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Langevin description of speckle dynamics in nonlinear disordered media
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We formulate a Langevin description of dynamics of a speckle pattern resulting from the multiple scattering
of a coherent wave in a nonlinear disordered medium. The speckle pattern exhibits instability with respect to
periodic excitations at frequencieQ below some() .., provided that the nonlinearity exceeds some
()-dependent threshold. A transition of the speckle pattern from a stationary state to the chaotic evolution is
predicted upon increasing nonlinearity. The shortest typical time scale of chaotic intensity fluctuations is of the
order of 14 -
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Propagation of a coherent wave in a disordered medium isxcitations at frequencies inside some limited low-frequency
diffusive if A<l<L, where\ is the wavelength| is the interval, and the maximal Lyapunov exponent becomes posi-
mean free path, and is the size of the mediurfil]. While  tive. This allows us to describe the chaotic nature of sponta-
the wave undergoes multiple scattering, and the spatial dig*€ous intensity fluctuations beyond the absolute instability
tribution of the scattered intensity looks quite irregularthresholdp=p. and to estimate their characteristic time
(speckle pattem the coherence of the wave is not destroyedscale.
and various coherent phenomena can be observed: enhancedWe consider a scalar wave propagating in a nonlinear dis-
backscattering, short- and long-range intensity correlationgyrdered medium and described by the following wave equa-
universal conductance fluctuations, dee Refs[1-3] for  tion:
reviews. Available studies ohonlinearphenomena for dif-

fuse waves include calculations of the enhanced backscatter- , 1 32 )
ing cone at fundamentd¥] and doubled5] frequencies, \ —7E[1+8(f,t)+sz|¢(ht)| T1gp(r,t)=3(r,t),
investigations of optical phase conjugatif®|, studies of ¢ 1)

correlations in transmission and reflection coefficients of the
second harmoni€7] and fundamentdl8] waves, an exten-
sion of the standard diagrammatic technique to nonlinear di
ordered medig9], and a study of persistent hole burning in
multiple-scattering medigl0].

After realizing that the sensitivity of the speckle pattern to
changes of the scattering potential diverges for a sulfficientl

where J(r,t)=Jo(r)exp(—iwgt) is @ monochromatic source
Serm, ¢ denotes the speed of wave in the average medium,
e(r,t) is the fractional fluctuation of the dielectric constant
at frequencywg (possibly slowly varying in timg ande, is

a nonlinear constant. Equatidf) describes, e.g., propaga-
Yion of optical waves in media with intensity-dependent re-

frf;?ggi|i?02¥?ﬁ2rgqy£|lnl]]e?sggtvemegorgfﬂgn'att?eerrﬁnmgoﬂ-fradive index[13] in the scalar approximation and neglect-
y P 9sp P ing the generation of the third optical harmonics. The latter

ordered medium with cubic nonlinearity, has recently been T L )
. . assumption is justified in the absence of phase matching

predicted[12]. The speckle pattern is expected to becomﬁlcﬂ_ or more precisely, whefk(3w,) — 3k(wg)|I>1, where

unstable and to exhibit spontaneous fluctuations if the no R(ws s the wave nurr):’ber at fre Sen 0 ’

linearity exceeds some critical value. Although of primary Consider first a I di 4 268‘ f tvpical sizel.

importance in view of the possible experimental observation onsi eL. Irst a finear me .|ume§' ) of typical size

of the instability phenomenon, the dynamics of spontaneou nd a 4W lte-noise  Gaussian dlsordée(r,t)g(rl,_t»

intensity fluctuations, their nature, and associated character- 4ml(kol) 8(r—ry), whereko=k(wo) =wo/c. Let the time

istic time scales have not yet been studied up to now. variations of s(r,t_) be random, stationary, ar_1d _ arbitrary
In the present paper we formulate tgnamicLangevin slow,_ so that the time scale of the resultln_g varl_atlons of the

description of spontaneous intensity fluctuations in a nonlin@MPplitude ¢(r,t) of ¥(r,t)=e(r,t)exp(-iwgl) is much

ear disordered medium. Our theoretical method can b@rger than the typical time between two successive scatter-

viewed as an extension of tistationaryLangevin approach "9 even_tsl/c. ForL>1 and far enough frc_)m the_ boundaries
introduced in Ref[11], the latter being inadequate to de- ©f the disordered sample, the average intengity)) then
scribe the dynamics of speckles. Analysis of the speckle paRbeys the diffusion equatigri4], while the long-range cor-
tern stability with respect to weak periodic excitations showselation of intensity fluctuationsl (r,t)=1(r,t) —(I(r)) can
that if the effective nonlinearity parameter An2(L/)3 ex- € found by solving the Langevin equatipib]

ceeds some critical valup,=1 (where An is the typical P

value of the nonlinear correction to the refractive indeke v _nv2 .

speckle pattern becomes unstable with respect to periodic at AN =DVIAI(Ir,H ==V jodr.1), @

wherel(r,t)=|¢(r,t)|2, D=cl/3 is the diffusion constant,
*Email address: Sergey.Skipetrov@grenoble.cnrs.fr andjq,(r,t) are random external Langevin currents:
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FIG. 1. Diagrams contributing to Eq¢3) and (5). Solid lines
denote the wave fields and the complex conjugated fielg* .
Dashed lines denote scatteringysfand * on the same heteroge-
neity. The diagramgb) and (c) are obtained by inserting twb%
vertices(denoted by wavy linesinto the diagran{(a) at (r’,t") and
(ri,t1), respectively.

(8D t))
=271c?/(3K3) [(@(r,1) @* (r,1))|28; 8(r —ry).
3

The diagram corresponding to E®) is shown in Fig. 1a).

For a givenJy(r), the currenfe(r,t) is a “fingerprint”
of the disorder(r,t). An infinitesimal variatiomnA&(r,t) of
the dielectric constant will modifyje,(r,t) by a small
amount,

t
Ajext(r,t)=fvd3r’ledt’q(r,r',t—t’)As(r’,t’), (4)

where the spatial integral is over the voluMef the sample;

PHYSICAL REVIEW B57, 016601 (2003

The Langevin description of intensity fluctuations in dis-
ordered media can be extended to the nonlinear cage (
#0). To this end, we consider time-independente(r,t)
=¢g(r), and assume that the diffusion consténtand the
mean free path are not affected by the nonlinearity. The
latter assumption is valid iAn%kol<1 [11], where An
=(&,/2)l is the typical value of the nonlinear correction to
the refractive index anth=(l(r)) is the typical value of the
average intensity in the medium. We now admit that in a
nonlinear medium, the total dielectric constant contains a
linear contribution 1+ &(r) that we assumed to be time in-
dependent, and aonlinear contribution ¢,I(r,t) that can
vary with time. The variation of the total dielectric constant
can be therefore only due its nonlinear part, and we can
identify the infinitesimal variation of the dielectric constant
Ag(r’,t") in Eq. (4) with e,Al(r’,t"), whereAl(r’,t") is
the change of the intensity at during some infinitesimal
time interval ¢’,t'+6t): Al(r' t")=I1(r"t' + 6t)
—1(r',t"). Substituting Ae(r’,t")=e,Al(r',t’) into Eq.
(4), noting thatAje(r,t) =jex(r,t+ 8t) —jex(r,t), and di-
viding both sides of the resulting equation By—0, we
obtain the following dynamic equation:

J * Jd
—jext(r,t)=82f d3r’f dAtq(r,r’,At)—=81(r’,t—At),
at v 0 at

(6)

where we make use of the fact thdfr,t)={I(r))
+61(r,t), and hencell(r,t)=A[dl(r,t)], since(l(r)) is
time independent.

Equations(2) and (6) form a self-consistent system of
equations: Eq(2) governs the spatiotemporal evolution of
the intensity fluctuationssl (r,t) due to the Langevin cur-
rentsjq,(r,t), while Eq.(6) describes the distributed feed-
back mechanism, leading to variationsjgf(r,t) depending
on the changes ol (r,t). Note that Eq.6) is a linearized
equation: only the terms linear in the nonlinear contribution
to the dielectric constant,l (r,t) are kept, which is justified
as long ag:,!(r,t)<<1. In certain circumstancdsee below,
the linearized nature of E46) may result in the exponential

we neglect the terms of the second and higher orders igrowth of its solution with time, and in this sense E¢®.
Ag(r,t), and the correlation of random response functions?nd (6) are analogous to the equations of linear stability

q(r,r’,At=t—1t")= 8 ox(r,t)/ Se(r’,t") can be found by a
functional differentiation of Eq(3):

(@O(r,r, g (ry,ri,Aty))
=3aD?(c?/1)8;8(r—r) X[(1(r'))G(r’ r1;At
—At)G(ry, ALY+ {I(r))G(rq,r'; Aty
—ADG(r',r; A= (1 (r"))G(r’,r;At)
X(I(r)YG(ry,r;Aty)]. 5

Here |r—r’|, |r—rj|], |r'=ri/>] is assumed, and
G(r,rq;At) is the Green’s function of Eq2). The diagrams
contributing to Eq.(5) are shown in Figs. (b,c). In the sta-

tionary limit Ae(r,t)=Ae(r), Egs.(4) and (5 reduce to

Egs.(6) and(7) of Ref.[11].

analysis commonly used to study the stability of nonlinear
systemg(see, e.g., Ref§16] and[17] for examples of non-
linear optical systems exhibiting instabilitesHence, al-
though Eqgs(2) and(6) allow us to study the stability of the
speckle pattern and the characteristic time scales of sponta-
neous intensity fluctuations beyond the instability threshold,
they cannot be used to determine the amplitude of these fluc-
tuations.

Consider now an infinitesimal periodic excitation of the
static speckle patternsl(r,t)=5l(r,v)exp(rt), where v
=0—-iA#0 and(>0. Such an excitation can be either
damped or amplified, depending on the sign of the Lyapunov
exponentA. The value ofA is determined by two competing
processes: on the one hand, diffusion tends to smear the ex-
citation out, while on the other hand, the distributed feedback
sustains its existence. The mathematical description of this
competition is provided by Eq$2) and(6), which after the
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FIG. 2. Surface describing the stability of the multiple-scattering Q/0p

speckle pattern in a nonlinear disordered medium with open bound-
aries. At given effective nonlinearity paramefeand frequencf),  myjtiple-scattering speckle pattern in a nonlinear disordered me-
the surface defines the Lyapunov expongntf A>0, the speckle  giym with open(solid line) or reflecting(dashed ling boundaries.
pattern is unstable with respect to periodic excitations at frequenciq, 4 given(), p should exceed the plotted threshold value for the
Q. instability to develop. Inset: maximal Lyapunov exponent as a func-

o o tion of the effective nonlinearity parametgrThe dotted lines show
substitution of 51 (r,t) = &l(r,v)exp(t) [and similarly for A =0 andp=1.

jex(r,t)] lead to the following equatiorisee the Appendix
for the details of derivations of the sample. Using the analytic expression for the function
F(Q/Qp,AIQp) derived in the Appendix, we fingg—1

p=F(Q/Qp . A/Qp). @ (/)Y with a=1/2. This yieldsQ,,~Qp(p—1)%
Here p=An?(L/1)3 is the effective nonlinearity parameter, and the_ shortest typical_ time scaricof:%pontaineous iptensity
the functionF is shown in Fig. 2, and a numerical factor of fluctuations can be estimated as Q205 (P~ 1) At

! H H 5 1/2

order unity is omitted. To obtain Eq7), we have assumed high frequenciesQ>Qp, we find p~(Q/Qp)™, Qmax
the disordered sample to have open bounddiies the dif- ~Qop% and7~Qp'p~2, respectively. The latter results, on
fusing wave leaves the sample when it reaches a boundarfhe contrary, are weakly sensitive to the peculiarities of the
and have taken the limits of large sample sizél &kol) and ~ sample, since for the fast oscillations the feedback mecha-
moderate frequenc<Qp[L/(kol?)]% whereQp=D/L? nism is due to relatively short diffusion paths that do not
is the inverse of the typical time needed for a multiple-reach the boundaries of the sample.
scattered wave to diffuse through the disordered sample. ~ The rise of the instability threshold with can be quali-

It follows from Fig. 2 that for a given frequencf, the tatively understood by considering the phase difference
sign of the Lyapunov exponert depends on the value pf ~ A¢(At) between two waves traveling through the disor-
Excitations at frequencie§) corresponding toA<0 are dered sample along the same diffusion path but separated in
damped exponentially, and thus soon disappear. In contradime by At~Q~% If &(r,t) changes slowly with time,
excitations at frequencieQ corresponding to\>0 are ex- A @(At) comprises two contributionsA ¢ (At), which is
ponentially amplified, which signifies the instability of the the phase difference in a linear medium, ahegy (At),
Speck|e pattern with respect to excitations at such frequeﬁNhiCh is the additional phase difference due to the nonlinear-
cies. Noting that\ is always negative fop<1, we conclude ity. The second moment of the latter is
that all excitations are damped in this case and the speckle < <
pattern is a_lbsolutely staple. In an experlmer_\t, any spontane—<A¢§L(AU>~kgggj dle ds,(Al(ry, A AI(r,,Ab)),
ous excitation of the static speckle pattern will be suppressed 0 0
and the speckle pattern will be independent of time: (8)

Sl (r,t)=46I1(r), asin the linear case. Wher>1, an interval ) - ) ) )

of frequencies 82Q<Q,,, starts to open up withh\>0. wheres; is a curwlmegr cqordlnate of th(? point, the |£1te-
The speckle pattern thus becomes unstable with respect @5@ls are along the diffusion path of typical lengtt L“/1,
excitations at low frequencies. In an experiment, any spon@ndAl(ri,At) denotes the change of the intensityr atlur-
taneous excitation of the static speckle pattern at frequendjld the time At. For 1<y, we can assume that
Q € (0,02,,,,) will be amplified, and one will observe a time- (Al(r1,A)AI(rz, At))~(A¢F(At))(5I(r1,0)81(r2,0))
varying speckle patterdl (r,t). [11]. Taking (A ¢2, (At))=(A¢$2(At)) to be the instability

The border between stablé\ €0) and unstable A >0) condition for the excitation of the speckle pattern at fre-
regimes is shown in Fig. 3 by a solid line. The instability quencyQ, and noting that l(ry,0)8l(r,,0))~15/(K3l|r,
threshold increases with increasifig At Q< , the exact —r5|) [15], we recoverp=1 as the instability criterion. If
functional dependence of the threshold@ris rather sensi- O>Qp, the long-range intensity correlation establishes
tive to the peculiarities of the disordered sampdeg., its  only for |r;—r,|<(DAt)Y2 and the instability condition be-
geometry and conditions on the boundariesince for such comesp=(Q/Qp)¥>>1.
slow oscillations the feedback mechanism is ensured by par- The positive sign of the maximal Lyapunov exponent
tial waves that have long path lengt=L?/I and hence A for p>1 (solid line in the inset of Fig. 3 as well as the
“experience” the presence of the boundaries and the shapeontinuous spectrum 0Q<Q,,.x of frequencies with

FIG. 3. Main plot: frequency-dependent “phase diagram” of the
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A>0, are hallmarks of chaotic behavid8]. A sharp tran- o _ oc

sition of the speckle pattern to chaospat 1 is reminiscent |VJext(r-V):|V32f dsr'f dAtq(r,r’,At)sl(r',v)

of the behavior observed in nonlinear systems with large v 0

(infinite) number of degrees of freedofa.g., random neural X exp(—ivAt). (A2)

networks with an infinitely large number of nodg®]), and
should be contrasted to the “route to chaos” through a setf v=0, Eq.(A2) is trivial and the statistical properties of
quence of bifurcations, characteristic of low-dimensionalj,,(r,0) are determined by Eq3) with t=t;, the same
nonlinear systemgl8]. As one can see from Fig. 3, the scal- equation as in the case of the linear medium, while the static,
ing of Anax With p—1 appears to be roughly linear fop  time-independent part of the intensity fluctuatiéi(r,0) is
—1|<1: Ao~ Qp(p—1)P with g=1. found by solving the stationary Langevin equat[@&@g. (A1)

To demonstrate the sensitivity of the results obtained fowith »=0]. Hence, the time-independent part of the speckle
0 <Qp to the peculiarities of the disordered sample, wepattern remains the same as in the linear medium. If, in con-
briefly consider a sample with reflecting boundarigashed trast,»+0 (as we assume in the main tgxive divide both
lines in Fig. 3. All calculations can be carried out in the sides of Eq.(A2) by i», multiply theith Cartesian compo-
same way as for the sample with open boundaf$e® the nent of the resulting equation by th¢h Cartesian compo-
Appendix, assuming that the Green’s function of E8) is  nent of a similar equation fof%(r,,»), and average the
approximately the same as in the infinite medium:result over disorder. This yields
G(r,rq;At)=Gq(r,rq;At). We find that the absolute insta-
bility threshold p, is roughly two times lower than in the (j(ei)zt(r,v)j(ejx)t*(rl,v))
open geometrya=p8=2, and A ,=0 for p<p.. For an
arbitrary sample of disordered nonlinear medium, we expect _ 2J 3 ,f 3,1 , .
Vo QPP ANAA ool PO for p-pe<1 and 72 ], & [ AT e, )
p>p., Wherep.=1, 1/2sa=<2, and = B=<2. By analogy

[18] with the theory of phase transition,,,, and 8 can be « jw A Jw At-(aD(r 1’ Atgd* ' A
identified with the order parameter and the critical exponent, 0 dat 0 dAty(q(r.r", AN (ry, 1y, Aty))
respectively. ] .

Finally, it is worthwhile to note that Eq$2) and (6) can xXexf —ivAt+iv*Aty)], (A3)

also be derived from a time-dependent disordered nonlinear () ) )
Schradinger equation with a potentiali(r) +g| (r,t)|2. yvhere Jexdr,v) denotes thelt_h _Carte5|an component of
Upon the substitutionswy—E/%, ki—2mE/#?, &(r)— Jexg’”)- After  the , substitution ~ of Eq. (5 for
[—u(r)/E], ande,—(— g/E) [whereE is the energy of the (d (rzr’,At)q(l)*(rl,rl,Atl», the time integrations in Eq.
incident Schrdinger wavemis the particle massy(r) isthe ~ (A3) yield

disordered potential, and is the nonlinear constahtour . .

analysis is therefore valid in this case too. The analogy be- f dAtf dAt (gD (r,r, A qD* (ry,r],Aty))

tween the wave equatidd) and the Schrdinger equation is 0 0

known for the stationary case, where the solutijgm,t) can

be represented ag,(r)exp(—iwgt). However, the dynamic Xexd —ivAt+ivtAty]

solutions of the two equations differ due to different disper- =377D2(02/I)5ij S(r—r)[{I(r"))G(r’,r};v)G*
sion relations. Although the present paper deals with dy-

namic speckle patterns, their temporal fluctuations are as- X(ry,rv=v*){I(r))

sumed to be slow, and the analogy between the wave and

Schradinger equations is recovered within the accuracy of F(r)G* (ry,r';»)G(r',riv—v*)(1(r))
our analysis.

(NG, rv)(l(r))G* (ry,rw)],  (Ad4)

The author is grateful to R. Maynard and B. A. vanWhere G(r,r;;v) is the Fourier transform oG(r,r;;At).
Tiggelen for fruitful discussions and a careful reading of theEquation(A3) can now be rewritten as
manuscript. A. Yu. Zyuzin is acknowledged for a communi- i ()
cation explaining some details of R¢11]. (Jex(M W) (r1,v))=A(r,v);8(r—ry),  (A5)

where
APPENDIX: DERIVATION OF EQ. (7)

In this Appendix, we provide a derivation of E() from A(r,v)=37-rD2(c2/I)s§de3r’Jvd3ri<5l(r’,v) o1*(ry,v))
Egs. (2) and (6). Substitutingsl (r,t)= 8l (r,v)exp(rt) and

Jexd(F 1) =jexdr, v)eXp(rt) into the two latter equations, we XL(r"))YG(r',ry;v)G*(ry,r;v—v*){1(r))
btai
onm +(I(ry))G* (ry,r";v)G(r' r;v—v*)(I(r))
iv8l(r,v)—DV2SI(r,v)=—V-jeu(r,v), (Al =1 )G, rw)(I(r))G* (ry,riw)]. (AB)
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In the following, we replace bottl (r)) andA(r,v) by their  where the second line is obtained as a result of integration by
spatial averages, and A(v), respectively. This simplifies parts, assumings(r,r’;v)jggt(r’,y)zo at the boundary of
the further analysis considerably, while can only affect thethe disordered sample. Multiplying EgA7) by a similar
final result by a numerical factor of order unity, sindér))  equation forsl*(r,,»), performing the averaging over dis-

andA(r,v) do not change significantly as long as the point order using Eq(A5), and carrying out the necessary integra-
is far enough from the sample boundaries. tions, we obtain

We now admit that Eq(A5) for the correlation function
of Langevin currents at#0 in a nonlinear medium has a

form similar to Eq.(3) for Langevin currents in a linear (81(r,v)81*(ry,v))

medium. This allows us to proceed with analysis of &) ’ ’

in the same way as it was done for EQ) in the linear A(v) Imv

medium[15]. To simplify further calculations, we assume =—p | REG(rryv) — g ImG(r.ry;v) |
that the disordered sample has open bounddiies the

multiple-scattered waves leave the sample when they reach (A8)

the boundary, and hence the Green’s function of BEQ®),
G(r,ri;At), can be approximately written as

Go(r,rq;At)exp(—QpAt), where Go(r,rq;At) Substituting Eq(A8) into Eq.(A6), dividing both sides of
= (47DAt) " %%exd —|r—r,|?/(4DAt)] is the Green's func- the resulting equation byA(»)#0, recalling thatv=Q
tion in the infinite medium, expfQpAt) describes the leak- —iA, and performing a change of variableR
age of the wave through the sample boundaries, @ad =[Q/(2D)]Y% (and similarly forr’ andr;), we obtain

=D/L?. We now write the solution of EA1) as

5|(r,y):_f dar,G(r,rl;V)[V'jext(r,,l/)] 1:C1An2(L/I)3h(R,Q/QD,A/QD), (Ag)
\%

:f B[V v) - jodr’,v)] (A7) where C,; is a numerical constant\n=(&,/2)l,, and the
v v e el dimensionless functioh is defined as

h(RaQ/QDvA/QD):(QD/Q)3/2J d3R'Jd3Ri[G(R’,Ri:V)Q’I(Ri,R;n)

A

(A10)

_ 1 _ F(Q/Qp,AIQp)=h(0,0,0)h(0,Q/Qp ,A/Qp) and intro-
g(R'R1'7’):|R_R1| exfl —(y+i/y)|R=Ry], ducing the effective nonlinearity parameter= An?(L/1)3,
(A11)  We rewrite Eq.(A9) as

p=C,F(Q/Qp ,AIQp), (A15)

exp(—2y1|R—Ry|), (A12)

1
gl(R-Rl;yl):W

whereC, is a numerical factor of order unity. Since we have
already made some approximations that affect the final result
by a numerical factor of order unife.g., we replaced (r))
' (A13) by 1), we omitC, in Eq. (A15) and obtain Eq(7) of the
main text. Most of integrations in EqA10) can be per-
)1,2 formed analytically, while the remaining integrations are eas-

A+Qp v

1+ a

y=

21172 A+QD
} .
QO

A+Qp/2

Q (A14) lly carried out numerically, allowing us to determine the

value of A for givenp, Qp, andQ from Eq. (A15).
An important comment is in order in connection with Eq.
We now assume that the disordered sample has the shap&15) and the analysis it results from. The correlation func-
of a sphere centered at the origin and thattion of intensity fluctuations sl (r,v)s8l* (r1,v)) entering
h(0,Q/Qp,A/Qp) provides a good estimation ¢f for the  into Eqgs.(A3) and (A6) contains, in principle, not only the
points R located far enough from the boundaries. Defininglong-range contribution given by EqA8), but also a

Y1i=
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short-range  one (81(r,v) 81* (ry,v))~(1/k3)158(r —r4). above inequalities is violated, the roles played by the short-
The latter contribution has been neglected in our analysignd long-range contributions to the correlation function of
which is justified for large enough sample size/l>kol)  intensity fluctuations in development of the instability be-
and moderate frequend@ <Qp[L/(k,l?)]%. If one of the come comparable, and the above analysis is no longer valid.
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