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High-order variational calculation for the frequency of time-periodic solutions
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We develop a convergent variational perturbation theory for the frequency of time-periodic solutions of
nonlinear dynamical systems. The power of the theory is illustrated by applying it to the Duffing oscillator.
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I. INTRODUCTION

Perturbative treatments of physical problems provide
with divergent power series in some coupling constantg.
Typically, the perturbation coefficients grow factorially, s
that they have a zero radius of convergence. If the sign
the perturbation coefficients alternate, there exist various
summation schemes that help us to obtain finite results fo
values of the coupling constantg, even in the strong-
coupling limit g→` ~for an overview, see Chap. 16 of Re
@1#!. Most successful is variational perturbation theo
which was recently developed@2,3# as a systematic extensio
of the variational approach of Feynman and Kleinert@4#.
Initially, this theory was set up for calculating the effectiv
classical potential in quantum statistics. It has been th
oughly tested for the ground-state energy of the anharm
oscillator and shown to converge exponentially fast and u
formly to the correct result@5,6#. This success has led t
applications to divergent series in other branches of theo
ical physics@2#. Most spectacular was the success in cal
lating the most accurate critical exponents of thef4 theory
without using renormalization group methods@1,7#.

In this paper we extend variational perturbation theory
developing an exponentially fast converging variational p
turbation theory for the frequency of time-periodic solutio
of nonlinear dynamical systems. As a simple but nontriv
model we consider the one-dimensional anharmonic osc
tor with the equation of motion

ẍ~ t !1v0
2x~ t !1gx3~ t !50, ~1!

which is also known as the Duffing equation@8#. Here the
dot abbreviates the derivative with respect to timet, v0 de-
notes the harmonic frequency, andg.0 stands for the cou
pling constant. In the following we solve Eq.~1! for the
initial values

x~0!51, ẋ~0!50, ~2!

*Email address: pelster@physik.fu-berlin.de
†Email address: kleinert@physik.fu-berlin.de
‡Email address: michael.schanz@informatik.uni-stuttgart.de
1063-651X/2003/67~1!/016604~6!/$20.00 67 0166
s

of
e-
ll

,

r-
ic
i-

t-
-

y
r-

l
a-

and determine the frequencyv of the resulting periodic mo-
tion by using variational perturbation theory. In Sec. II w
calculate the frequencyv as a power series of the couplin
constantg. Section III then elaborates the variational resu
mation of this weak-coupling series so that the frequencyv
can be determined for all values of the coupling constang
including the strong-coupling limitg→`.

II. PERTURBATION THEORY

We start by solving the initial value problem~1! and ~2!
perturbatively to high orders.

A. Poincaré-Lindstedt method

We assume for a sufficiently small coupling constang
that the solutionx(t) has the asymptotic representation

x~ t !5x0~ t !1x1~ t !g1•••. ~3!

A systematic standard procedure to obtain such
asymptotic series for a periodic solution

x~ t !5xS t1
2p

v D ~4!

is provided by the Poincare´-Lindstedt method@9–11#. There
one explicitly takes into account that the unperturbed f
quencyv0 is shifted to the frequencyv by a nonzero cou-
pling constantg. One performs a rescaling of time accordin
to

j5vt ~5!

and introduces the new variable

q~j!5xS j

v D . ~6!

This converts the periodicity condition~4! to

q~j!5q~j12p! ~7!

and transforms the original initial value problem~1! and ~2!
to
©2003 The American Physical Society04-1
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TABLE I. The first 20 dimensionless weak-coupling coefficientswn for the frequencyv of the Duffing
oscillator.

n wn n wn

1 3
8 11 3511276321347

562949953421312

2 2
21

256 12 2
401225915283063

72057594037927936

3 81
2048 13 2892201453147555

576460752303423488

4 2
6549

262144 14 2
84053106665670789

18446744073709551616

5 37737
2097152 15 614845335384090729

147573952589676412928

6 2
936183

67108864 16 2
1158192705499996341141

302231454903657293676544

7 6077907
536870912 17 8566538482894401288225

2417851639229258349412352

8 2
2604833685

274877906944 18 2
254612814518190043882263

77371252455336267181195264

9 17839453041
2199023255552 19 1899627691040292362960331

618970019642690137449562112

10 2
497158650207

70368744177664 20 2
227596989316436230247319519

79228162514264337593543950336
th
-
n

u-

. A

b

the

on-
v2q9~j!1v0
2q~j!1gq3~j!50,

~8!
q~0!51, q8~0!50,

where the prime indicates the derivative with respect to
dimensionless new time variablej. Since the coupling con
stantg is supposed to be small, we can expand the freque
v and the period solutionq(j) in powers ofg according to

v5 (
n50

`

wnv0S g

v0
2D n

, ~9!

q~j!5 (
n50

`

qn~j!S g

v0
2D n

. ~10!

Due to this ansatz the expansion coefficientswn and qn(j)
are dimensionless. Inserting Eqs.~9! and ~10! in the initial
value problem~8! and comparing equal powers in the co
pling constantg leads forn51,2, . . . to thefollowing recur-
sive set of ordinary differential equations:

qn9~j!1qn~j!5 f n~j!, qn~0!5qn8~0!50, ~11!

where the inhomogeneityf n(j) is given by

f n~j!522wnq09~j!22(
l 51

n21

wlqn2 l9 ~j!

2 (
m51

n21

(
l 51

n2m

wmwlqn2m2 l9 ~j!

2 (
m50

n21

(
l 50

n2m21

qm~j!ql~j!qn2m2 l 21~j!. ~12!

This is solved starting from

w051, q0~j!5cosj. ~13!

In the nth integration process we proceed in three steps
first, we calculate the inhomogeneityf n(j) according to Eq.
~12! and expand it in a Fourier series, which turns out to
of the following form:
01660
e
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f n~j!5 (
k50

n

f n,k cos~2k11!j. ~14!

Second, we prevent a secular term inqn(j) from solving Eq.
~11! by demanding the condition

f n,150, ~15!

from which the expansion coefficientwn is uniquely deter-
mined. Third, the initial value problem~11! is solved by

qn~j!5F (
k51

n
f n,k

~2k11!221
Gcosj

1 (
k51

n
f n,k

12~2k11!2
cos~2k11!j. ~16!

Using a computer algebra program we obtain in this way
perturbation expansions for both the frequency

v5v01
3

8v0
g2

21

256v0
3

g21••• ~17!

and the periodic solution

x~ t !5cosvt1S 2
1

32v0
3

cosvt1
1

32v0
3

cos 3vt D g

1S 23

1024v0
4

cosvt2
3

128v0
4

cos 3vt

1
1

1024v0
4

cos 5vt D g21•••. ~18!

Table I shows the first 20 weak-coupling coefficientswn of
the frequencyv.

B. Analytical expression for the frequency

Remarkably, the frequencyv of the Duffing oscillator~1!
can be determined exactly as a function of the coupling c
4-2
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stantg. To this end we multiply Eq.~1! by ẋ(t) and integrate
once, taking into account the initial values~2!:

1
2 ẋ2~ t !1 1

2 v0
2x2~ t !1 1

4 gx4~ t !5 1
2 v0

21 1
4 g. ~19!

Separating the variables in the energy conservation~19! and
integrating over a quarter of the oscillator period, we get

p

2v
5E

0

1 dx

Av0
21

g

2
2v0

2x22
g

2
x4

. ~20!

The integral can be explicitly performed by using E
~3.152.4! of Ref. @12#,

v5
pAv0

21g

2FS p

2
,A g

2~v0
21g!

D , ~21!

whereF denotes the elliptic integral of the first kind, whic
is defined in Eq.~8.111.2! of Ref. @12#:

F~w,k!5E
0

w da

A12k2sin2a
. ~22!

In the weak-coupling limitg→0, we recover from Eq.~21!
the perturbation series~9! of the preceding section by takin
into account expression~8.113.1! of Ref. @12#. However, the
exact result~21! also allows to find the strong-coupling lim
g→`:

v5AgFb01b1

v0
2

g
1b2S v0

2

g D 2

1•••G ~g→`!. ~23!

The leading strong-coupling coefficientb0 has the numerica
value

b05
p

2FS p

2
,

1

A2
D 50.847 213 084 793 979 086 6. . . .

~24!

In Fig. 1 we compare the full function~21! with the succes-
sive divergent weak-coupling expansions~9! and with the
convergent strong-coupling expansions~23!. We observe that
the full function represents the envelope for all weak- a
strong-coupling expansions.

III. VARIATIONAL PERTURBATION THEORY

Let us now see how well we can reproduce the stro
coupling result by resumming the weak-coupling series~9!
of the frequencyv with the help of variational perturbatio
theory @1,2#. In this way we are able to obtain approxim
tions of the frequencyv in good agreement with the exa
result for all values of the coupling constantg. In particular,
01660
.

d

-

we carry the strong-coupling limitg→` of the frequencyv
to high orders in order to investigate in detail the conv
gence of the variational results.

A. General procedure

We start with the weak-coupling expansion~9! truncated
at orderN:

v (N)5 (
n50

N

wnv0
122ngn. ~25!

Then we introduce the variational parameterV by Kleinert’s
square root trick@2#,

v05AV21v0
22V25VA11gr, ~26!

where the abbreviationr is defined by

r 5
1

g S v0
2

V2
21D , ~27!

and we ignore for the moment thatr depends ong and regard
it as a constant. Substituting Eq.~26! into the truncated
weak-coupling series~25!, we obtain

v (N)~g,V!5 (
n50

N

wnV122n~11gr !1/22ngn. ~28!

The factor (11gr)a with a51/22n is then expanded up to
the orderN2n,

~11gr !a5 (
k50

N2n S a

k D ~gr !k1O~gN2n11!, ~29!

FIG. 1. Logarithmic plot of the full function~21! ~solid curve!
versus the coupling constantg compared with the truncated succe
sive divergent perturbation expansions~9! ~dashed curves, the cor
responding orders are labeled with 1I –9I ) and the partial sums of the
convergent strong-coupling expansions~23! ~dotted curves, the cor-

responding orders are labeled with 1–̄9̄).
4-3
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where the binomial coefficient is defined by the Gam
function G:

S a

k D 5
G~a11!

G~k11!G~a1k11!
. ~30!

Thus the sum~28! is reexpanded including all powers ofg up
to the ordergN:

v (N)~g,V!5 (
n50

N

wnV122nF (
k50

N2n S 1/22n

k D S v0
2

V2
21D kGgn.

~31!

At the end we have inserted Eq.~27!.
If we could consider the limitN→` in Eq. ~31!, the de-

pendence on the artificially introduced variational parame
V would drop out. Due to the truncation at the finite orderN,
however, we obtain an explicit dependence on the variatio
parameterV in Eq. ~31!. This suggests to fix the yet unde
termined variational parameterV according to the principle
of minimal sensitivity@13#. Thus we try to find at first an
extremum:

]v (N)~g,V!

]V U
V5V(N)(g)

50. ~32!

If this equation has no real solutionV (N)(g), then we look
for a saddle point instead@2#:

]2v (N)~g,V!

]V2 U
V5V(N)(g)

50, ~33!

or more generally, for a real zeroV (N)(g) of the lowest
derivative with respect to the variational parameter. This
timal valueV (N)(g) then leads via

v (N)~g!5v (N)
„g,V (N)~g!… ~34!

to an approximation of the frequencyv, which turns out to
lead to good results for all values of the coupling constang.
To lowest order, the optimal solution is unique. If there a
several optimal solutions, we always choose the one tha
closest to the optimal solution of the previous order.

B. Lowest orders

Let us consider the lowest-order approximations of va
tional perturbation theory explicitly. Truncating the wea
coupling series~17! at the orderN51 leads to

v (1)5v01
3

8v0
g. ~35!

Applying the general procedure as described in detail in
preceding section, we obtain

v (1)~g,V!5
V

2
1S v0

2

2
1

3g

8 D 1

V
. ~36!
01660
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From the condition~32! we determine the variational param
eter as

V (1)~g!5v0A11
3g

4v0
2
, ~37!

whose substitution into Eq.~36! leads to the first-order ap
proximation

v (1)~g!5V (1)~g!5v0A11
3g

4v0
2
. ~38!

In a similar way we proceed for the second order, where
truncated weak-coupling series~17! reads

v (2)5v01
3

8v0
g2

21

256v0
3

g2. ~39!

Applying the square root trick here leads to

v (2)~g,V!5
3

8
V1S 3v0

2

4
1

9g

16D 1

V

2S v0
4

8
1

3v0
2g

16
1

21g2

256 D 1

V3
. ~40!

It turns out thatv (2)(g,V) has no real extremum with re
spect toV. Thus we have to look for a turning point instea
From condition~33!, we obtain

V (2)~g!5v0!11
3g

2v0
2

1
21g2

32v0
4

11
3g

4v0
2

. ~41!

Inserting Eq.~41! in Eq. ~40! leads to the second-order ap
proximation

v (2)~g!5v0

11
3g

v0
2

1
153g2

256v0
4

AS 11
3g

4v0
2D S 11

3g

2v0
2

1
21g2

32v0
4D

.

~42!

In Fig. 2 we compare the first- and second-order variatio
approximation~38! and ~42! for the frequencyv with the
exact result~21!. Notably, the first-order variational result i
very good for all values of the coupling constantg, and the
second-order leads to a substantial improvement of the a
racy.

C. Strong-coupling limit

In order to quantify the accuracy of the variational a
proximations~38! and ~42!, we study now, in particular, the
4-4
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strong-coupling regimeg→`. In first and second order, w
reproduce the expansion~23! with the leading strong-
coupling coefficients

b0
(1)5

A3

2
'0.866 025, b0

(2)5
51A14

224
'0.851 895. ~43!

Comparing Eq.~24! with Eq. ~43! we see that the first an
the second order of variational perturbation theory yields
strong-coupling coefficient~24! within the accuracy of 2.2%
and 0.55%, respectively.

In order to obtain higher-order variational results for th
strong-coupling coefficient~24!, we proceed as follows
From the first- and second-order approximations~37! and
~41! we see that the variational parameter has a stro
coupling expansion of the form

V (N)~g!5AgS V0
(N)1

V1
(N)

g
1

V2
(N)

g2
1••• D . ~44!

Inserting Eq.~44! in Eq. ~31!, we obtain theNth-order ap-
proximation for Eq.~24! with

FIG. 2. The first- and second-order variational approximat
~38! and~42! for the frequencyv is compared with the exact resu
~21!.
01660
e
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b0
(N)~V0

(N)!5 (
n50

N

(
k50

N2n S 1/22n

k D ~21!kwn~V0
(N)!122n.

~45!

The inner sum can be computed by using Eq.~0.151.4! in
Ref. @12#:

b0
(N)~V0

(N)!5 (
n50

N

~21!N2nS 21/22n

N2n Dwn~V0
(N)!122n.

~46!

In order to optimize the variational parameterV0
(N) , we look

again for an extremum

]b0
(N)~V0

(N)!

]V0
(N)

50 ~47!

or for a saddle point

]2b0
(N)~V0

(N)!

]V0
(N) 2

50. ~48!

FIG. 3. The points represent the logarithmic plot of the er
ub0

(N)2b0u/b0 against the orderN, and the solid line represents a fi
of the last ten points to the straight line2a2bN.

n

TABLE II. The first 20 variational results for the strong-coupling coefficient~24!.

N b0
(N) N b0

(N)

1 0.86602540378443864676 11 0.84721311260106078088
2 0.85189520859585272618 12 0.84721309038427087031
3 0.84798320787226284162 13 0.84721308733437656102
4 0.84736735286736694523 14 0.84721308530703137833
5 0.84726277296604748829 15 0.84721308503241446175
6 0.84722291812428697005 16 0.84721308484231654612
7 0.84721687569394258505 17 0.84721308481682089873
8 0.84721383828896139276 18 0.84721308479862454760
9 0.84721340071349571092 19 0.84721308479620273029

10 0.84721314796371865932 20 0.84721308479443254139
4-5
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It turns out that an extremum exists for odd ordersN,
whereas even ordersN lead to a saddle point. Table II show
the first 20 variational results for the strong-coupling coe
cient ~24!. Note that the approximantb0

(20) coincides already
in 11 digits with Eq.~24!. The points of Fig. 3 show that th
logarithm of the errorub0

(N)2b0u/b0 depends linearly onN
up to the orderN5100 according to

ub0
(N)2b0u

b0
5e2a2bN, ~49!

where the fit of the last ten points leads to the quantitiea
526.7671 andb521.1113. Thus we have demonstrat
that the variational approximations for the frequency of
Duffing oscillator converge exponentially fast. Note that t
speed of convergence is considerably faster than the e
s,
,

-

01660
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nential convergence of the variational results for the grou
state energy of the anharmonic oscillator@5,6#.

IV. CONCLUSION

We have demonstrated by the example of the Duffing
cillator how variational perturbation theory is successive
applied to determine the frequency of time-periodic solutio
of nonlinear dynamical systems. It remains to proceed al
similar lines to treat also nonconservative systems with li
cycles, such as the van der Pol equation@8#.
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