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Langevin description of speckle dynamics in nonlinear disordered media
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~Received 23 August 2002; published 6 January 2003!

We formulate a Langevin description of dynamics of a speckle pattern resulting from the multiple scattering
of a coherent wave in a nonlinear disordered medium. The speckle pattern exhibits instability with respect to
periodic excitations at frequenciesV below someVmax, provided that the nonlinearity exceeds some
V-dependent threshold. A transition of the speckle pattern from a stationary state to the chaotic evolution is
predicted upon increasing nonlinearity. The shortest typical time scale of chaotic intensity fluctuations is of the
order of 1/Vmax.
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Propagation of a coherent wave in a disordered medium
diffusive if l! l !L, where l is the wavelength,l is the
mean free path, andL is the size of the medium@1#. While
the wave undergoes multiple scattering, and the spatial
tribution of the scattered intensity looks quite irregu
~speckle pattern!, the coherence of the wave is not destroy
and various coherent phenomena can be observed: enha
backscattering, short- and long-range intensity correlatio
universal conductance fluctuations, etc.~see Refs.@1–3# for
reviews!. Available studies ofnonlinearphenomena for dif-
fuse waves include calculations of the enhanced backsca
ing cone at fundamental@4# and doubled@5# frequencies,
investigations of optical phase conjugation@6#, studies of
correlations in transmission and reflection coefficients of
second harmonic@7# and fundamental@8# waves, an exten-
sion of the standard diagrammatic technique to nonlinear
ordered media@9#, and a study of persistent hole burning
multiple-scattering media@10#.

After realizing that the sensitivity of the speckle pattern
changes of the scattering potential diverges for a sufficie
strong nonlinearity@11#, a new phenomenon, the tempor
instability of the multiple-scattering speckle pattern in a d
ordered medium with cubic nonlinearity, has recently be
predicted@12#. The speckle pattern is expected to beco
unstable and to exhibit spontaneous fluctuations if the n
linearity exceeds some critical value. Although of prima
importance in view of the possible experimental observat
of the instability phenomenon, the dynamics of spontane
intensity fluctuations, their nature, and associated chara
istic time scales have not yet been studied up to now.

In the present paper we formulate thedynamicLangevin
description of spontaneous intensity fluctuations in a non
ear disordered medium. Our theoretical method can
viewed as an extension of thestationaryLangevin approach
introduced in Ref.@11#, the latter being inadequate to d
scribe the dynamics of speckles. Analysis of the speckle
tern stability with respect to weak periodic excitations sho
that if the effective nonlinearity parameterp5Dn2(L/ l )3 ex-
ceeds some critical valuepc.1 ~where Dn is the typical
value of the nonlinear correction to the refractive index!, the
speckle pattern becomes unstable with respect to peri
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excitations at frequencies inside some limited low-frequen
interval, and the maximal Lyapunov exponent becomes p
tive. This allows us to describe the chaotic nature of spon
neous intensity fluctuations beyond the absolute instab
threshold p5pc and to estimate their characteristic tim
scale.

We consider a scalar wave propagating in a nonlinear
ordered medium and described by the following wave eq
tion:

H ¹22
1

c2

]2

]t2
@11«~r ,t !1«2uc~r ,t !u2#J c~r ,t !5J~r ,t !,

~1!

whereJ(r ,t)5J0(r )exp(2iv0t) is a monochromatic sourc
term, c denotes the speed of wave in the average medi
«(r ,t) is the fractional fluctuation of the dielectric consta
at frequencyv0 ~possibly slowly varying in time!, and«2 is
a nonlinear constant. Equation~1! describes, e.g., propaga
tion of optical waves in media with intensity-dependent
fractive index@13# in the scalar approximation and neglec
ing the generation of the third optical harmonics. The lat
assumption is justified in the absence of phase match
@13#; or more precisely, whenuk(3v0)23k(v0)u l @1, where
k(v) is the wave number at frequencyv.

Consider first a linear medium («250) of typical sizeL
and a white-noise Gaussian disorder^«(r ,t)«(r1 ,t)&
54p/(k0

4l )d(r2r1), wherek05k(v0)5v0 /c. Let the time
variations of «(r ,t) be random, stationary, and arbitra
slow, so that the time scale of the resulting variations of
amplitude w(r ,t) of c(r ,t)5w(r ,t)exp(2iv0t) is much
larger than the typical time between two successive sca
ing eventsl /c. For L@ l and far enough from the boundarie
of the disordered sample, the average intensity^I (r )& then
obeys the diffusion equation@14#, while the long-range cor-
relation of intensity fluctuationsdI (r ,t)5I (r ,t)2^I (r )& can
be found by solving the Langevin equation@15#

]

]t
dI ~r ,t !2D¹2dI ~r ,t !52“• jext~r ,t !, ~2!

where I (r ,t)5uw(r ,t)u2, D5cl/3 is the diffusion constant
and jext(r ,t) are random external Langevin currents:
©2003 The American Physical Society01-1
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^ j ext
( i )~r ,t ! j ext

( j )~r1 ,t1!&

52p lc2/~3k0
2!u^w~r ,t !w* ~r ,t1!&u2d i j d~r2r1!.

~3!

The diagram corresponding to Eq.~3! is shown in Fig. 1~a!.
For a givenJ0(r ), the currentjext(r ,t) is a ‘‘fingerprint’’

of the disorder«(r ,t). An infinitesimal variationD«(r ,t) of
the dielectric constant will modifyjext(r ,t) by a small
amount,

D jext~r ,t !5E
V
d3r 8E

2`

t

dt8q~r ,r 8,t2t8!D«~r 8,t8!, ~4!

where the spatial integral is over the volumeV of the sample;
we neglect the terms of the second and higher order
D«(r ,t), and the correlation of random response functio
q(r ,r 8,Dt5t2t8)5d jext(r ,t)/d«(r 8,t8) can be found by a
functional differentiation of Eq.~3!:

^q( i )~r ,r 8,Dt !q( j )~r1 ,r18 ,Dt1!&

53pD2~c2/ l !d i j d~r2r1!3@^I ~r 8!&G~r 8,r18 ;Dt

2Dt1!G~r18 ,r ;Dt1!^I ~r !&1^I ~r18!&G~r18 ,r 8;Dt1

2Dt !G~r 8,r ;Dt !^I ~r !&2^I ~r 8!&G~r 8,r ;Dt !

3^I ~r18!&G~r18 ,r ;Dt1!#. ~5!

Here ur2r 8u, ur2r18u, ur 82r18u@ l is assumed, and
G(r ,r1 ;Dt) is the Green’s function of Eq.~2!. The diagrams
contributing to Eq.~5! are shown in Figs. 1~b,c!. In the sta-
tionary limit D«(r ,t)[D«(r ), Eqs. ~4! and ~5! reduce to
Eqs.~6! and ~7! of Ref. @11#.

FIG. 1. Diagrams contributing to Eqs.~3! and ~5!. Solid lines
denote the wave fieldc and the complex conjugated fieldc* .
Dashed lines denote scattering ofc andc* on the same heteroge
neity. The diagrams~b! and ~c! are obtained by inserting twok0

2

vertices~denoted by wavy lines! into the diagram~a! at (r 8,t8) and
(r18 ,t18), respectively.
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The Langevin description of intensity fluctuations in di
ordered media can be extended to the nonlinear case«2
Þ0). To this end, we consider time-independent«: «(r ,t)
5«(r ), and assume that the diffusion constantD and the
mean free pathl are not affected by the nonlinearity. Th
latter assumption is valid ifDn2k0l !1 @11#, where Dn
5(«2/2)I 0 is the typical value of the nonlinear correction
the refractive index andI 0.^I (r )& is the typical value of the
average intensity in the medium. We now admit that in
nonlinear medium, the total dielectric constant contains
linear contribution 11«(r ) that we assumed to be time in
dependent, and anonlinear contribution «2I (r ,t) that can
vary with time. The variation of the total dielectric consta
can be therefore only due its nonlinear part, and we
identify the infinitesimal variation of the dielectric consta
D«(r 8,t8) in Eq. ~4! with «2DI (r 8,t8), whereDI (r 8,t8) is
the change of the intensity atr 8 during some infinitesimal
time interval (t8,t81dt): DI (r 8,t8)5I (r 8,t81dt)
2I (r 8,t8). Substituting D«(r 8,t8)5«2DI (r 8,t8) into Eq.
~4!, noting thatD jext(r ,t)5 jext(r ,t1dt)2 jext(r ,t), and di-
viding both sides of the resulting equation bydt→0, we
obtain the following dynamic equation:

]

]t
jext~r ,t !5«2E

V
d3r 8E

0

`

dDt q~r ,r 8,Dt !
]

]t
dI ~r 8,t2Dt !,

~6!

where we make use of the fact thatI (r ,t)5^I (r )&
1dI (r ,t), and henceDI (r ,t)5D@dI (r ,t)#, since ^I (r )& is
time independent.

Equations~2! and ~6! form a self-consistent system o
equations: Eq.~2! governs the spatiotemporal evolution
the intensity fluctuationsdI (r ,t) due to the Langevin cur-
rents jext(r ,t), while Eq. ~6! describes the distributed feed
back mechanism, leading to variations ofjext(r ,t) depending
on the changes ofdI (r ,t). Note that Eq.~6! is a linearized
equation: only the terms linear in the nonlinear contributi
to the dielectric constant«2I (r ,t) are kept, which is justified
as long as«2I (r ,t)!1. In certain circumstances~see below!,
the linearized nature of Eq.~6! may result in the exponentia
growth of its solution with time, and in this sense Eqs.~2!
and ~6! are analogous to the equations of linear stabi
analysis commonly used to study the stability of nonline
systems~see, e.g., Refs.@16# and @17# for examples of non-
linear optical systems exhibiting instabilities!. Hence, al-
though Eqs.~2! and~6! allow us to study the stability of the
speckle pattern and the characteristic time scales of spo
neous intensity fluctuations beyond the instability thresho
they cannot be used to determine the amplitude of these
tuations.

Consider now an infinitesimal periodic excitation of th
static speckle pattern:dI (r ,t)5dI (r ,n)exp(int), where n
5V2 iLÞ0 and V.0. Such an excitation can be eithe
damped or amplified, depending on the sign of the Lyapun
exponentL. The value ofL is determined by two competing
processes: on the one hand, diffusion tends to smear the
citation out, while on the other hand, the distributed feedb
sustains its existence. The mathematical description of
competition is provided by Eqs.~2! and ~6!, which after the
1-2



r,
of

a

le
.

ra

e
e

ck
an
se
e

ct
on
n
-

ity

pa

a

ion

n
the
ha-
ot

ce
r-
d in

ar-

t

e-

es
-

nt

ing
n

n

he
me-

he
nc-

LANGEVIN DESCRIPTION OF SPECKLE DYNAMICS IN . . . PHYSICAL REVIEW E67, 016601 ~2003!
substitution ofdI (r ,t)5dI (r ,n)exp(int) @and similarly for
jext(r ,t)] lead to the following equation~see the Appendix
for the details of derivations!:

p.F~V/VD ,L/VD!. ~7!

Here p5Dn2(L/ l )3 is the effective nonlinearity paramete
the functionF is shown in Fig. 2, and a numerical factor
order unity is omitted. To obtain Eq.~7!, we have assumed
the disordered sample to have open boundaries~i.e., the dif-
fusing wave leaves the sample when it reaches a bound!
and have taken the limits of large sample size (L/ l @k0l ) and
moderate frequencyV!VD@L/(k0l 2)#2, whereVD5D/L2

is the inverse of the typical time needed for a multip
scattered wave to diffuse through the disordered sample

It follows from Fig. 2 that for a given frequencyV, the
sign of the Lyapunov exponentL depends on the value ofp.
Excitations at frequenciesV corresponding toL,0 are
damped exponentially, and thus soon disappear. In cont
excitations at frequenciesV corresponding toL.0 are ex-
ponentially amplified, which signifies the instability of th
speckle pattern with respect to excitations at such frequ
cies. Noting thatL is always negative forp,1, we conclude
that all excitations are damped in this case and the spe
pattern is absolutely stable. In an experiment, any spont
ous excitation of the static speckle pattern will be suppres
and the speckle pattern will be independent of tim
dI (r ,t)5dI (r ), as in the linear case. Whenp.1, an interval
of frequencies 0,V,Vmax starts to open up withL.0.
The speckle pattern thus becomes unstable with respe
excitations at low frequencies. In an experiment, any sp
taneous excitation of the static speckle pattern at freque
VP(0,Vmax) will be amplified, and one will observe a time
varying speckle patterndI (r ,t).

The border between stable (L,0) and unstable (L.0)
regimes is shown in Fig. 3 by a solid line. The instabil
threshold increases with increasingV. At V!VD , the exact
functional dependence of the threshold onV is rather sensi-
tive to the peculiarities of the disordered sample~e.g., its
geometry and conditions on the boundaries!, since for such
slow oscillations the feedback mechanism is ensured by
tial waves that have long path lengthss*L2/ l and hence
‘‘experience’’ the presence of the boundaries and the sh

FIG. 2. Surface describing the stability of the multiple-scatter
speckle pattern in a nonlinear disordered medium with open bou
aries. At given effective nonlinearity parameterp and frequencyV,
the surface defines the Lyapunov exponentL. If L.0, the speckle
pattern is unstable with respect to periodic excitations at freque
V.
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of the sample. Using the analytic expression for the funct
F(V/VD ,L/VD) derived in the Appendix, we findp21
;(V/VD)1/a with a.1/2. This yieldsVmax;VD(p21)a,
and the shortest typical time scalet of spontaneous intensity
fluctuations can be estimated ast;Vmax

21 ;VD
21(p21)2a. At

high frequenciesV@VD , we find p;(V/VD)1/2, Vmax

;VDp2, andt;VD
21p22, respectively. The latter results, o

the contrary, are weakly sensitive to the peculiarities of
sample, since for the fast oscillations the feedback mec
nism is due to relatively short diffusion paths that do n
reach the boundaries of the sample.

The rise of the instability threshold withV can be quali-
tatively understood by considering the phase differen
Df(Dt) between two waves traveling through the diso
dered sample along the same diffusion path but separate
time by Dt;V21. If «(r ,t) changes slowly with time,
Df(Dt) comprises two contributions:DfL(Dt), which is
the phase difference in a linear medium, andDfNL(Dt),
which is the additional phase difference due to the nonline
ity. The second moment of the latter is

^DfNL
2 ~Dt !&;k0

2«2
2E

0

s

ds1E
0

s

ds2^DI ~r1 ,Dt !DI ~r2 ,Dt !&,

~8!

wheresi is a curvilinear coordinate of the pointr i , the inte-
grals are along the diffusion path of typical lengths;L2/ l ,
andDI (r i ,Dt) denotes the change of the intensity atr i dur-
ing the time Dt. For V!VD , we can assume tha
^DI (r1 ,Dt)DI (r2 ,Dt)&;^DfL

2(Dt)&^dI (r1 ,0)dI (r2 ,0)&
@11#. Taking ^DfNL

2 (Dt)&*^DfL
2(Dt)& to be the instability

condition for the excitation of the speckle pattern at fr
quencyV, and noting that̂ dI (r1 ,0)dI (r2 ,0)&;I 0

2/(k0
2l ur1

2r2u) @15#, we recoverp*1 as the instability criterion. If
V@VD , the long-range intensity correlation establish
only for ur12r2u&(DDt)1/2, and the instability condition be
comesp*(V/VD)1/2@1.

The positive sign of the maximal Lyapunov expone
Lmax for p.1 ~solid line in the inset of Fig. 3!, as well as the
continuous spectrum 0,V,Vmax of frequencies with

d-

cy

FIG. 3. Main plot: frequency-dependent ‘‘phase diagram’’ of t
multiple-scattering speckle pattern in a nonlinear disordered
dium with open~solid line! or reflecting~dashed line! boundaries.
For a givenV, p should exceed the plotted threshold value for t
instability to develop. Inset: maximal Lyapunov exponent as a fu
tion of the effective nonlinearity parameterp. The dotted lines show
Lmax50 andp51.
1-3
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S. E. SKIPETROV PHYSICAL REVIEW E67, 016601 ~2003!
L.0, are hallmarks of chaotic behavior@18#. A sharp tran-
sition of the speckle pattern to chaos atp51 is reminiscent
of the behavior observed in nonlinear systems with la
~infinite! number of degrees of freedom~e.g., random neura
networks with an infinitely large number of nodes@19#!, and
should be contrasted to the ‘‘route to chaos’’ through a
quence of bifurcations, characteristic of low-dimension
nonlinear systems@18#. As one can see from Fig. 3, the sca
ing of Lmax with p21 appears to be roughly linear forup
21u!1: Lmax;VD(p21)b with b.1.

To demonstrate the sensitivity of the results obtained
V!VD to the peculiarities of the disordered sample,
briefly consider a sample with reflecting boundaries~dashed
lines in Fig. 3!. All calculations can be carried out in th
same way as for the sample with open boundaries~see the
Appendix!, assuming that the Green’s function of Eq.~2! is
approximately the same as in the infinite mediu
G(r ,r1 ;Dt).G0(r ,r1 ;Dt). We find that the absolute insta
bility threshold pc is roughly two times lower than in the
open geometry,a.b.2, andLmax50 for p,pc . For an
arbitrary sample of disordered nonlinear medium, we exp
Vmax;VD(p2pc)

a andLmax;VD(p2pc)
b for p2pc!1 and

p.pc , wherepc.1, 1/2&a&2, and 1&b&2. By analogy
@18# with the theory of phase transitions,Lmax andb can be
identified with the order parameter and the critical expone
respectively.

Finally, it is worthwhile to note that Eqs.~2! and ~6! can
also be derived from a time-dependent disordered nonlin
Schrödinger equation with a potentialu(r )1guc(r ,t)u2.
Upon the substitutionsv0→E/\, k0

2→2mE/\2, «(r )→
@2u(r )/E#, and«2→(2g/E) @whereE is the energy of the
incident Schro¨dinger wave,m is the particle mass,u(r ) is the
disordered potential, andg is the nonlinear constant#, our
analysis is therefore valid in this case too. The analogy
tween the wave equation~1! and the Schro¨dinger equation is
known for the stationary case, where the solutionc(r ,t) can
be represented asc0(r )exp(2iv0t). However, the dynamic
solutions of the two equations differ due to different disp
sion relations. Although the present paper deals with
namic speckle patterns, their temporal fluctuations are
sumed to be slow, and the analogy between the wave
Schrödinger equations is recovered within the accuracy
our analysis.

The author is grateful to R. Maynard and B. A. va
Tiggelen for fruitful discussions and a careful reading of t
manuscript. A. Yu. Zyuzin is acknowledged for a commu
cation explaining some details of Ref.@11#.

APPENDIX: DERIVATION OF EQ. „7…

In this Appendix, we provide a derivation of Eq.~7! from
Eqs. ~2! and ~6!. SubstitutingdI (r ,t)5dI (r ,n)exp(int) and
jext(r ,t)5 jext(r ,n)exp(int) into the two latter equations, w
obtain

indI ~r ,n!2D¹2dI ~r ,n!52“• jext~r ,n!, ~A1!
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in jext~r ,n!5 in«2E
V
d3r 8E

0

`

dDt q~r ,r 8,Dt !dI ~r 8,n!

3exp~2 inDt !. ~A2!

If n50, Eq. ~A2! is trivial and the statistical properties o
jext(r ,0) are determined by Eq.~3! with t5t1, the same
equation as in the case of the linear medium, while the sta
time-independent part of the intensity fluctuationdI (r ,0) is
found by solving the stationary Langevin equation@Eq. ~A1!
with n50]. Hence, the time-independent part of the spec
pattern remains the same as in the linear medium. If, in c
trast,nÞ0 ~as we assume in the main text!, we divide both
sides of Eq.~A2! by in, multiply the i th Cartesian compo-
nent of the resulting equation by thej th Cartesian compo-
nent of a similar equation forjext* (r1 ,n), and average the
result over disorder. This yields

^ j ext
( i )~r ,n! j ext

( j )* ~r1 ,n!&

5«2
2E

V
d3r 8E

V
d3r18^dI ~r 8,n!dI * ~r18 ,n!&

3E
0

`

dDtE
0

`

dDt1^q
( i )~r ,r 8,Dt !q( j )* ~r1 ,r18 ,Dt1!&

3exp@2 inDt1 in* Dt1!], ~A3!

where j ext
( i )(r ,n) denotes thei th Cartesian component o

jext(r ,n). After the substitution of Eq. ~5! for
^q( i )(r ,r 8,Dt)q( j )* (r1 ,r18 ,Dt1)&, the time integrations in Eq
~A3! yield

E
0

`

dDtE
0

`

dDt1^q
( i )~r ,r 8,Dt !q( j )* ~r1 ,r18 ,Dt1!&

3exp@2 inDt1 in* Dt1!]

53pD2~c2/ l !d i j d~r2r1!@^I ~r 8!&G~r 8,r18 ;n!G*

3~r18 ,r ;n2n* !^I ~r !&

1^I ~r18!&G* ~r18 ,r 8;n!G~r 8,r ;n2n* !^I ~r !&

2^I ~r 8!&G~r 8,r ;n!^I ~r18!&G* ~r18 ,r ;n!#, ~A4!

where G(r ,r1 ;n) is the Fourier transform ofG(r ,r1 ;Dt).
Equation~A3! can now be rewritten as

^ j ext
( i )~r ,n! j ext

( j )* ~r1 ,n!&5A~r ,n!d i j d~r2r1!, ~A5!

where

A~r ,n!53pD2~c2/ l !«2
2E

V
d3r 8E

V
d3r18^dI ~r 8,n!dI * ~r18 ,n!&

3@^I ~r 8!&G~r 8,r18 ;n!G* ~r18 ,r ;n2n* !^I ~r !&

1^I ~r18!&G* ~r18 ,r 8;n!G~r 8,r ;n2n* !^I ~r !&

2^I ~r 8!&G~r 8,r ;n!^I ~r18!&G* ~r18 ,r ;n!#. ~A6!
1-4
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In the following, we replace botĥI (r )& andA(r ,n) by their
spatial averagesI 0 and A(n), respectively. This simplifies
the further analysis considerably, while can only affect
final result by a numerical factor of order unity, since^I (r )&
andA(r ,n) do not change significantly as long as the poinr
is far enough from the sample boundaries.

We now admit that Eq.~A5! for the correlation function
of Langevin currents atnÞ0 in a nonlinear medium has
form similar to Eq. ~3! for Langevin currents in a linea
medium. This allows us to proceed with analysis of Eq.~A1!
in the same way as it was done for Eq.~2! in the linear
medium @15#. To simplify further calculations, we assum
that the disordered sample has open boundaries~i.e., the
multiple-scattered waves leave the sample when they re
the boundary!, and hence the Green’s function of Eq.~2!,
G(r ,r1 ;Dt), can be approximately written a
G0(r ,r1 ;Dt)exp(2VDDt), where G0(r ,r1 ;Dt)
5(4pDDt)23/2exp@2ur2r1u2/(4DDt)# is the Green’s func-
tion in the infinite medium, exp(2VDDt) describes the leak
age of the wave through the sample boundaries, andVD
5D/L2. We now write the solution of Eq.~A1! as

dI ~r ,n!52E
V
d3r 8G~r ,r 8;n!@“• jext~r 8,n!#

5E
V
d3r 8@“G~r ,r 8;n!• jext~r 8,n!#, ~A7!
ha
a

ng
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where the second line is obtained as a result of integration
parts, assumingG(r ,r 8;n) j ext

( i )(r 8,n)50 at the boundary of
the disordered sample. Multiplying Eq.~A7! by a similar
equation fordI * (r1 ,n), performing the averaging over dis
order using Eq.~A5!, and carrying out the necessary integr
tions, we obtain

^dI ~r ,n!dI * ~r1 ,n!&

5
A~n!

D FReG~r ,r1 ;n!2
Imn

Ren
ImG~r ,r1 ;n!G .

~A8!

Substituting Eq.~A8! into Eq.~A6!, dividing both sides of
the resulting equation byA(n)Þ0, recalling thatn5V
2 iL, and performing a change of variablesR
5@V/(2D)#1/2r ~and similarly forr 8 and r18), we obtain

15C1Dn2~L/ l !3h~R,V/VD ,L/VD!, ~A9!

where C1 is a numerical constant,Dn5(«2/2)I 0, and the
dimensionless functionh is defined as
h~R,V/VD ,L/VD!5~VD /V!3/2E d3R8E d3R18@G~R8,R18 ;g!G1* ~R18 ,R;g1!

1G* ~R18 ,R8;g!G1~R8,R;g1!2G~R8,R;g!G* ~R18 ,R;g!#FReG~R8,R18 ;g!1
L

V
ImG~R8,R18 ;g!G ,

~A10!
ve
sult

as-
e

q.
c-
G~R,R1 ;g!5
1

uR2R1u
exp@2~g1 i /g!uR2R1u#,

~A11!

G1~R,R1 ;g1!5
1

uR2R1u
exp~22g1uR2R1u!, ~A12!

g5H F11S L1VD

V D 2G1/2

1
L1VD

V J 1/2

, ~A13!

g15S L1VD/2

V D 1/2

. ~A14!

We now assume that the disordered sample has the s
of a sphere centered at the origin and th
h(0,V/VD ,L/VD) provides a good estimation ofh for the
points R located far enough from the boundaries. Defini
pe
t

F(V/VD ,L/VD)5h(0,0,0)/h(0,V/VD ,L/VD) and intro-
ducing the effective nonlinearity parameterp5Dn2(L/ l )3,
we rewrite Eq.~A9! as

p5C2F~V/VD ,L/VD!, ~A15!

whereC2 is a numerical factor of order unity. Since we ha
already made some approximations that affect the final re
by a numerical factor of order unity~e.g., we replaced̂I (r )&
by I 0), we omit C2 in Eq. ~A15! and obtain Eq.~7! of the
main text. Most of integrations in Eq.~A10! can be per-
formed analytically, while the remaining integrations are e
ily carried out numerically, allowing us to determine th
value ofL for given p, VD , andV from Eq. ~A15!.

An important comment is in order in connection with E
~A15! and the analysis it results from. The correlation fun
tion of intensity fluctuationŝ dI (r ,n)dI * (r1 ,n)& entering
into Eqs.~A3! and ~A6! contains, in principle, not only the
long-range contribution given by Eq.~A8!, but also a
1-5
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short-range one ^dI (r ,n)dI * (r1 ,n)&;( l /k0
2)I 0

2d(r2r1).
The latter contribution has been neglected in our analy
which is justified for large enough sample size (L/ l @k0l )
and moderate frequencyV!VD@L/(k0l 2)#2. If one of the
d

n,
,

.

v.

01660
s,

above inequalities is violated, the roles played by the sh
and long-range contributions to the correlation function
intensity fluctuations in development of the instability b
come comparable, and the above analysis is no longer v
e-

ev.
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