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Single-cycle electromagnetic pulses produced by oscillating electric dipoles
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We report an exact analytic solution of the Maxwell equations that is capable of describing single-cycle
electromagnetic pulses beyond the slowly varying envelope approximation. The solution is based on the
radiation field emitted by oscillating electric dipoles under the complex-source-point model. The spatiotempo-
ral evolution of single-cycle electromagnetic pulses in free space is illustrated and discussed in detail by using
the analytic solution obtained.
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I. INTRODUCTION Il. ELECTROMAGNETIC FIELD OF ELECTRIC DIPOLES

Let us assume a pair of electric dipoles in vacuum. The

Recent developments in laser technology have resulted IHegative charge-q is fixed at the origin of the coordinates,

the generation of extremely short and intense laser pulse§Vhile the positive charge-q is located along the axis and

containing only a few optical cyclel—3], even only one g yiliating with time. Thus the time-varying electric dipole
cycle[4] and one-half cycl¢5] at optical frequencies. Much ., oment can be written as

attention is therefore being paid to the problem of ultrashort
pulse propagation in vacuum, dispersive linear or nonlinear 5()=ql(t)é 1)
media, and complicated optical systems. If the pulse duration x
is much larger than the optical c.ycle, the .pulse .eVOlunon.'swherel(t) is the distance between the negative and positive
governed by an effective parabolic three-dimensional nonlin- ; ) .
. . : charges ané, is the unit vector along the axis. The vector

ear Schrdinger equation under the slowly varying envelope otential of the electric dipole radiation field is given [iyb]
approximation(SVEA) [6]. By all appearances this approxi- P P 9 3P,
mation cannot be applied to single-cycle pulses. In fact, the .
SVEA breaks down in the self-focusing and self-steepening AX.y.z,t)= ﬂf j(t—R/c) qv/—
of a femtosecond optical pulse long before the pulse duration R A7 |y R
approaches the carrier oscillation cy¢ie-10.

Recently, the evolution of single-cycle electromagneticWhere i is the electric current density vectorR

pulses has attracted even more attention. Hellwarth and Nou- XZryZT Z s the distance from the origin of coordinates

chi[11] derived the vector electromagnetic field components,[0 the observation poing is the velocity of light in vacuum

from a complex Hertz potentidlf (',t) oriented in the direc- t—R/C is the retarded time, ar{ch] represents the first par-

tion of wave pr_opagatlon. Tbe real and imaginary parts of th‘?ial derivative of the electrical dipole momeptwith respect
scalar generating functiof(r,t) are solutions of the scalar to the retarded timett-R/c). In the following, the time

wave equation in vacuum. Hunsckeal. [12] investigated Factor of each physical quantity written in shortened form

e_xpenmentally and calculated numencally_the properties 0with brackets indicates the retarded time. Under the Lorentz
single-cycle terahertz pulses propagating through

aplanatic lens. Fengt al. [13] derived solutions of Max- conditionV-A+de/d(c?t) =0, we can derive the expression
well's equations for a transversely oriented Hertz vector tdOF the scalar potential as follows:
describe focused single-cycle electromagnetic pulses. These )
finite energy solutions are a subset of Ziolkowski's modified _ CHo] X . X
power spectrum pulse solutiof$4]. e(xy. 20 == cre [Pl Ralplf ©

In contrast to previous work, we present a different ap-
proach to studying the evolution of a single-cycle electro-Using the relations between the electromagnetic field and the
magnetic pulse beyond the slowly varying envelope approxipotential function
mation in the spatial-temporal domain in this paper. Our
app_roa_ch is bas_ed on the electromagnetic fie_ld _emitt_ed by E=—Vo—aAldt, @)
oscillating electric dipoles. The electromagnetic field is an
exact analytic solution of the Maxwell equations. Therefore, ..
no slowly varying envelope approximation is required. We B=VXA, 5
assume the oscillation of the electric dipole is of Gaussian
shape. The complex-source-point model is used to removine following expressions for the electric dipole radiation
the singular point at the origin of the coordinates. field can be obtainefil6]:

Mo .o
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. uo ([Pl [p1 [pl]. C%mg X satisfies the conditiorzy>/x“+y~ on the plane ofz=0.
Exyzh=-F 1 r R T RIS 1, ’R? This condition is satisfied as long as the beam spot size not
much smaller than the wavelength. This condition also exists
[Pl 3[pl 3[pl| . . for a spherical wave with a complex source pdih¥] and
R T R | (X&HYETZE), the field radiated from an impulsive source at a complex-
source-point locatiof26].
(6) It can be verified that in the complex-source-point model
. . the electric dipole radiation fields still satisfy Maxwell’s
H(x,y,z,t)=— L([zﬂ [L]z] (28,-y&), (7) equations exactly in spite of the oscillating form of the elec-
47R|[c“R  cR tric dipoles. The verification procedure is provided in the

Appendix. The field is capable of describing single-cycle
electromagnetic pulses beyond the slowly varying envelope
approximation. As we are considering the propagation prop-

the retard.ed “”.‘e- . o erties of single-cycle pulses in free space, it is unnecessary to
There is a singular point &=0 in Egs.(6) and (7). I jyqjyde the source terms of Maxwell's equations.
order to remove the singular point, we use the complex-

source-point model, which was first introduced for scalar

beams by Deschamp47]. The basic idea of the complex-
source-point model is as follows. Now we assume a pair of electric dipoles that oscillates
Assuming an oscillation source point placed at the centewith time in free space. The envelope of the oscillation am-
of real-space coordinat€8,0,0, it can radiate the spherical plitude is also a function of time, which is assumed to be of
wave field Gaussian shape for the sake of simplicity. Under the
) complex-source-point model, the electric moment of the

E(R)=exp(ikR)/R, @) electric dipoles can be expressed as

where[ p] and[ p] represent the first and second order partial
derivatives of the electrical dipole momemtvith respect to

Ill. SINGLE-CYCLE ELECTROMAGNETIC PULSES

which is the rigorous solution of the wave equation. The
point R=0 is a singularity. To avoid the singularity, the lo-
cation of the oscillation source point is assigned the point
C(0,0,—izg), and then R becomes complex, R

[ﬁ]=q|oex%—T

(t—R'/c)? . R
exdiwg(t—R’/c)]é,,

(10

= Vx*+y*+(z+izg)®. In the complex-source-point model, wherew,=kqc is the central angular frequency of the pulse
the spherical wave field remains a rigorous solution of theandk, is the wave number in vacuum. The full width at half

wave equatiorf18,19. Under the paraxial approximatioR,
becomes R=z+izy+ (x?+y?)/2(z+iz,). Substituting R
into Eq. (8), one obtains the Gaussian beam figld].

maximum(FWHM) of the envelope is 22 In 2T. Substitut-
ing Eqg. (10) into Egs.(6) and (7), we obtain the exact ex-
pressions for the electric and magnetic fields of the electro-

The complex-source-point method has also been applieghagnetic pulses emitted by the electric dipoles in free space:

to other beams. For example, Siegman proposed complex
Hermite-Gaussian wave functiofiz0]; Ziolkowski obtained
Gaussian pulses by assuming a complex source point moving
at a constant speed parallel to the real axis of propagation
[21]; Cullen and Yu provided an exact theory for an open
resonator having mirrors of a specific nonspherical shape
[19]. Recently, Sheppard and Saghafi used this simple math-

E(x,y,z,t)=

CZMO [p]

2. r |~ (fatfa)é&

X L .
+W(f3+f4l)(xex+yey+z ez)], (11

ematical form to analyze the electromagnetic wave beyond _ c [p] .
the slowly varying envelope approximation. They discussed H(x,y,z,)=—,— W[fl_ gzt fal((Z78,-y8&),
the beam mode for an electric dipole sink and source pair (12)
oriented along the axis that is a rigorous solution of Max-
well’'s equationd22-24. where
Now we replace andR by z’' andR’, respectively, in the
expressions for the electric dipole radiation field E@$.and _ (R'—ct)? t 1 P
(7) through fh=—gr—r TRz Ko (13
z'=z+izg, R'={X*+y?+(z+izg)?, 9 2ko(R'—ct) ko
2= 27z T o (14)
Wherezo=7rw(2)/)\ represents the Rayleigh range, amglis cT R
the size of the beam waist. According to the resonator theory, , 5
the Rayleigh range is a constant for components of the field :(R —cY st i i_ 2
: . \ fs piE 757 2t om—ky (19
with various frequencies. It does not depend on the wave- c'T cT’R" R ¢c°T
length, but is only determined by the parameters of the cavity
[25]. Only whenz=0 and\/x?>+y?=z, doesR’ vanish. To _ 2ko(R'—ct) N 3ko (16)
overcome this deficiency, we choose the Rayleigh range that MG R~
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As a direct consequence of Maxwell's equations, the Poyn

ting vector of the ultrashort electromagnetic pulse can be

expressed as follows:

§(x,y,z,t) = Re{li(x,y,z,t)] X Re[ﬁ(x,y,z,t)], (17

where “Re” represents the real part of a complex quantity.
The factor (—R'/c) in Egs. (13)-(16) represents re-
tarded time ifR’ is a real quantity. Under the complex-
source-point modelR’ = {x*+y?+(z+izy)? is complex.
The Rayleigh range, appears not only in the amplitude part

but also in the phase part of the electromagnetic fields. From

Egs.(11) and(12), we can see that the spatial and temporal
parts are coupled.

If the full width at half maximum of the envelope ap-
proaches infinity, our solution will go back to previous re-
sults[22]. AssumingT— <, then Eqs(13)—(16) become
fzg ko/R’ y

fi~1/R"2-K3, (18)

f3~3/R'?2—k3, f,~3ko/R'. (19
Substituting Egs(18) and (19) into Egs.(11) and(12), we

can obtain the electromagnetic field produced by the time

harmonic oscillating dipoles. The results are the same as

those of Ref[22], where the beams produced by the time-
harmonic electric and magnetic dipoles were considered.

From Egs.(11)—(16), we can see that the expressions for
the electromagnetic field are very complicated. It is difficult
to reveal the evolution properties analytically via these equa
tions. Nevertheless, we can analyze the characteristics of t
electric dipole moment instead of the electromagnetic field
Settingt=0, z=0 in Eqg. (10), we can get the transverse
distributions of the dipole moment as follows:

2 x2+y?
[p]=qloexp[zz°7z ex;{— e Xk B ().

(20

n
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normalized field envelope square

normalized field envelope square

X (4 m)
FIG. 1. Distributions of the square of the electric field envelope

for the electromagnetic pulse versusoordinate. 2/2 In2T= (a)
3.5 and(b) 35 fs.

qﬁg propagation in space and the amplitude oscillates with

the propagation distance. The speed of oscillation of the am-
plitude with the propagation distance of a multicycle pulse is
slower than that of a single-cycle pulse.

The Poynting vector of an ultrashort electromagnetic
pulse can be calculated based on Edg). Figures 2a) and
2(b) show the distributions of the instantaneous energy den-
sity versus thex coordinate when the pulse wid{FWHM)

From Eq.(20), we can see that the envelope of the electricequals 3.5 and 35 fs, respectively. The parametgiswo,

dipole moment is of Gaussian shape. The shape of the ele
tromagnetic field is determined by the transverse distributio
of the electric dipole moment. We can see in the following
calculations that the electromagnetic field is also Gaussian i
shape.

Now we illustrate the propagation properties of the elec
tromagnetic field with some numerical calculations. The
electric field distribution in spatial coordinates can be calcu
lated based on Ed11). In the calculations, the parameters
are chosen a3,=1064 nm, wo=0.8\o, and the timet
=1.5fs. Figures () and Xb) show the distributions of the

square of the electric field envelopé|? versus thex coor-
dinate when the pulse widttFWHM) equals 3.5 and 35 fs,
respectively. The longitudinal coordinates in Fig$a)land

andt used in the calculation are the same as in Fig. 1. The
ﬁingitudinal coordinates in Figs.(®@ and 2b) are normal-
ized to the maximum value. From Fig. 2, we can see that the
electromagnetic pulse produced by oscillating electric di-
Boles propagates mainly along theaxis. The shape of the
instantaneous energy density remains invariant during the
propagation in space. The amplitude of the instantaneous en-

ergy density oscillates with the propagation distance. These

properties are similar to those of the focused single-cycle
electromagnetic pulse given in RdfL3]. Comparing Fig.
2(a) with Fig. 2(b), we see that the change of the amplitude
of oscillation of a multicycle pulse with propagation distance
is more rapid than that of a single-cycle pulse.

From Figs. 1 and 2, we can see that the square of the
electric field envelope and the instantaneous energy density

1(b) are normalized to the maximum value. Because theyre different. These differences are caused by the following

electromagnetic field is almost symmetricxrandy coordi-
nates, we only drawn the distribution versus xteoordinate.

effects. Initially, the square of the electric field envelope does
not include the phase factor. But we can see from #@d)

Comparing Fig. (a) with Fig. 1(b), we see that the square of that the instantaneous energy density is modulated by a

the electric field envelopE|2 keeps its Gaussian shape dur-

phase factor. Secondly, the pulse width and the oscillation
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FIG. 2. Dist_ributions of the insta_ntaneous energy density forthe £ 3. Distributions of the instantaneous energy density of a
(eg)e(::atgofmagnetlc pulse versugoordinate. 2/2 In 2T= (&) 3.5 and single-cycle electromagnetic pulse versus time= (a) 0 and(b)
S. 0520

frequency of the multicycle pulse are larger than those of a
single-cycle pulse. Their propagation velocity is the same aghe calculation, we assumed the wavelenggs=1064 nm,
the velocity of light in vacuum. The spatial distribution of beam waistvg= 0.8\, and pulse widt{FWHM) of 3.5 fs.
the instantaneous energy density of the multicycle pulse iFigure 3 shows the distributions of the instantaneous energy
more complicated than that of the single-cycle pulse. And thelensity versus time& when z=(a) 0 and(b) 0.5z,. The
speed of amplitude oscillation of the electric field envelopelongitudinal coordinates of Fig. 3 have the same meaning as
squared changes with propagation distance for a single-cyci@ Fig. 2. From Fig. 3, we can see that the single-cycle elec-
pulse faster than for a multicycle pulse. These properties cafiomagnetic pulse propagates mainly along ztexis at the
be obtained from the following analysis of the temporal evo-gpeed of light in vacuum. On the plane £ 0, the pulse is
lution. _ , _ symmetric and the center of the pulse is located=ad. With

Next let us discuss the temporal evolution of single-cycle crease of the propagation distance, the pulse becomes
pu]ses. From Eq(10) the electrical dipole moment on tize asymmetric and the center is locatedtatz/c. It is caused
axis (x=0y=0) can be expressed as by the derivative of the pulse with respect to the retarded

204 ;{ (t—2z/c)? time (t—z/c) [27]. During propagation, the pulse duration
exp ———=——

[Pl=4alg ex;{ 772—202 +Kkozg 5 remains invariant. The instantaneous energy density does not
2hoc T a2l oscillate with time in a harmonic form; its amplitude forms
an envelope with Gaussian shape. If the pulse width in-
Xex;{iwo €, . (21) creases, the envelope shape of the energy density remains
invariant but the oscillation frequency increases.
From Eq.(21) we can see that the oscillation angular fre- The amplitude of the longitudinal coordinate at the instan-
quency of the electric dipole moment iswg 1l taneous timé=1.5 fs in Fig. 3 is connected with the corre-
+w3/(2¢?T?)| instead ofw,. That is to say, the Gaussian sponding number in Fig.(3). We can see that with the pulse
beam waistw, affects not only the amplitude but also the pPropagating along the axis, the amplitude at=1.5fs os-
frequency. With the increase of the beam waigt the an- cillates. This result is consistent with Figa2 The transmis-
gular frequency increases. sion characteristics of the energy density for different values
The temporal evolution of a single-cycle electromagneticof the propagation distance as shown in Fig. 3 are the same
pulse for different values of propagation distance can be calas in Ref.[14], where a different method was used. It con-
culated based on E@Ll7). The results are drawn in Fig. 3. In firms that the methods used in this paper are correct.

2
0 Z
“W)(t‘a
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> 10 tude forms an envelope with Gaussian shape. If the pulse
= 04 a . . e
@ width increases, then the oscillating frequency of the energy
8 08 density increases. Third, with increase of the lateral coordi-
B nate x, the single-cycle electromagnetic pulse expands in
g %8 time. The temporal expansion speed is faster when the beam
T 04 waist is smaller. The location of the pulse maximum is
% shifted to higher values of timewhen the lateral coordinate
E 024 X increases.
g
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8 APPENDIX
£ 1.0x10™ In this appendix we show that, in the complex-source-
< 0.0 point model, the electric dipole radiation fields still satisfy
' 0 2 4 6 8 10 Maxwell's equations exactly in spite of the oscillating form
t(fs) of the electric dipoles.
We replace z and R by z'=z+izg; and R’
FIG. 4. Distributions of the instantaneous energy density of a= \x°+y®+ (z+izo)?, respectively, in the expressions for
single-cycle electromagnetic pulse versus titvet z=0.2z,. x= the electric dipole radiation fields Eq&) and (7). For the
(@) 0 and(b) 3wy. sake of brevity, we omit the constant coefficiedjq/4 in

the electric and magnetic fields. Then the electromagnetic
Figure 4 shows the distributions of the instantaneous erfield can be expressed as

ergy density versus timé based on Eq.(17) when x .
=(a) 0 and(b) 3w,. The parameters used in the calculation E'=[(—01+X02) &+ Xy GE, +X(2+i20) 28],
arehg=1064 nm,wy=0.8\¢, z=0.2z,, and the pulse width
(FWHM) is 3.5 fs. The longitudinal coordinates are normal-
ized to the maximum value. From Fig. 4, we can see that B/ =, H = 1/g: [P]
with the increase of the lateral coordinat¢he pulse width o c|R" R*
of the single-cycle electromagnetic wave expands in time.
For different beam waists the expansion velocity of the elecwhere
tromagnetic pulse is different. The temporal expansion speed

][—(z+izo)éy+yéz], (A2)

is faster when the beam waist is smaller. The location of the _ [P] " [P] " ﬂ (A3)
pulse maximum is shifted to higher values of timghen the 917 R T RZ TR
lateral coordinatex increases.
o 3[¥ 3
[P] [p]  3[p] (Ad)

IV. CONCLUSIONS ?CRT R R
We presented an exact solution of Maxwell's equationsThe time factor of each physical quantity written in short-

that is capable of describing single-cycle electromagneti€ned form with brackets indicates the retarded titne

pulses. In order to remove the singular points, we used the R'/c. For any oscillating form of the electric dipoles, we

complex-source-point model. The spatiotemporal evolutiorfan obtain the following expressions:

of a single-cycle electromagnetic pulse beyond the slowly

varying envelope approximation has some unique propaga- R" _xdpl_ i[p]

tion properties in free space. Initially, the square of the elec- ax; R’ X cR’ '

tric field envelope||§|2 remains in Gaussian shape during . ) (A5)
propagation in space, but the amplitude oscillates as the [ p] _ X a[p] __i[p"]
propagation distance increases. The evolution of the instan- ox;  cR 9% cR ’

taneous energy density is similar. Second, the single-cycle

electromagnetic pulse width and pulse shape remain invariwherex; can be replaced by, y, andz+iz,, respectively.
ant during the propagation. The instantaneous energy densifrom Eqgs.(A3) and (A4) we can derive the following rela-
does not oscillate with time in a harmonic form; its ampli- tions:
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d9,
ax . Nigs (AB)
s)
S =X (A7)
I
where
[p1  2[p] 3[p] 3[p]
3:C3R12 C2R13 CR/4 R/S ’ (A8)
[6]1 6[p] 19p] 19p]
94:CSR/4 C2R/5 CR!B Rr? . (A9)

Using d/d(z+izg)=dl 9z, the electromagnetic field can be
obtained from Eqs(A6)—(A9) as follows:

JE, 3
W =XQg3—X°gs+2XQ,,
JE; )
W =Y03—XY0s,
a—zx=(Z+iZO)93_X2(Z+iZO)g4' (A10)
JE!
— =Y XY,
JE!
a_yy =X0,—XY?Q4,
JE, )
— = XY(2+iZ0)a, (A11)
JE, .
5 =—Xy(z+iz0)d4,
JE, .
—5 ~ X% X(z+i20)°ga, (A12)

and

PHYSICAL REVIEW E 67, 016503 (2003

oB!
at '

[P]

W} . (A13)

0B, _ [ 5]
YRt

From Egs. (A10)—(A13), we can derive the following
expressions:

>

_ BBy R,

= Tz _ 12~ —
V-E 7 ay+ 7z 4xg,+Xxgz3—XxR'“g,=0,
(A14)
JE, JE, 9By
oy Y (A15)
JEy OB,
9z ox =(z+i20)(93—92)
: [B] (Pl | 4By
=(2Hi20)| Rzt 2R3 <
(A16)
By B grmga=—yl Pl TP 9B
X ay y(92—03 YI\Br2 " 2R3 ot
(A17)

From Egs.(A14)—(A17) we obtained two expressions for
Maxwell's equations:

V.-E'=0,

(A18)
. ., B
VXE'=——

The other two expressions for Maxwell's equations can be
verified in a similar way. Therefore, the electromagnetic
fields emitted by electric dipoles in the complex-source-point
model still satisfy Maxwell's equations.
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