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Relativistic electron dynamics in intense crossed laser beams:
Acceleration and Compton harmonics
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Electron motion and harmonic generation are investigated in the crossed-beam laser-accelerator scheme in a
vacuum. Exact solutions of the equations of motion of the electron in plane-wave fields are given, subject to a
restricted set of initial conditions. The trajectory solutions corresponding to axial injection are used to calculate
precise emission spectra. Guided by hindsight from the analytic investigations, numerical calculations are then
performed employing a Gaussian-beam representation of the fields in which terms oérdéreree is the
diffraction angle, are retained. Present-day laser powers and initial conditions on the electron motion that
simulate realistic laboratory conditions are used in the calculations. The analytic plane-wave work shows, and
the numerical investigations confirm, that an optimal crossing angle exists, i.e., one that renders the electron
energy gain a maximum for a particular set of parameters. Furthermore, the restriction to small crossing angles
is not made anywhere. It is also shown that energy gains of a few GeV and energy gradients of several TeV/m
may be obtained using petawatt power laser beams.
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[. INTRODUCTION which have recently led to the successful generation of sub-

cycle pulses in the microwavgl2], far-infrared[13], and

The scheme to accelerate electrons in vacuum by meariemtosecond14] regimes.

of two crossed laser beams was proposed several years ago This paper may be considered as consisting of two parts.
[1-3]. The basic idea here is to send the electron through thEirst, analytic work employing a plane-wave-based represen-

crossing point of two laser beams at an angleith respect  tation of the laser fields is presented which aims(at:a

to each beam directiofsee Fig. 1 for a schematic and a Pettér understanding of the electron dynamibs searching
coordinate systejn Within the (simple) plane-wave picture for deeper insights into the electron-field interaction and en-

and assuming the laser fields have the same amplitude affidY €xchangec) calculating precise sample emission spec-

frequency, and are polarized as shown in Fig. 1, the resultarliEIa based on the exact lnard-Wleghert potentials of the
electron, andd) guiding the numerical work that follows.

electric field component transverse to the electron initial di-

: . ; . . Second, results from numerical work, based on a realistic
rection of motion vanishes for all points on that axis. At the ) . ;
model of the laser fields in terms of those of a high-order

slamte tlm?r,hthe axial i.o n;_pcl)dnent works T"y toﬂ?ccetlhe ratr? th;saaussian beam, are presented whose aim is to simulate the
electron. The magnetic Tield component, on the Other Nang,,q, atory conditions as closely as possible when high-

vanishes at the same pom';s_. Thus subsequent mot_lon of ﬂi‘ﬁtensity laser fields are employed; a regime that requires
electron, under these conditions, may be taken as linear. Es-

arey et al. [2] have derived working equations for the X
scheme employing a pair of linearly polarized laser beams, .
with Gaussian profiles, in the paraxial approximation, with

acceleration mainly attributed to the forward electric field E
components of the beams. In their derivation various other ; k

approximations were employed, including the restriction to e B, /
small intersection angleg<1. e—— E - 6
: 0

Later, Huang and his collaboratd4] used the equations
of Esarey etal. in order to calculate parameters for
dielectric-based, single-stage and multistage accelerator 2
structures. Like other laser-accelerator sche@¢s—7| this 2
work is motivated by advances in laser technol¢gy-11],

FIG. 1. Schematic diagram of the crossed-beam laser accelerator
configuration. The electron, chargee and initial scaled speef,,

*Electronic address: ysalamin@birzeit.edu is injected along the axis through the intersection point of the two
Electronic address: mocken@physik.uni-freiburg.de beams. The plane-wave field polarizations are denote# bgnd
*Electronic address: keitel@physik.uni-freiburg.de E, and their propagation directions are givenkyandks,.
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focusing over small spatial dimensions. This will allow us toln Sec. Il the most general description of the fields of a

investigate stability of the electron motion under initial con- Gaussian beam are presented and then used to investigate

ditions less ideal than the forward injection case, by considseveral issues pertinent to the acceleration scheme. First the

ering off-axis injection and injection at various initial speeds.issue of a preferred crossing angle will be taken up. Using
Chief among the results of the analytic work is the real-the preferred angles suggested by the numerical work, the

ization that, corresponding to any given set of field parameffect(on the trajectories as well as on the energy yaina

eters, an optimum beam crossing angle exists which makéé)read in _the injection .|n|t|al_cor.1d|t|ons, mcludlng the injec-

the electron energy gain a maximum. Furthermore, the radidion energies and positions, is discussed next. Finally, a sum-

tive losses turn out to be small and the emission spectrd@ry of our main results and conclusions will be given in

exhibit the expected Doppler shifts, line enhancement, angec: V.

tendency to be of approximately the same strength, all with

increasing intensity. On the other hand, we learn from the Il. THE PLANE-WAVE ANALYSIS

numerical work that small deviations from initial forward

injection result in considerable bending and large departure

from linear motion. More importantly, energy gain, of sev-  Referring to Fig. 1, we represent the propagation vectors

eral GeV from interaction with laser beams of laboratoryof the two identical beams bly; = w/c(i sin 6+k cosé) and

intensities, is shown to be possible. ko= (w/c)(—ising+kcosh), where w is the laser fre-

In the analytic work a set of working equations for the.ﬂuency,c is the speed of light in vacuum, amd], andk are
crossed-beam accelerator scheme are developed, employi o) . L . .
4 it vectors in the directions of increasingy, andz, respec-

the phase of the accelerating field as a variable. In terms . : .
) ; ; ively. Let the phases of the fields at any space-time point
this variable, exact expressions for the electron energy an . - =
,r) be given byn,;=wt—k;-r, andy,= wt—Kk,-r. Intro-

speed are obtained by direct integration of the relativistic

equations of motion of the electron. An expression for theducmgg(”i) as an envelope function for tfjéh beam and

electron position as a function of the laser field phase is alsg>s4ming the beams have the same ampliilahe electric

obtained in terms of an integral which we carry out numeri-and magnetic fields of the two beams are
cally for our purposes in this paper. Our equations are valid

A. Formulation of the problem

for all crossing angles and allow us to follow the subcycle E1=Eog(7)c0s7,(i cosé—ksin ), @)
evolution of the energy gradient, energy gain, speed, radiated - -
power, and the time rate of change of energy gain during Eo=—EqQ(7,)cosn;(i cosd+ksing), @)
interaction with two different wave patterns, namely, a R
strictly plane-wave pattern and a pattern modeled by & sin B1=EqQ(7n,)coSn, ], 3)
envelope.

Although we investigate the electron dynamics during in- B,=—Eog( 772)(;037]2]_ (4)

teraction with wave patterns containing several field cycles

(in a sense to be described belpwur analysis also suits Note that theE and B fields given in Eqs(1)—(4) satisfy
situations in which a subcycle pulse may be ugs-17.  Maxwell's equations. We employ these equations in the ex-
During a decelerating phase of the motion the electron speggloratory analytic work.

may drop to zero and its direction of motion may be re-  Utilizing the axial symmetry of the problem, the trans-
versed, depending upon its initial injection energy. This leadserse motion of the electron may be neglected for electrons
to loss of energy through Bremsstrahlung and places limitainjected exactly axially(along z). This will receive solid
tions on the maximum energy attainable. In spite of that, forsupport and full justification from the numerical work of Sec.
example, our numerical work shows that a maximum energyll. Under these conditionsy,,7,— 7= w[t—(z/c)cosd].
gain of about 1.9 GeV may be achieved using identicalMoreover, the resultant magnetic field vanishes for all points
beams of 10 PW power focused down tqumn waist radii.  on the z axis, while the resultant electric field has only a
This occurs for 2.555 MeV injected electrons and a crossingionvanishing axial component given by

half-angle 6=3.1°. The acceleration to this energy takes

place over an axial distance of less than 2 mm, which implies E,(0,02)=—2Eyg(#7)sindcosx. 5)

an energy gradient of nearly 1 TeV/m. The plane-wave-based

calculations exaggerate these numbers by a factor of 2 orhis accelerating field has an amplitud&ysindg(7), a
sometimes even much more. phase », and hence, a phase velocity,,=c/cosé>c.

The rest of this paper is organized as follows. In Sec. IIHenceforth, but within the plane-wave conteote (acceler-
we formulate the problem, modeling the laser fields byating) field cyclewill mean »=2. Since the speed of the
pulse-shape functions dependent entirely upon the laser fieklectron can never exceexit will phase-slip behind the
phase, and setting up the relevant equations of motion. Thigccelerating field. In the remainder of this sectipmvill be
is followed by the analytic solution of the equations of mo- used as a variable in terms of which all physical quantities of
tion and by a derivation of the evolution equations, in therelevance will be written and discussed. Our analysis of the
said phase, of the electron dynamics. Next we investigate thelectron dynamics will cover several integer values#
radiative losses that accompany the motion of the electron ifl5—17. In a practical situation, the interaction will be con-
the laser fields and present examples of the emission spectifined to a region of space around the origin whose size de-
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pends on the shape and size of the beam cross section at 80 .
focus. Hence the electron will practically interact with a frac- — gm) =1
tion of a cycle of the accelerating field, or a few such cycles = | - g(n) = sin‘(/12)

at most, depending upon the parameters used. Chief among
those parameters are the beam waist radii, the Rayleigh
lengths, and the crossing angle.

Let the electron have a massand a charge-e. A solu-
tion to the following equations of motion will now be devel-
oped E=E;+E, andB=B;+B,)

Energy gradient (TeV/m)

dp de nen

—=—e(E+BXB), ——=-—ecB-E. 6
dt (E+BxB) dt B © FIG. 2. Energy gradient vs the number of cycles of the acceler-

ating field. The parameters ar&:=1.056um, #=3.2°, andq
In Eqg. (6) p=ymcp is the relativistic momentum of the =102.622[laser power10 PW, see Eq46) below].
electron andS= ymc? is its energy, wherg8 is the velocity
vector normalized by the speed of light ang=(1  The solid line in Fig. 2 represents a plane wagéyp)=1,

— %) Y2 is the Lorentz factor. WithB=(B,.By.B,), the  while the dotted line is for a wave pattern having a2sin
exact equations of motion are equivalent to four componengnvelope given by

ones. Thex- andy-component equations result in no motion

due to the vanishing of the magnetic field on thaxis. The k7
remaining two equations then take the form 9(77):3|n2(7)- (12)
d(yB,) . _ ;
dt =2qw Sinfg(7n)cosz, (7)  where 0<k<1. For example, fork=1/6 this pulse-shape

function envelopes a pattern of 6 field cycles.
From Fig. 2 one finds out th&( ) is positive during one
half cycle and negative during the following half cycle.
Thus, for interaction with an integer number of field cycles,
the energy gains tend to get canceled by the energy losses, in
where we have introducegl=eE,/(mcw) as a convenient agreement with the Lawson-Woodward theorgh8]. Our
dimensionless intensity parameter. Recall that analysis will cover interaction with a full field pattern, or
2.2 pulse in this effectively one-dimensional model. For the pur-
m 7C pose of acceleration, the assumption is that the electron may
IN2= (T) (7)q2~1-375< 10"g?(Wicn?)(um)?. be ejected from the region of interaction while it still retains
(9) part or all of the energy gained.
We also conclude from studying Fig. 2 that both pulse-
Equation(9) will be employed in computing the intensities shapes considered present the electron with the same field in

d
d—?[/=2qw sin6# g( ) B, cosn, ®)

used in Figs. 6 and 7. the small region around the focus. Thus it does not matter
which envelope function we use in our theoretical investiga-
B. Electron dynamics tions of the electron dynamics in that region.

In an accelerator design one would want to know where
actly will the electron have what energy. In order to reach
his goal we set out now to find the energy g&if{») and
e coordinate of the electron along the forward direction of
motion z( 7). We will display graphically the gaikV against
z using their respective expressions as parametric equations
in terms of , regarded as the parameter.

— _ Since mation is confined to one dimension, we will drop
W) =meTy(7) = vol. (10 the subscriptz from this point on. Differentiating the field

With the help of Eq(8), the following expression may be Phase with respect to the time variable gives
obtained for theenergy gradientenergy gained per unit in-
teraction distangeas a function of the accelerating field dn

phase a=w(1—ﬂcos€). (13

It will be assumed that the electron is sent initially along ex
thez axis at the scaled spe@, and that it will be overcome
by the front edges of the crossed laser beams simultaneou
at timet=0, at the origin of coordinates. The electren-
ergy gain as a result of interaction witly/27r cycles of the
accelerating field, may be defined by

dw

G(n)= = 02%=2qmc<ug(7;)sinecosn. (11) Carrying out the differentiation with respect to time explic-

itly on the left hand side of Eq7), the time dependence may
be eliminated in favor of dependence upon the field phase

The energy gradient is proportional to the acceleratingwith the help of Eqs(8) and (13). Separation of thénew
field [compare Eqs(5) and(11)]. We showG(#) in Fig. 2.  variables next gives
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(1— B cosh) _ S
(1——,32)3"2dﬁzzqg( 7)sin @ cosn dn. (14 <4} @
s, '
Integration subject to the above mentioned initial conditions '@2
finally yields 3
g1
¥(B—cosb) = yo( Bo—cosf) +2qf(p)sing=s(7), “ol
(15
where >
<4
K ’ ’ ’ 53 -
f(n)=| 9(n')cosyn’dn’. (16 ¢
70 %2 [
For book-keeping purposes note that for the plane—wavegl -
and sirf patterns one hasz=0) 0
— o 0 1 2 3 4 5 6 0 0.5 1 1.5 2
f( 7]) =sin 7, (17) n2r z(mm)
and

FIG. 3. Electron energy gain vs the number of accelerating field
. . . cycles and also vs the forward distance of travéh) and(c): The
f()= sinp sin(1+«) 7] _ sif(1—«) 7] (18) plane-wave pattern, an@) and (d): The wave pattern with a sin

2 4(1+ k) 4(1-k) '’ pulse shape. The remaining field parameters are the same as those
of Fig. 2.

respectively.
Equation(15) may now be solved for the electron velocity

scaled by the speed of light Sec. lll. Moreover, the gain increases during, say, the first
y P 9 quarter of a field cycle and the electron is accelerated. The
o gain reaches a maximum at the end of the first quarter cycle
B(n)= cosv+sys +S'n20. (199  and then drops down during interaction with the second

1+° quarter cycle. The Lorentz factoy changes a little from

unity during interaction with the next half cycleotted line,
Alternatively, Eq.(15) may be solved for the electron energy electron initially at rest This explains the flat portiotactu-
scaled bym¢, ally concave upwandof W vs /27 between thezn/2m
=0.5 and 1 marks in the dotted line of FigaRB In fact, the

_ scosf+ \Js?+sirf 6 20 Lorentz factor reaches a value less thgn(solid line, vy,
v(n)= Sir? 6 : (20 =30) and drops down to unity g— 0 in this region, andV

becomes slightly negative there. This may be better under-
Equations(19) and(20) have the correct limits. Consider the Stood by studying Fig. 5 for the scaled speed, where it is
case of#=0, for example. This case corresponds to twoshown that the electron slows down and reverses its direction
co-propagated beams. For the chosen polarizations, howevéf, motion.
the electric fields cancel out at all time and, hence, subse- Another important point to note in Fig. 3 is that the elec-
quent motion of an electron that has initially been injectedtron is accelerated from rest to a maximum of about 3.4 GeV
exactly along the z axis should not be affected by such fieldsand from roughly 15 MeV to a little over 3.8 GeV. Both
Note that settingd=0 in Eq. (15) gives s=— yo(1— o) results are achieved regardless of what pulse-shape function
<0. When this result is used in Eql9) and (20), and d(7) is used to model the field of 10 PW power. This will be
provided the square roots are handled with care, one findghown to be about twice the gain obtained numerically from
out that8(5) — B, and y(77)— 7y, as they should. the Gaussian-beam-based calculation. Only at a plane right

With Eq. (20) for the scaled energy we can now discussthrough its focusz=0, (and too far away from focus, where

the energy gainVN(7), defined by Eq.10). We begin by the intensity may be negligible anywagoes a Gaussian-
showing this quantity in Figs.(@) and 3b) for two different ~beam exhibit plane-wave characteristics.
pulse-shape envelopes. Due to the fact that each of the enve- Of more interest to the experimentalist would be to see a
lope functions is normalized to have a unit maximum heightdisplay of W vs z. To produce such a figure we need an
at focus, the energy gain has the same maximum value fd¥xpression for the axial electron coordinale;) which we
both of them. Note that in all cases all gain is lost as thenow derive. Using the chain rule of differentiation and em-
electron is left behind the pattern, in agreement with thebloying Egs.(13) and(19) we get
Lawson-Woodward theorem. This is due essentially to the
inherent symmetry of the plane-wave model. This symmetry
gets destroyed by focusing over small spatial dimensions, E:d_Zﬂ:g B(n) 21)
and a net gain becomes possible, as will be demonstrated in dyp dtdyp o[1-pB(n)cosl]’
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FIG. 4. The maximum energy gaiicalculated foryn/27=3.2) e
is seen here to saturate with increasing initial injection energy. The °
parameters used are the same as in Fig. 2. g
(o)
The remaining integration in Eq221) will be carried out -

numerically, for the sake of the discussion below. We show
W vs z in Figs. 3c) and 3d). Note the presence of what
looks like cusps in these plots. In fact, each of these cusp-
looking portions is a tiny loop, too small to show on the scale FIG. 5. Forward scaled speed of the electron vs the number of
used. Inspection of the data used to produce, say the dott@gcelerating field cyclea) Plane-wave pattern, ari) sir? pat-
line in Fig. 3c), reveals a turning point in the trajectory the tern. The field parameters used are the same as in Fig. 2.
electron reaches as its speed drops to zero. It then turns
around, moves a fraction of &m to the left to another turn- outcome of that work was the demonstration that an opti-
ing point and then speeds up to the right again. Over the loopium crossing angle, one that makes the overall gain a maxi-
structure the electron moves at speeds too small compared faum, exists for each set of chosen parameters. More on this
the speed of light, which explains why it hardly moves for- issue will be found in Sec. Ill below.
ward (or backward during interaction with about half of a
(mostly deceleratingfield cycle. C. Radiative losses

The examples considered in Fig. 3 exhibit large average
acceleration gradients. Ejection at the top of the first hump Oras
each line in Fig. 8), for example, achieves average energyz,,
?drg?tf;t"sngf roughly 25 TeV/nisolid line) and 23 TeV/m linear accelerator are negligibly small.

The initial dit laid d b dmittedi However, this is a fact if the particle undergoes steady
€ Initial conditions 1aid down above are admittedly ar- 5ccejeration. As may be seen in Fig. 5, the electron speed in

tificial, somehow. We have simply stated that the electron 'Rhis scheme oscillates: it becomes extremely relativistic in

born at the origin O.f _cpordinates ‘.’H:.O. inside the plane the forward direction as the electron absorbs energy from the
wave which, by definition, has an infinite extension in bothﬁe|d and then it falls down to zero when the field changes

spacde and time. Figure 3 ?uggeﬁtsf_tr;gt_sstléch af? electrQfrection. It may even become negative, depending upon its
ffaﬂ s to gzﬂn gjore e;errg];y ror;:_t € llae : Id r(thﬁ ata ,injection value. During deceleration the electron loses sub-
Igher speed. Figure 4 shows this to be indeed the case bUf, (5| energy through Bremsstrahlung. We now investigate

not indefinitely. The gain exhibits Sat.uf"%‘t"(’ﬂt aboqt 3'57.5 the radiative losses employing the relativistic version of the
GeV, for the parameters useadlfter an initial steep rise, with Larmor formula for the radiated pow§t9]

increasing injection energy.

The sinusoidal dependence upagnof the scaled speed 2 dg dg
[cf. Egs. (15)—(19)] shows clearly in the oscillations dis- P(t)=§€?’6Ha BX 4t
played in Fig. 5. The scaled speed drops from a relativistic
value close to unity down to zero and even becomes negaor motion along a straight line, the second term in @)
tive, as the field changes direction and works to decelerat@anishes. Equatiofil4) may then be used to write the ex-

the electron. The minimuninegative value reached by3  pression for the radiated power as a function of the acceler-
depends, of course, on the value@y although this may not  ating field phase

be seen in Fig. 5 because in it we employ parameters of an
extremely powerful laser system. In such an environment the B . 9
acceleration to ultrarelativistic speeds takes place quite P(7)= 3 £ [2awg(n)sind cosy]*. (23
swiftly.

We conclude this section by noting that in a recent lettefEquation(23) gives the rate at which energy is lost by the
Salamin and Keite[3] have studied this electron-field con- electron through radiation. This quantity should be compared
figuration employing sim plane-wave fields and allowing with the rate at which the electron gains energy by absorp-
for interaction with only half of a field cycle. An important tion from the field. The rate of energy gain is

n/2r

Electron motion in the scheme of acceleration by crossed
er beams is essentially linear, provided injection is per-
ctly axial. It is well-known[19] that radiative losses in a

2

2
] . (22

2
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de/dt (W)

(©) Y, =1, N=200,q =20 ()% =5 N=200,q9=20
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FIG. 6. The radiated power and the rate of change of the elec-
W/, /o,

tron energy vs the number of accelerating field cycles. The initial

electron scaled injection energies ayg=1 (solid lineg and vy, FIG. 7. (C . s

- - . . S . 7. (Color onling. Sample emission spectra of an electron

7?(’jot()d0tted “ne$tN?t§] thfe stotltl:jaand qutzd |Ine(sj c0t|n0|de(m) initially at rest (yo=1) at the origin or with initial speedy;=>5)

and(b) on account of the fac (7) is in ependen oB,. (@ along thez axis and subsequently subjected to two crossed laser

and (c) are for the p!ane-wavg patteg( 77):1{ while (b) and (d) beams ¢=0.1 rad) modeled by plane-wave pattergs;& 1) with

irf {or the pfti%rn Wlltlg(lﬂ%;;inlzé%b\z/)- Tt]ze field Earaémeterz Zre: N=1 um. The observation point is in thez plane and located by
~pm, g=19, ort=L. cm* [see Eq(9)], an polar angles® =80 mrad andb=0. The calculation has been car-

=01 rad. ried out for interaction withN field cycles and using inten-
aw de sity parametersq=1 (1~1.375<10'® W/cn?) and q=20 (I
. ~5.5x 10°° W/cn?). The intensities were calculated usin .
a9t = gt = Mel2awg(n)sing cosplB(n), (24 ) o
from Egs.(8) and(10). Construction of the ratio oP(7) to In this section we will be using to denote the generated
dW/dt runs into difficulty due to the fact that the latter van- frequency andw, to denote the laser frequency. Although,
ishes at several values gf the spectra to be shown in Fig. 7 are calculated using the

We show these quantities separately in Fig. 6 for interacexact Liemard-Wiechert potentials, we employ the following
tion with a field of intensity of 1.37%10°°W/cn? [q  equation, as a starting point for the discusdib8| (far field
=10, according to Eq(9)] and employing the pulse-shape approximation
functions used in Figs. 2-5. In the small regionsyo$pace

corresponding to deceleration, the ratio &,y tO d’E(w,Q) _ e? J'T nXxX[n—pt)]x B(t)
(dW/dt),ax Can be non-negligiblda few percent as the dQ dw 472c| Jo [1-n-B(t)]?

electron loses part of the gained energy by radiation. Else-

where, during acceleration, the same ratio becomes negligi- . n-r(t) 2

bly small, typically less than 0. Our single-particle analy- ><exp{ L “dt (25

sis gets a little modified when the bunch characteristics are
';Zléteonrsl[nztg] account by introduction of suitable bunch form,, Eq. (25 E is temporarily used to denote the radiated en-
' ergy,n is a unit vector in the direction of propagation of the

emitted radiatior(direction of observation B is the particle
acceleration scaled by the speed of light, nid used tem-

We have seen in the previous subsections that the electrgsbrarily to denote the time interval over which interaction
undergoes violent acceleration and deceleration in the fieldsetween the electron and the laser field takes place. Equation
of two crossed laser beams. It has also been demonstrategs) holds as long as the dimensions of the electron trajec-
that the resulting radiative losses can be non-negligible. Weory are much smaller than the distance from the electron to
devote this section to a study of the emission spectra of thghe observation point. This has been demonstrated quite well
free electron in the prescribed fields. Production of harmonpy the trajectory analysis given above. In what follows, a
ics of the incident radiation field, for fr§@1-32 and bound  spectrum will be reported in terms of the doubly-differential
[33-4Q electrons is an active area of investigation. It hasscattering cross section, given by
also been shown recentlj20] that characteristics of the
emitted radiation may be used as a valuable tool for electron 2 2 42
bunch diagnosis, a tool that does not involve intercepting or do(w.€) =1 Bmery dE(w,Q)
deflecting the electron beam substantially. ddo T (equy)? dQdw

D. Emission spectra

(26)
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Equation(26) has been obtained by dividing the radiant en-to the emission at the fundamentgiump frequency, over
ergy, emitted into a unit solid angle per unit frequency per20 harmonics could be calculated with reasonable accuracy.
unit time, by the incident energy fluxof one bean Note that the lines are Doppler shifted to the right of their
(equwo)?/8mcr3, 1, being the classical electron radius. An expected positionginteger values ofw/w) as the source,
integration by parts may next be performed on E25  the electron, reaches relativistic speeds. This is most evident
which when followed by a change of variable franmto »  in the cases where high-intensity incident light is scattered
=wo[t—(z/c)cosh] results in (atomic units, withe=m  from electrons injected with high initial momenta.

=1, are usep On the other hand, in the presence of high-intensity fields,
the role of the initial momentum in determining the strength
1 d?0(w,Q) g 2 of the lines, and the overall shift in their positions, dimin-

; ishes. Thus lines of comparable strength, and overall shift,
result for both cases of electron initially at rest, Fi¢c)7and
@7 one that is initially incident with high velocity, Fig.(fj.

[ o
2 d0de  N(gmog)? U(“’)"(w_o)v(“’)

where
IIl. THE GAUSSIAN-BEAM ANALYSIS
nxnxpB(n) . w o We have presented an analysis of the dynamics of a single
U(w)=|——=———|exp i —| n+ —[zcosé - : : ;
1-n-B(7) wo c electron in vacuum in the field of two laser beams crossing at

an angle, using a set of exact equations stemming from an
analytic solution to the equations of motion of the electron in
the plane-wave fields. No restrictions have been made on the
value of the crossing angle or laser field intensity. Practical
=[(nyn3)i+(nyng)j+(n3—1)K] considerations, however, may place severe limits on the
range of values of) and q in a realistic accelerator design. If
Lo 2mN conditions allow the electron to interact with a large number
exp i—
Wo
~ . dr W
exp i —
dz Wo

27N

—ﬁ-r(n)]”

0

o
n+?z(cosﬁ— ns)

X

1-ngB
0 dramatically. An ideal situation would be to confine the in-

(28 teraction to one half of a field cyc(@&] by suitably choosing
the crossing angle and the field paramei@specially spot
size. On the other hand, arbitrarily high field intensities,
essential for achieving the desired high electron energies,
may be difficult to use due to the damage they may cause to
the optical components needed for the design. In any case
expert knowledge in mirror material and the breakdown
mechanism will be required to make an arrangement work.
In order to be able to achieve the desired high-energy
gains, an investigation of the electron dynamics ought to be
conducted in the relativistic regime of laser intensities. On
]d the other hand, the required high intensity-laser fields can
7. . . . .
only be realized by focusing over small dimensions. Thus, a
detailed knowledge of the laser electric and magnetic fields
near the focus of the Gaussian beam is esseftinl-45.
This is done next.

' of field cycles, the length of the accelerator unit increases
nXnxX—

o 27N
V(a))= ?fo

—ﬁ'r(n)]}

o
n+ ?[z cosé

dn

wo - < 2 o
= ?[(n1n3)|+(n2n3)l+(n3_1)"]
J'ZﬂNdZ p[ 15)

X —exXp | —

0 d7] wWo

Note that in the second equalities of E(28) and(29) the
subscript has been dropped frgBp. Furthermore, location
of the observation point will be given in spherical
polar coordinates, i.e., n=(Nny,n,,n3)=(sin® cos®d, In the Gaussian description of a focused laser beam, the
sin® sin®,cos®). The coordinate system is the same as thaPlane-wave symmetry is destroyed and the beam develops
of Fig. 1, in which® is measured relative to the positize field components along the three spatial directions. For the
axis and® relative to+x. It should be mentioned that the @cceleration scheme of interest to us in this paper, we employ
integration in EqQ.(25) has a highly oscillating integrand, the coordinate system shown in FigaB Subscripts 1 and 2
which makes the calculation quite laborious. Obviously, nc@'€ used to label the beams. Like in the plane-wave case, the
radiation is expected to be emitted along the forward and’S andz's are taken in the plane of the paper, while fie
backward directions® =0 and , respectively, as bothJ point out of it. It is easy to demonstrate that the coordinates
andV may be seen to vanish identically in these cases.  ©0Pey the following transformation relations

Sample emission spectra, calculated numerically using the  _ . _ v
exact versior[19] of Eq. (25), are shown in Fig. 7 for an Xp=xcosf-zsing,  yi1=y, 2z x3|n0+zcosa,(30)
observation point in thez plane,®=0. Interaction times
equivalent to 20 and 200 field cycles have been taken. Reax,= —xcosf—zsing, Vy,=y, z,=—Xsing+zcosé.
sonably sharp spectral lines have been produced. In addition (31)

o
n+?z(cosa— ns)

(29

A. The fields
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* B,=0, 35
5 » (35
2 4 2 4
_ 2P PSS PTSs 5PSy
z, By=E| St+e > 2 + 8 7 + 16
p°Ss  p°Sg
= (36
8 4 32
@ ( ol
8 2 4
O C, p°Cs p'Cy
= 3 —_— -
B, Ev[ e[Cqi]te 5 5 7
Zg 3C; 3p%C, 3piC 5C 8¢
+'55_3_'_13 4+P 5 P 6+P7_
8 8 16 4 32
(37)
In Egs.(32)—(37), we have taken
? E=Ey0 ~ 38
=Eo7 9(m)ex w2l (38
FIG. 8. (Color onling. (a) Coordinate system employed in the Wo\"
Gaussian-beam analysis. The field propagation directions are along Sh= W sin(¢+nyg), (39
z, andz,, E;, andE,, point alongx; andx,, respectively, ang,
andy are out of the pagéandy, is into the paggthrough the wo|"
common coordinate origin at Qb) Geometry of the Gaussian CHZ(—) cosy+nyg). (40
beam(see the text for explanationgOn the circle on the left hand w

side of(b) the dots mark the initial positions, in the plane, of 13

_ _ 22,2 _
electrons; one at the center and 12 evenly distributed on the circunEurthermot.rek_ w/g, kAo—'tﬁo: rt_t'x ty ,f andp = r/Wﬁ't K
ference, whose motion and energetics we discuss in Figs. 11-13. or a continuous béam with a stationary Tfocus we will take

g(n)=1 in this work. For more of the details of the calcu-
Geometry of a Gaussian beam is shown in Figh)8The lation leading to Eqs(32)—(37) see the Appendix in Ref.
beam axis is taken along with its propagation direction [47]. _These equations were d_erlved from a vector potential
along + z andstationaryfocus at the origin of coordinates O. Polarized along, has an amplitudé,, and a frequency.
The beam cross section at focus is circular and has a radidd'e "émaining symbols in Eqe32)—(37) have the following

W, @ Ccross section at an arbitragyis also circular with ~ definitions
radiusw(z) =wg\1+ (z/z,)%. Furthermorez, =kw3/2 is the U= o+ Vo=t i (41)
Rayleigh length, anéd=w,/z, is the diffraction angle. Now, o YRETG:
letting é=x/wg, v=Yy/w,, and{=1z/z,, the electric compo- Yo=owt—kz, (42)
nents of the laser field associated with such a beam, to order
€°, are[41,42,44,46,47 Je=tan ¢, 43)
4 2
_ 2| ¢2 P’S3| 4S2 P"Ss kr?
Ex=E{Syte€7 ¢ SZ—T te€ 8 4 sz:ﬁ, (44)
p*(p>—16£9)S, p*(p®+28)Ss psSeH )
- - + , z
16 8 32 R(z)=z+ ?r (45)

(32)
4 Note that i is a constantyp= 7 is the plane wave
p?S,— P SSH 33) phase,/¢ is the Guoy phase associated with the fact that a

E,=Eév) €S;]+ € .
Y gv(e [Se]+e 4 Gaussian-beam undergoes a total phase change a$ z

changes from— to +oo, g is the phase associated with
p4c4} 5{ 3C, the curvature of the wave fronts, and tiR(z) is the radius
a | 7€ 8 of curvature of a wave-front intersecting the beam axis at the
coordinatez. The fields given above satisfy Maxwell’s equa-

C,
2

+ pZC3_

E,= Eg[ €[C,]+ €

3p?C, 17p"°Cs 3p°Cs p°Cy tions V-E=0=V-B, plus terms of ordee® [46,47.
) + 16 8 * 32 || (34 A laser system is often characterized by its output power
P. For the fields given by Eq$32)—(37) the power may be
Similarly, the magnetic field components are given by calculated by integrating the time-averaged Poynting vector
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over a plane through the beam focus and perpendicular to itse injected at=0 from a point with coordinatex§,yg,2o).
axis. Dropping terms in the result of orde? and smaller, B, will be used to denote the magnitude of the electron’s
one gets initial scaled velocity.

7TWC2) 2 &
P[TW]=T|01 Z-f—g
2

, B. A preferred crossing angle

Continued improvements in the technology of optical
componentg 4] capable of withstanding present-day laser
field intensitied 9—11] have motivated us to explore domains
of high q and# values. Guided by the analytic work devel-
wherel =1 (0,0,0)=cE§/877 is the peak intensityat the fo-  oped in Sec. Il and Fig. 3 we have found that, corresponding
cus. Equation(46) clearly shows that for a fixed laser output t0 @ given set of laser parameters and electron initial condi-
power, the peak intensity is inversely proportional to thetions, a crossing angle exists that renders the energy gain,
square of the beam waist radius, or equivalemlys in-  due to interaction with a given number of field cycles, a
versely proportional tov,. Note that Eq.(46) has already ~Mmaximum. This is apparently made possible by constructive
been used to compute tlievalue employed in Figs. 2—5.  interference of the two beams.

For the crossed-beam acceleration scheme two sets of Figure 3 seems to suggest that, if the electron-field inter-
fields are needed, one for each beam with subscripts 1 anda&tion is to terminate in the neighborhood of any one of the
used to distinguish their parameter values and propagatiopoints corresponding ton=(2M+1/2)w, where M

62 64
gl (46)

qWo
A

~0.021<

characteristics. The resultant field components then enter int6 0,1,2 . . ., theelectron will escape with a maximum en-
the equations of motiof6) in the form ergy gain. The gain will be an absolute maximum fdr
=3 in the sirf pattern case, for example. Confining attention
Ex=(E1x—Ex)cos0+(E1,— Ey,)sing, (47)  to the situation corresponding to one of these maxima in the
energy gain, we have found that a maximum gain is also
E,=E;,—E,y, (48) obtained for a particular crossing angle. In a sense, at this

crossing angle, constructive interference of the crossing
beams presents the electron with a maximum electric field
strength to interact with and absorb energy from. As it turns
out, the optimal crossing angle, in the case of acceleration

E,=—(E1+Ey)sin6+(E,,+ E,,)cosé. (49

Similarly, from rest, lends itself to an analytic derivation. So, setting
B _ . n=(2M+1/2)m, Bo=0, andyy=1 in Egs.(15) and(20),
By=(B1,~ Bay)sing, (50 and extremizing the gain expression with respect tmne
gets the value
By,=B1y,—Byy, (51)

1

—tan-1
B,= (B, + B,,)cOS6. (52) Omax=tan q}’ (53

Retention of terms of order and higher in the field expres-
sions brings about corrections which can be quite importanin the plane-wave case. So, the optimal crossing angle can be
when ultrahigh-intensity laser systems are employed. For thquite large, in which case the resulting gain would be small,
business of acceleration the corrections to the electric fieldf course.
terms affect the energy gain directly through BE term in The equation resulting from extremizing the energy gain
the second of Eqs(6), while corrections to the magnetic is quite complicated in the case of a’simave pattern. Thus
field components play an indirect role via tf#e<B term in  we opt for showing the preferred crossing angle graphically
the first equation. We have recently demonstrdié6,47| in Fig. 9 for interaction corresponding tM=2, i.e., »
that focusing down to a waist radius of a few microns re-=5#/2. The gain is shown clearly to exhibit an absolute
quires inclusion of all corrections, i.e., up to and includingmaximum as a function of the crossing angle. Note that,
the €® terms. Previous calculations for the crossed-beam corguided by hindsight from Figs. 2 and 3, the case displayed in
figuration[1-4] have at most included the term of order  Fig. 9b) would have resulted in a duplicate ofa® had we

The remainder of this section will be devoted to the dis-opted for a calculation of the gain gt=137x/2 instead. This
cussion of a number of issues related to the acceleratiochoice corresponds to a point close to the focus of the pulsed
scheme and based upon numerical calculations using the fublattern. It is also interesting to note that a net gain results
fields. Obviously, solutions based on low-order perturbatioreven when the crossing angle /2 (the counter-
theory [48] cannot be relied upon, considering the high- propagating beam case
intensity fields we are concerned with in this work. We will  Figure 9c) is similar to(a) and(b) but for the Gaussian-
assume that the two beams have the same intensity and freeam case. General agreement with the plane-wave analytic
guency, that their propagation directions and field compopredictions is obvious. While the plane-wave analysis exag-
nents point as shown in Fig(a&, and that they have a com- gerates the gain, it gives a smaller optimum crossing half-
mon stationary focus at O. The electron will be assumed t@ngle than does the Gaussian-beam calculation.
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0 30 60 90 FIG. 11. (a)—(c) Projections, onto thez, yz, and xy planes,

respectively, of the trajectories of 13 electrons injected parallel to
the z axis and whose initial coordinates in they plane are as
FIG. 9. (a) and(b) Electron energy gain at the end of interaction follows. One of them starts at the center of a circle of radius
with 1.25 field cyclegone cycle meandA »=2m) of two beams vs 0.5 um and the rest are evenly distributed on the circumference of
the crossing half-anglé. (c) The same, but for the Gaussian-beam the same circle, with the first ax{,yo) =(0.5,0) um, and so on. In
case where motion of the electron is followed for a time equivalentd)—(f) we merely zoom on small portions ¢)—(c), respectively.
to 10 laser field periodSone period here mearB=\/c). The  The remaining parameters ark=1.056um, Wo=7 um, z,=
initial injection energy,y,=1.0002, and the legends given (a) —0.5um, yo=6, =3.1°, laser power at 1 PW, and interaction
apply everywhere. time equivalent to 1000 laser periods.

6 (degrees)

In order to get a feeling for what energy gains and energyf Fig. 8@ will typically enter the interaction region with
gradients may be optimally achieved, we have chosen thgrecisely zero initial transverse coordinates. The rest will
crossing half-angle#=3.1° for further calculations. This come in, perhaps parallel to, but a transverse distance from,
angle lies roughly in a neighborhood of thig,, of Fig. 9(c).  that axis. In this section, we consider the trajectories of 13
Samples of gain vs forward distance results are shown in Figslectrons whose initial coordinates in thg plane are as
10. Note that the electron-field interaction seems to terminatg,|ows: one is incident perfectly axiallg,=yo=0; a sec-

within 1 mm, for the parameters used. The electron gaing 4 has initialx ; —
¢ > . y coordinatesXy,Yo) = (0.5,0) um, and the
more than 1.8 GeV from interaction with the 10 PW beams o qining 11 electrons are initially equally spaced on the

and over 400 MeV from the 1 PW fields. These gains corre-.; . . ;
spond to the energy gradients 1.8 TeV/m and 0.4 TeV/mCL:Zu(gfri;erg(éeO?‘ftiecggiemlr(](;_%?)/ ﬁl]?:_e.r%fersa;d:ﬂistigl'%orgr_
re_spectively, assuming all the gain occurred over a forwa"ginates are marked on the ci,rcle on the left of Fith)&and
distance of roughly 1 mm. given the labels 0,1,2 . .,12. Theresulting subsequent tra-
jectories are shown in Figs. 11 and 12. The perfect symmetry
of the configuration on both sides of tke plane is reflected
Only a small fraction of the electrons in a bunch, of trans-in all the trajectories displayed in Figs. 11 and 12, and in the
verse dimensions of a few microf&0], sent along the axis gains in Fig. 13 as well.
Note first the case of electrons whose initial coordinates
— Laser power = 10 PW are confined to thez plane, those labeled by 1, 0, and 7.
wer power = 1 PW | Numerical solution of the equations of motion then yield

C. Off-axis parallel injection

1 trajectories, in the full fields, that are also confined to that
plane. At all points in thexz plane (f=0), the field compo-
8=3.1°, y,=1.0002 nentsE, andB, vanish identically at all times. This is easy to
- e—2um w=7pm ] see from the geometrical symmetry of the configuration and
¢ T from the choice of identical beams we have mpaieelse by
settingy=0 in Egs.(33) and (37)]. With B,=0, these are
the only field components capable of inducing motion out of
the xz plane for an electron initially moving in it. Hence
three of the above mentioned electrons, those with inkyal
FIG. 10. Energy gain vs the forward distance of travel when thecoordinateq0.5,0, (0,0, and (- 0.5,0) um and labeled by
crossing half-angle i9~ 6., in Fig. 4c). 1, 0, and 7, respectively, will follow trajectories confined to

Energy gain (GeV)
(=] - no
g = O D O W

0 025 05 075 1
z (cm)
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25 F ‘ ‘ ‘ = ! ‘ right of the common focus of the crossed beams act like a
. (a) N J @ strongscattering centefor the electrons. That neighborhood
E o 0 4 may be viewed as dynamic scattering centeone that os-
H - cillates by responding to the local phase variations of the
5L ‘ ‘ ‘ ~ ‘ \ fields. Conversely, roughly the same neighborhood, for the
0.3 ‘(b) ‘ ‘ 71 00 Fo ‘ (@) situation depicted in Fig. 12, acts like a center of attraction
. ~ \\¥\\i/ causing the trajectories to bend in directions opposite those
E o —1 o - of Fig. 11. In both cases, however, the electron appears to
~ /i\ ///—/{\ gain momentum from the fields in the form of a few violent
05 / ‘ ‘ ‘ ~l-00 B~ ‘ L] impulses, as evidenced by the sudden kicks along the trajec-
-05 -025 0 025 05 -0.15 0 0.15 tories shown.
06 z{mm) . 06 We conclude from Figs. 11 and 12 that, provided the
o3 b ) {03k space charge effects are neglected, most electrons in a sub-
7 ) micro bunch(a bunch of electrons with, say, a circular cross
2 N ] section of transverse radius less thamth), which is in-
03 17 jected initially with its center of mass on theaxis, will
O T T s s s T sy s s follow trajectories that diverge considerably due to the scat-
x (um) x (um) tering process described above.

Now to answer the question of whether the final energy
FIG. 12. Same as Fig. 11, but for a laser power of 10 PW. gain will suffer any spreading as a result of the electrons
possessing a spread in the injection positions, we have cal-
the xz plane. They make excursions transverse wwhose culated the gain with axial distances for all cases considered
sizes depend upon the valuexgf In particular, axial injec- in Figs. 11 and 12. The results are shown in Fig. 13, where
tion through the point Xg,Y,) =(0,0) leads to a perfectly the interaction time has been taken as equivalent to 5000
axial trajectory. This trajectory is clearly evident as a straighdaser periods. Here too, because of the fact that the fields
line in Figs. 11a)—11(e) and itsxy projection appears in Fig. exhibit rapid local phase variations, electrons injected along
11(f) as the dot af0,0). different initial paths experience drastically different fields.
Overall, we note that electrons which are injected in theThis results in them gaining widely differing amounts of en-
manner just describetver a circle of radius 0..xm) get  ergy as can be seen in Fig.(bB In this figure, the above-
spread out asymmetrically in the transverse dimensions. Theentioned 13 electrons gain energies in the approximate
spreading is from 0.%m to about 40um in thex direction, ~ range 80—240 MeV. By contrast, one sees in Figaland
and from 0.5um to a maximum of roughly 14m in they  from examination of the data used to construct it, that the
direction. A careful look at the trajectory portions displayedelectrons injected through x§,yo)=(0,0), (0.5,0, and
in Figs. 11d)—11(f) reveals clearly that points slightly to the (—0.5,0 um (initial positions corresponding to 0, 4, and 10,
respectively gain about 1.86 GeV. Gain by the remaining

3 electrons is as follows: 1 and 7 gain 1.168 GeV; 2, 6, 8, and
= (a) Power = 10 PW 12 gain 1.175; and finally 3, 5, 9, and 11 escape with a net of
8 - about 1.193 GeV each. These associations reflect quite
\52 i ] clearly the perfect symmetry exhibited by the configuration,
= and by the fields, on both sides of the plane.
>

1 - .

g | D. Effect of injection energy spread
w 0 / ‘ ‘ ‘ ‘ o] Our theoretical study in this paper has been confined to
0.6 — : : : : the single-particle aspects. In a real accelerator design elec-

trons will be injected in bunches of certain characteristics
which must be taken into accouf0,49|.

In this subsection, we calculate the spread in energy gain
SW that may result from a spread,=mc?5y, in the in-
jection energy. In the plane-wave case, to begin with, note
that 5y,= Boys6B,. Next, differentiation with respect 8,
of Egs.(10), (15), and(20) yields

Energy gain (GeV)

S(1—pBgcosh)| 6&

JSZ+sir? 6 | Bysirtd’

z (mm) OoW=| (cosé—Bo) + (54
FIG. 13. Electron energy gain as a function of the axial distance

for the electrons whose trajectories are given in Figs. 11 and 12. In o ) ) o

this figure the interaction time has been taken equivalent to 500@vheres(») is given in Eq.(15). Assuming an initial injec-

laser field periods. tion energy spread&,/Ey=0.5% [24], Eq. (54) gives, for
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electrons ejected at a point correspondingzmte 137/2 in 3 . .
Fig. 3, sW/W=0.0042%, almost the same for both pulse- Laser power = 10 PW
shape functions.

Alook at Fig. 14 leads to the following conclusion. Slight
variations in the initial injection energy lead to enormous
jumps in the final resulting gain, as long as those injection
energies do not exceed a few MeV. Agreement with the result
of the order-of-magnitude calculation made above, however,
is good for injection energies in excess of about 5 MeV, due
to the saturation alluded to in our comments on Fig. 4 above.
These conclusions agree quite well with the numerical cal-
culations employing the full Gaussian-beam fields, as is de-
picted in Fig. 12. Saturation is seen here to set in for values Time (T)
of vy, beyond about 10.

Energy gain (GeV)

FIG. 14. Electron energy gain as a function of the interaction
IV. SUMMARY AND CONCLUSIONS time, given on a logarithmic scale in terms of the laser pefiod
=\/c. The lines shown differ in the initial scaled injection energy

The dynamics of a single electron injected in vacuumand demonstrate saturation with increasipgat a gain of about 2.1
through the intersection point of two laser beams has bee@GeV.
investigated analytically and numerically. The analytic work
resulted in exact working equations for the crossed-beam lgor which gain can be a maximum. Apparently, for such an
ser accelerator when the electron is injected axially, i.e., wittangle, the electron encounters fields that interfere construc-
its initial direction of motion making equal angles with the tively maximally and favor gain. Furthermore, energy gains
beam propagation directions. In particular, expressions, iof several GeV have been shown to result from interaction
terms of = w(t— 2z cosdl/c), for the energy gradient, the en- with laser beams of present-day PW power.
ergy gain, and the velocity, have been found. Only the final Our single-particle calculations have also made it possible
expression for the scattered electroicoordinate has been to arrive at important conclusions regarding the dynamics of
left with an integral which could be easily performed nu-an electron bunch in this acceleration scheme. For low-
merically. The obtained velocity and coordinate expressiongnergy electrongtypically less than a few MeVa small
were then used to show that the acceleration process may ldéstribution of initial injection energiegor speedsleads to
accompanied by radiative losses. Sample, reasonably precis enormous distribution of energy gai(w final speeds
emission spectra, containing typically up to 20 harmonics ofConversely, for electrons incident on the arrangement with
the laser frequency have been obtained. high injection energies, the final gains turn out to be hardly

In both analytic and numerical investigations the beamsensitive to any spread in those initial injection energies. At
crossing angle has been assumed arbitrary; in other wordkjgh injection energies, the swift energy gain results in the
nowhere has the analysis been restricted to small crossirglectron reaching an ultrarelativistic speed; it henceforth
angles[2,4]. Otherwise, the two beams have been assumeddes with the waveand gains little extra energy. This
identical as far as their intensities, frequencies, and waistaturation phenomenon implies a limit on the utility of
radii are concerned. In the numerical simulations, the fieldshe crossed-beam configuration as a booster accelerator.
of a Gaussian beam have been used, where terms of order up
to and includinge®, Wheree is '_[he beam diffraction angle, ACKNOWLEDGMENTS
have been employed in modeling them.
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