tunneling time coin-
finite rectangular opaque barriers and obtained an analytigides with the transit time for the last barrier or one-barrier
expression for the total transmission coefficient Eg@).  Phase time. From Ref9] (see Eq.(13) of that paper we
From this we have confirmed and generalized to the preseffién see that, fog— o<, this time tends to zero, thus recov-
case what was found earlier for a system of §8kor two ~ €'ing the result of Refl12]. It would then be nice, in the
[11] barriers: the(total) tunneling phase time is independent futur.e, to make the connect_lon _between multl_ple reflections
of both the barrier width and interbarrier distance. The samétudied here and the tunneling interpretation in terms of su-
result applies to the reflection time for the model studied inPeroscillations quoted in Reff12].
the present paper. In fact the potential barrier considered here
is symmetric, so that the reflection phase and the transmis-
sion phase only differ by the fixed angig2. As a result, the ACKNOWLEDGMENTS
phase times for reflection and transmission are equal. These The appearance of this paper was entirely due to the kind
features have been observed experimentally for sifigle6]  encouragement of Professor E. Recami. Many useful discus-
and double-barrief10] tunneling using photonic setups. sions with him and with Dr. G. Salesi and Dr. O. Pisanti have
Amazingly enough, we have further found that, although thebeen greatly appreciated.
tunneling probability decreases exponentially with increasing
barrier thickness and the number of barri@rsthe opaque
barrier limit), the tunneling time does not depend even on the APPENDIX: COEFFICIENTS FOR N=2
number of_ barriers crossed, i.e., itis t_he same for one, two or  Erom the matching conditions for the wave function in
more barriers. Moreover, when considering resonant tunnekq_ (2), we obtain the following expressions for the coeffi-

ing, we have also shown that the position in frequef@y  (jents describing the propagation through two successive
energy of the resonance of the structure is independent OBpaque barriers:

the number of barriers as well. These two predictions can be
experimentally tested using, again, photonic devices.

In order to obtain a physical picture of what happens in _ k—ix . B “2ya
the system considered and, especially, of the peculiar fea- R= k+i)([l+2| sink(L—a)7e l, (A1)
tures outlined above, we have studied the role of multiple
reflections between the barriers on the tunneling and found 2k (k—ix)?

; ; . —i
thisto be a hlghly nonlocal phenomeno_n. In fact, as shown in Ap= —Xsink(L—a)]-‘e‘ZXa, (A2)
Sec. lll, even in the case of increasingly large separation k—ix 2xk

between the barriers, the effect of multiple reflections cannot
be avoided at all. In particular, multiple reflections play a

crucial role in the understanding of the intriguing results on - k—ix| 2k [ _ (k=ix) sink(L —a) Fe~ @

the (total) tunneling time quoted above. Though in Sec. Il 2 k+ix |k—ix 2xk '
we have dealt with a two-barrier system, the main results (A3)
achieved can be easily generalized to multibarrier tunneling

as follows. ForN barriers the partial reflection and transmis- Ag=e KL Fexa (Ad)

sion coefficients corresponding to the fildt-1 barriers are
clearly influenced by multiple reflections occurring in the
interbarrier regions, while those associated to the last barrier —ix .
are not and coincide with one-barrier coefficients up to a Bs= k+iXelkae_Xa’ (A5)
phase factor. In particular, as shown in Sec. Il C, the tunnel-

ing phase time for crossing only the last barrier equals that

for a single-barrier structure. Since the total tunneling time A,=0, (AB)
for crossing all the barriers coincides as well with the one-

barrier time(see Sec. )| we immediately deduce that the

time for traveling from the starting edge of the first barrier to B~ k Fexa (A7)
the starting edge of the last one is zero. Note that such a A k+iy '
result can be achieved only if we take into account multiple
reflections and, in any case, the partial times for crossing
single barriers are usually different from the one-barrier tun- 4ixk B

: . " T ~—~C Fe 2 (A8)
neling time. However, we stress that such a “partial time” is (k+iy)2

not directly measured in physical experiments and, as a con-

sequence, is not completely meaningful. Nevertheless, our

discussion results to be useful in pointing out the relevantin all these expressions we have neglected terms of third
role of multiple reflections. order ineX?).
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