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Relativistic electron dynamics in intense crossed laser beams:
Acceleration and Compton harmonics
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Electron motion and harmonic generation are investigated in the crossed-beam laser-accelerator scheme in a
vacuum. Exact solutions of the equations of motion of the electron in plane-wave fields are given, subject to a
restricted set of initial conditions. The trajectory solutions corresponding to axial injection are used to calculate
precise emission spectra. Guided by hindsight from the analytic investigations, numerical calculations are then
performed employing a Gaussian-beam representation of the fields in which terms of ordere5, wheree is the
diffraction angle, are retained. Present-day laser powers and initial conditions on the electron motion that
simulate realistic laboratory conditions are used in the calculations. The analytic plane-wave work shows, and
the numerical investigations confirm, that an optimal crossing angle exists, i.e., one that renders the electron
energy gain a maximum for a particular set of parameters. Furthermore, the restriction to small crossing angles
is not made anywhere. It is also shown that energy gains of a few GeV and energy gradients of several TeV/m
may be obtained using petawatt power laser beams.
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I. INTRODUCTION

The scheme to accelerate electrons in vacuum by me
of two crossed laser beams was proposed several years
@1–3#. The basic idea here is to send the electron through
crossing point of two laser beams at an angleu with respect
to each beam direction~see Fig. 1 for a schematic and
coordinate system!. Within the ~simple! plane-wave picture
and assuming the laser fields have the same amplitude
frequency, and are polarized as shown in Fig. 1, the resu
electric field component transverse to the electron initial
rection of motion vanishes for all points on that axis. At t
same time, the axial component works fully to accelerate
electron. The magnetic field component, on the other ha
vanishes at the same points. Thus subsequent motion o
electron, under these conditions, may be taken as linear
arey et al. @2# have derived working equations for th
scheme employing a pair of linearly polarized laser bea
with Gaussian profiles, in the paraxial approximation, w
acceleration mainly attributed to the forward electric fie
components of the beams. In their derivation various ot
approximations were employed, including the restriction
small intersection anglesu!1.

Later, Huang and his collaborators@4# used the equation
of Esarey et al. in order to calculate parameters fo
dielectric-based, single-stage and multistage acceler
structures. Like other laser-accelerator schemes@3,5–7# this
work is motivated by advances in laser technology@8–11#,
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which have recently led to the successful generation of s
cycle pulses in the microwave@12#, far-infrared @13#, and
femtosecond@14# regimes.

This paper may be considered as consisting of two pa
First, analytic work employing a plane-wave-based repres
tation of the laser fields is presented which aims at:~a! a
better understanding of the electron dynamics,~b! searching
for deeper insights into the electron-field interaction and
ergy exchange,~c! calculating precise sample emission spe
tra based on the exact Lie´nard-Wiechert potentials of the
electron, and~d! guiding the numerical work that follows
Second, results from numerical work, based on a reali
model of the laser fields in terms of those of a high-ord
Gaussian beam, are presented whose aim is to simulate
laboratory conditions as closely as possible when hi
intensity laser fields are employed; a regime that requ

FIG. 1. Schematic diagram of the crossed-beam laser accele
configuration. The electron, charge2e and initial scaled speedb0,
is injected along thez axis through the intersection point of the tw
beams. The plane-wave field polarizations are denoted byE1 and
E2 and their propagation directions are given byk1 andk2.
©2003 The American Physical Society01-1
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focusing over small spatial dimensions. This will allow us
investigate stability of the electron motion under initial co
ditions less ideal than the forward injection case, by cons
ering off-axis injection and injection at various initial speed

Chief among the results of the analytic work is the re
ization that, corresponding to any given set of field para
eters, an optimum beam crossing angle exists which ma
the electron energy gain a maximum. Furthermore, the ra
tive losses turn out to be small and the emission spe
exhibit the expected Doppler shifts, line enhancement,
tendency to be of approximately the same strength, all w
increasing intensity. On the other hand, we learn from
numerical work that small deviations from initial forwar
injection result in considerable bending and large depar
from linear motion. More importantly, energy gain, of se
eral GeV from interaction with laser beams of laborato
intensities, is shown to be possible.

In the analytic work a set of working equations for th
crossed-beam accelerator scheme are developed, empl
the phase of the accelerating field as a variable. In term
this variable, exact expressions for the electron energy
speed are obtained by direct integration of the relativis
equations of motion of the electron. An expression for
electron position as a function of the laser field phase is a
obtained in terms of an integral which we carry out nume
cally for our purposes in this paper. Our equations are v
for all crossing angles and allow us to follow the subcy
evolution of the energy gradient, energy gain, speed, radi
power, and the time rate of change of energy gain dur
interaction with two different wave patterns, namely,
strictly plane-wave pattern and a pattern modeled by a2

envelope.
Although we investigate the electron dynamics during

teraction with wave patterns containing several field cyc
~in a sense to be described below!, our analysis also suits
situations in which a subcycle pulse may be used@15–17#.
During a decelerating phase of the motion the electron sp
may drop to zero and its direction of motion may be
versed, depending upon its initial injection energy. This le
to loss of energy through Bremsstrahlung and places lim
tions on the maximum energy attainable. In spite of that,
example, our numerical work shows that a maximum ene
gain of about 1.9 GeV may be achieved using identi
beams of 10 PW power focused down to 7mm waist radii.
This occurs for 2.555 MeV injected electrons and a cross
half-angle u53.1°. The acceleration to this energy tak
place over an axial distance of less than 2 mm, which imp
an energy gradient of nearly 1 TeV/m. The plane-wave-ba
calculations exaggerate these numbers by a factor of
sometimes even much more.

The rest of this paper is organized as follows. In Sec
we formulate the problem, modeling the laser fields
pulse-shape functions dependent entirely upon the laser
phase, and setting up the relevant equations of motion.
is followed by the analytic solution of the equations of m
tion and by a derivation of the evolution equations, in t
said phase, of the electron dynamics. Next we investigate
radiative losses that accompany the motion of the electro
the laser fields and present examples of the emission spe
01650
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In Sec. III the most general description of the fields of
Gaussian beam are presented and then used to inves
several issues pertinent to the acceleration scheme. Firs
issue of a preferred crossing angle will be taken up. Us
the preferred angles suggested by the numerical work,
effect ~on the trajectories as well as on the energy gain! of a
spread in the injection initial conditions, including the inje
tion energies and positions, is discussed next. Finally, a s
mary of our main results and conclusions will be given
Sec. IV.

II. THE PLANE-WAVE ANALYSIS

A. Formulation of the problem

Referring to Fig. 1, we represent the propagation vect
of the two identical beams byk15v/c( î sinu1k̂ cosu) and
k25(v/c)(2 î sinu1k̂ cosu), where v is the laser fre-
quency,c is the speed of light in vacuum, andî , ĵ , andk̂ are
unit vectors in the directions of increasingx, y, andz, respec-
tively. Let the phases of the fields at any space-time po
(t,r ) be given byh15vt2k1•r , andh25vt2k2•r . Intro-
ducingg(h j ) as an envelope function for thej th beam and
assuming the beams have the same amplitudeE0, the electric
and magnetic fields of the two beams are

E15E0g~h1!cosh1~ î cosu2 k̂ sinu!, ~1!

E252E0g~h2!cosh2~ î cosu1 k̂ sinu!, ~2!

B15E0g~h1!cosh1 ĵ, ~3!

B252E0g~h2!cosh2 ĵ. ~4!

Note that theE and B fields given in Eqs.~1!–~4! satisfy
Maxwell’s equations. We employ these equations in the
ploratory analytic work.

Utilizing the axial symmetry of the problem, the tran
verse motion of the electron may be neglected for electr
injected exactly axially~along z). This will receive solid
support and full justification from the numerical work of Se
III. Under these conditions,h1 ,h2→h5v@ t2(z/c)cosu#.
Moreover, the resultant magnetic field vanishes for all poi
on the z axis, while the resultant electric field has only
nonvanishing axial component given by

Ez~0,0,z!522E0g~h!sinu cosh. ~5!

This accelerating field has an amplitude 2E0 sinu g(h), a
phase h, and hence, a phase velocityvph5c/cosu.c.
Henceforth, but within the plane-wave context,one (acceler-
ating) field cyclewill mean h52p. Since the speed of the
electron can never exceedc it will phase-slip behind the
accelerating field. In the remainder of this sectionh will be
used as a variable in terms of which all physical quantities
relevance will be written and discussed. Our analysis of
electron dynamics will cover several integer values ofh/2p
@15–17#. In a practical situation, the interaction will be con
fined to a region of space around the origin whose size
1-2
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pends on the shape and size of the beam cross sectio
focus. Hence the electron will practically interact with a fra
tion of a cycle of the accelerating field, or a few such cyc
at most, depending upon the parameters used. Chief am
those parameters are the beam waist radii, the Rayl
lengths, and the crossing angle.

Let the electron have a massm and a charge2e. A solu-
tion to the following equations of motion will now be deve
oped (E5E11E2 andB5B11B2)

dp

dt
52e~E1b3B!,

dE
dt

52ecb•E. ~6!

In Eq. ~6! p5gmcb is the relativistic momentum of the
electron andE5gmc2 is its energy, whereb is the velocity
vector normalized by the speed of light andg5(1
2b2)21/2 is the Lorentz factor. Withb5(bx ,by ,bz), the
exact equations of motion are equivalent to four compon
ones. Thex- andy-component equations result in no motio
due to the vanishing of the magnetic field on thez axis. The
remaining two equations then take the form

d~gbz!

dt
52qv sinug~h!cosh, ~7!

dg

dt
52qv sinu g~h!bz cosh, ~8!

where we have introducedq5eE0 /(mcv) as a convenien
dimensionless intensity parameter. Recall that

Il25S mc2

e D 2S pc

2 Dq2'1.37531018q2~W/cm2!~mm!2.

~9!

Equation~9! will be employed in computing the intensitie
used in Figs. 6 and 7.

B. Electron dynamics

It will be assumed that the electron is sent initially alo
thez axis at the scaled speedb0, and that it will be overcome
by the front edges of the crossed laser beams simultaneo
at time t50, at the origin of coordinates. The electronen-
ergy gain, as a result of interaction withh/2p cycles of the
accelerating field, may be defined by

W~h![mc2@g~h!2g0#. ~10!

With the help of Eq.~8!, the following expression may b
obtained for theenergy gradient~energy gained per unit in
teraction distance! as a function of the accelerating fie
phase

G~h![
dW

dz
5mc2

dg

dz
52qmcvg~h!sinu cosh. ~11!

The energy gradient is proportional to the accelerat
field @compare Eqs.~5! and ~11!#. We showG(h) in Fig. 2.
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The solid line in Fig. 2 represents a plane wave,g(h)51,
while the dotted line is for a wave pattern having a s2

envelope given by

g~h!5sin2S kh

2 D , ~12!

where 0,k,1. For example, fork51/6 this pulse-shape
function envelopes a pattern of 6 field cycles.

From Fig. 2 one finds out thatG(h) is positive during one
half cycle and negative during the following half cycl
Thus, for interaction with an integer number of field cycle
the energy gains tend to get canceled by the energy losse
agreement with the Lawson-Woodward theorem@18#. Our
analysis will cover interaction with a full field pattern, o
pulse in this effectively one-dimensional model. For the p
pose of acceleration, the assumption is that the electron
be ejected from the region of interaction while it still retai
part or all of the energy gained.

We also conclude from studying Fig. 2 that both puls
shapes considered present the electron with the same fie
the small region around the focus. Thus it does not ma
which envelope function we use in our theoretical investig
tions of the electron dynamics in that region.

In an accelerator design one would want to know wh
exactly will the electron have what energy. In order to rea
this goal we set out now to find the energy gainW(h) and
the coordinate of the electron along the forward direction
motionz(h). We will display graphically the gainW against
z using their respective expressions as parametric equa
in terms ofh, regarded as the parameter.

Since motion is confined to one dimension, we will dro
the subscriptz from this point on. Differentiating the field
phase with respect to the time variable gives

dh

dt
5v~12b cosu!. ~13!

Carrying out the differentiation with respect to time expli
itly on the left hand side of Eq.~7!, the time dependence ma
be eliminated in favor of dependence upon the field phash
with the help of Eqs.~8! and ~13!. Separation of the~new!
variables next gives

FIG. 2. Energy gradient vs the number of cycles of the acce
ating field. The parameters are:l51.056mm, u53.2°, and q
5102.622@ laser power510 PW, see Eq.~46! below#.
1-3
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SALAMIN, MOCKEN, AND KEITEL PHYSICAL REVIEW E 67, 016501 ~2003!
~12b cosu!

~12b2!3/2
db52qg~h!sinu cosh dh. ~14!

Integration subject to the above mentioned initial conditio
finally yields

g~b2cosu!5g0~b02cosu!12q f~h!sinu[s~h!,

~15!

where

f ~h!5E
h0

h
g~h8!cosh8 dh8. ~16!

For book-keeping purposes note that for the plane-w
and sin2 patterns one has (h050)

f ~h!5sinh, ~17!

and

f ~h!5
sinh

2
2

sin@~11k!h#

4~11k!
2

sin@~12k!h#

4~12k!
, ~18!

respectively.
Equation~15! may now be solved for the electron veloci

scaled by the speed of light

b~h!5
cosu1sAs21sin2 u

11s2
. ~19!

Alternatively, Eq.~15! may be solved for the electron energ
scaled bymc2,

g~h!5
s cosu1As21sin2 u

sin2 u
. ~20!

Equations~19! and~20! have the correct limits. Consider th
case ofu50, for example. This case corresponds to t
co-propagated beams. For the chosen polarizations, how
the electric fields cancel out at all time and, hence, sub
quent motion of an electron that has initially been injec
exactly along the z axis should not be affected by such fie
Note that settingu50 in Eq. ~15! gives s52g0(12b0)
,0. When this result is used in Eqs.~19! and ~20!, and
provided the square roots are handled with care, one fi
out thatb(h)→b0 andg(h)→g0, as they should.

With Eq. ~20! for the scaled energy we can now discu
the energy gainW(h), defined by Eq.~10!. We begin by
showing this quantity in Figs. 3~a! and 3~b! for two different
pulse-shape envelopes. Due to the fact that each of the e
lope functions is normalized to have a unit maximum hei
at focus, the energy gain has the same maximum value
both of them. Note that in all cases all gain is lost as
electron is left behind the pattern, in agreement with
Lawson-Woodward theorem. This is due essentially to
inherent symmetry of the plane-wave model. This symme
gets destroyed by focusing over small spatial dimensio
and a net gain becomes possible, as will be demonstrate
01650
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Sec. III. Moreover, the gain increases during, say, the fi
quarter of a field cycle and the electron is accelerated.
gain reaches a maximum at the end of the first quarter c
and then drops down during interaction with the seco
quarter cycle. The Lorentz factorg changes a little from
unity during interaction with the next half cycle~dotted line,
electron initially at rest!. This explains the flat portion~actu-
ally concave upward! of W vs h/2p between theh/2p
50.5 and 1 marks in the dotted line of Fig. 3~a!. In fact, the
Lorentz factor reaches a value less thang0 ~solid line, g0
530) and drops down to unity asb→0 in this region, andW
becomes slightly negative there. This may be better un
stood by studying Fig. 5 for the scaled speed, where i
shown that the electron slows down and reverses its direc
of motion.

Another important point to note in Fig. 3 is that the ele
tron is accelerated from rest to a maximum of about 3.4 G
and from roughly 15 MeV to a little over 3.8 GeV. Bot
results are achieved regardless of what pulse-shape fun
g(h) is used to model the field of 10 PW power. This will b
shown to be about twice the gain obtained numerically fr
the Gaussian-beam-based calculation. Only at a plane r
through its focus,z50, ~and too far away from focus, wher
the intensity may be negligible anyway! does a Gaussian
beam exhibit plane-wave characteristics.

Of more interest to the experimentalist would be to se
display of W vs z. To produce such a figure we need a
expression for the axial electron coordinatez(h) which we
now derive. Using the chain rule of differentiation and em
ploying Eqs.~13! and ~19! we get

dz

dh
5

dz

dt

dt

dh
5

c

v

b~h!

@12b~h!cosu#
. ~21!

FIG. 3. Electron energy gain vs the number of accelerating fi
cycles and also vs the forward distance of travelz. ~a! and~c!: The
plane-wave pattern, and~b! and ~d!: The wave pattern with a sin2

pulse shape. The remaining field parameters are the same as
of Fig. 2.
1-4
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The remaining integration in Eq.~21! will be carried out
numerically, for the sake of the discussion below. We sh
W vs z in Figs. 3~c! and 3~d!. Note the presence of wha
looks like cusps in these plots. In fact, each of these cu
looking portions is a tiny loop, too small to show on the sc
used. Inspection of the data used to produce, say the do
line in Fig. 3~c!, reveals a turning point in the trajectory th
electron reaches as its speed drops to zero. It then t
around, moves a fraction of 1mm to the left to another turn
ing point and then speeds up to the right again. Over the l
structure the electron moves at speeds too small compar
the speed of light, which explains why it hardly moves fo
ward ~or backward! during interaction with about half of a
~mostly decelerating! field cycle.

The examples considered in Fig. 3 exhibit large aver
acceleration gradients. Ejection at the top of the first hump
each line in Fig. 3~a!, for example, achieves average ener
gradients of roughly 25 TeV/m~solid line! and 23 TeV/m
~dotted line!.

The initial conditions laid down above are admittedly a
tificial, somehow. We have simply stated that the electron
born at the origin of coordinates att50 inside the plane
wave which, by definition, has an infinite extension in bo
space and time. Figure 3 suggests that such an elec
stands to gain more energy from the field if itstarts offat a
higher speed. Figure 4 shows this to be indeed the case
not indefinitely. The gain exhibits saturation~at about 3.575
GeV, for the parameters used! after an initial steep rise, with
increasing injection energy.

The sinusoidal dependence uponh of the scaled speed
@cf. Eqs. ~15!–~19!# shows clearly in the oscillations dis
played in Fig. 5. The scaled speed drops from a relativi
value close to unity down to zero and even becomes ne
tive, as the field changes direction and works to decele
the electron. The minimum~negative! value reached byb
depends, of course, on the value ofb0 although this may not
be seen in Fig. 5 because in it we employ parameters o
extremely powerful laser system. In such an environment
acceleration to ultrarelativistic speeds takes place q
swiftly.

We conclude this section by noting that in a recent le
Salamin and Keitel@3# have studied this electron-field con
figuration employing sinh plane-wave fields and allowing
for interaction with only half of a field cycle. An importan

FIG. 4. The maximum energy gain~calculated forh/2p53.2)
is seen here to saturate with increasing initial injection energy.
parameters used are the same as in Fig. 2.
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outcome of that work was the demonstration that an o
mum crossing angle, one that makes the overall gain a m
mum, exists for each set of chosen parameters. More on
issue will be found in Sec. III below.

C. Radiative losses

Electron motion in the scheme of acceleration by cros
laser beams is essentially linear, provided injection is p
fectly axial. It is well-known@19# that radiative losses in a
linear accelerator are negligibly small.

However, this is a fact if the particle undergoes stea
acceleration. As may be seen in Fig. 5, the electron spee
this scheme oscillates: it becomes extremely relativistic
the forward direction as the electron absorbs energy from
field and then it falls down to zero when the field chang
direction. It may even become negative, depending upon
injection value. During deceleration the electron loses s
stantial energy through Bremsstrahlung. We now investig
the radiative losses employing the relativistic version of
Larmor formula for the radiated power@19#

P~ t !5
2

3

e2

c
g6H Fdb

dt G
2

2Fb3
db

dt G
2J . ~22!

For motion along a straight line, the second term in Eq.~22!
vanishes. Equation~14! may then be used to write the ex
pression for the radiated power as a function of the acce
ating field phase

P~h!5
2

3

e2

c
@2qvg~h!sinu cosh#2. ~23!

Equation~23! gives the rate at which energy is lost by th
electron through radiation. This quantity should be compa
with the rate at which the electron gains energy by abso
tion from the field. The rate of energy gain is

e

FIG. 5. Forward scaled speed of the electron vs the numbe
accelerating field cycles.~a! Plane-wave pattern, and~b! sin2 pat-
tern. The field parameters used are the same as in Fig. 2.
1-5
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SALAMIN, MOCKEN, AND KEITEL PHYSICAL REVIEW E 67, 016501 ~2003!
dW

dt
5

dE
dt

5mc2@2qvg~h!sinu cosh#b~h!, ~24!

from Eqs.~8! and~10!. Construction of the ratio ofP(h) to
dW/dt runs into difficulty due to the fact that the latter va
ishes at several values ofh.

We show these quantities separately in Fig. 6 for inter
tion with a field of intensity of 1.37531020 W/cm2 @q
510, according to Eq.~9!# and employing the pulse-shap
functions used in Figs. 2–5. In the small regions ofh space
corresponding to deceleration, the ratio ofPmax to
(dW/dt)max can be non-negligible~a few percent! as the
electron loses part of the gained energy by radiation. E
where, during acceleration, the same ratio becomes neg
bly small, typically less than 1027. Our single-particle analy-
sis gets a little modified when the bunch characteristics
taken into account by introduction of suitable bunch fo
factors@20#.

D. Emission spectra

We have seen in the previous subsections that the elec
undergoes violent acceleration and deceleration in the fi
of two crossed laser beams. It has also been demonst
that the resulting radiative losses can be non-negligible.
devote this section to a study of the emission spectra of
free electron in the prescribed fields. Production of harm
ics of the incident radiation field, for free@21–32# and bound
@33–40# electrons is an active area of investigation. It h
also been shown recently@20# that characteristics of the
emitted radiation may be used as a valuable tool for elec
bunch diagnosis, a tool that does not involve intercepting
deflecting the electron beam substantially.

FIG. 6. The radiated power and the rate of change of the e
tron energy vs the number of accelerating field cycles. The in
electron scaled injection energies areg051 ~solid lines! and g0

530 ~dotted lines!. Note the solid and dotted lines coincide in~a!
and ~b! on account of the fact thatP(h) is independent ofb0. ~a!
and ~c! are for the plane-wave patterng(h)51, while ~b! and ~d!
are for the pattern withg(h)5sin2(h/12). The field parameters are
l51 mm, q510, or I 51.37531020 W cm22 @see Eq.~9!#, andu
50.1 rad.
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In this section we will be usingv to denote the generate
frequency andv0 to denote the laser frequency. Althoug
the spectra to be shown in Fig. 7 are calculated using
exact Liénard-Wiechert potentials, we employ the followin
equation, as a starting point for the discussion@19# ~far field
approximation!

d2E~v,V!

dV dv
5

e2

4p2c
U E

0

T n̂3@ n̂2b~ t !#3ḃ~ t !

@12n̂•b~ t !#2

3expH ivF t2
n̂•r ~ t !

c
G J dtU2

. ~25!

In Eq. ~25! E is temporarily used to denote the radiated e
ergy, n̂ is a unit vector in the direction of propagation of th
emitted radiation~direction of observation!, ḃ is the particle
acceleration scaled by the speed of light, andT is used tem-
porarily to denote the time interval over which interactio
between the electron and the laser field takes place. Equa
~25! holds as long as the dimensions of the electron tra
tory are much smaller than the distance from the electron
the observation point. This has been demonstrated quite
by the trajectory analysis given above. In what follows,
spectrum will be reported in terms of the doubly-different
scattering cross section, given by

d2s~v,V!

dV dv
5

1

T

8pcr0
2

~eqv0!2

d2E~v,V!

dV dv
. ~26!

c-
l

FIG. 7. ~Color online!. Sample emission spectra of an electr
initially at rest (g051) at the origin or with initial speed (g055)
along thez axis and subsequently subjected to two crossed la
beams (u50.1 rad) modeled by plane-wave patterns (gh51) with
l51 mm. The observation point is in thexz plane and located by
polar anglesQ580 mrad andF50. The calculation has been ca
ried out for interaction withN field cycles and using inten
sity parametersq51 (I'1.37531018 W/cm2) and q520 (I
'5.531020 W/cm2). The intensities were calculated using Eq.~9!.
1-6
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Equation~26! has been obtained by dividing the radiant e
ergy, emitted into a unit solid angle per unit frequency p
unit time, by the incident energy flux~of one beam!,
(eqv0)2/8pcr0

2, r 0 being the classical electron radius. A
integration by parts may next be performed on Eq.~25!
which when followed by a change of variable fromt to h
5v0@ t2(z/c)cosu# results in ~atomic units, with e5m
51, are used!

1

r 0
2

d2s~v,V!

dV dv
5

v0

N~qpv0!2 UU~v!2 i S v

v0
DV~v!U2

,

~27!

where

U~v!5F n̂3n̂3b~h!

12n̂•b~h!
GexpH i

v

v0
Fh1

v0

c
@z cosu

2n̂•r ~h!#G J U
0

2pN

5@~n1n3! î1~n2n3! ĵ1~n3
221!k̂#

3F b

12n3bGexpH i
v

v0
Fh1

v0

c
z~cosu2n3!G J

0

2pN

,

~28!

V~v!5
v0

c E
0

2pNF n̂3n̂3
dr

dhGexpH i
v

v0
Fh1

v0

c
@z cosu

2n̂•r ~h!#G J dh

5
v0

c
@~n1n3! î1~n2n3! ĵ1~n3

221!k̂#

3E
0

2pN dz

dh
expH i

v

v0
Fh1

v0

c
z~cosu2n3!G J dh.

~29!

Note that in the second equalities of Eqs.~28! and~29! the
subscript has been dropped frombz . Furthermore, location
of the observation point will be given in spheric
polar coordinates, i.e., n̂5(n1 ,n2 ,n3)5(sinQ cosF,
sinQ sinF,cosQ). The coordinate system is the same as t
of Fig. 1, in whichQ is measured relative to the positivez
axis andF relative to1x. It should be mentioned that th
integration in Eq.~25! has a highly oscillating integrand
which makes the calculation quite laborious. Obviously,
radiation is expected to be emitted along the forward a
backward directions,Q50 andp, respectively, as bothU
andV may be seen to vanish identically in these cases.

Sample emission spectra, calculated numerically using
exact version@19# of Eq. ~25!, are shown in Fig. 7 for an
observation point in thexz plane,F50. Interaction times
equivalent to 20 and 200 field cycles have been taken. R
sonably sharp spectral lines have been produced. In add
01650
-
r

t

o
d

e

a-
on

to the emission at the fundamental~pump! frequency, over
20 harmonics could be calculated with reasonable accur
Note that the lines are Doppler shifted to the right of th
expected positions~integer values ofv/v0) as the source,
the electron, reaches relativistic speeds. This is most evi
in the cases where high-intensity incident light is scatte
from electrons injected with high initial momenta.

On the other hand, in the presence of high-intensity fie
the role of the initial momentum in determining the streng
of the lines, and the overall shift in their positions, dimi
ishes. Thus lines of comparable strength, and overall s
result for both cases of electron initially at rest, Fig. 7~c!, and
one that is initially incident with high velocity, Fig. 7~f!.

III. THE GAUSSIAN-BEAM ANALYSIS

We have presented an analysis of the dynamics of a si
electron in vacuum in the field of two laser beams crossing
an angle, using a set of exact equations stemming from
analytic solution to the equations of motion of the electron
the plane-wave fields. No restrictions have been made on
value of the crossing angle or laser field intensity. Practi
considerations, however, may place severe limits on
range of values ofu and q in a realistic accelerator design.
conditions allow the electron to interact with a large numb
of field cycles, the length of the accelerator unit increa
dramatically. An ideal situation would be to confine the i
teraction to one half of a field cycle@3# by suitably choosing
the crossing angle and the field parameters~especially spot
size!. On the other hand, arbitrarily high field intensitie
essential for achieving the desired high electron energ
may be difficult to use due to the damage they may caus
the optical components needed for the design. In any c
expert knowledge in mirror material and the breakdo
mechanism will be required to make an arrangement wo

In order to be able to achieve the desired high-ene
gains, an investigation of the electron dynamics ought to
conducted in the relativistic regime of laser intensities.
the other hand, the required high intensity-laser fields
only be realized by focusing over small dimensions. Thus
detailed knowledge of the laser electric and magnetic fie
near the focus of the Gaussian beam is essential@41–45#.
This is done next.

A. The fields

In the Gaussian description of a focused laser beam,
plane-wave symmetry is destroyed and the beam deve
field components along the three spatial directions. For
acceleration scheme of interest to us in this paper, we em
the coordinate system shown in Fig. 8~a!. Subscripts 1 and 2
are used to label the beams. Like in the plane-wave case
x’s andz’s are taken in the plane of the paper, while they’s
point out of it. It is easy to demonstrate that the coordina
obey the following transformation relations

x15x cosu2z sinu, y15y, z15x sinu1z cosu,
~30!

x252x cosu2z sinu, y25y, z252x sinu1z cosu.

~31!
1-7
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SALAMIN, MOCKEN, AND KEITEL PHYSICAL REVIEW E 67, 016501 ~2003!
Geometry of a Gaussian beam is shown in Fig. 8~b!. The
beam axis is taken alongz, with its propagation direction
along1z andstationaryfocus at the origin of coordinates O
The beam cross section at focus is circular and has a ra
w0; a cross section at an arbitraryz is also circular with
radiusw(z)5w0A11(z/zr)

2. Furthermore,zr5kw0
2/2 is the

Rayleigh length, ande5w0 /zr is the diffraction angle. Now,
letting j5x/w0 , y5y/w0, andz5z/zr , the electric compo-
nents of the laser field associated with such a beam, to o
e5, are@41,42,44,46,47#

Ex5EH S01e2Fj2S22
r4S3

4 G1e4FS2

8
2

r2S3

4

2
r2~r2216j2!S4

16
2

r4~r212j2!S5

8
1

r8S6

32 G J ,

~32!

Ey5EjyH e2@S2#1e4Fr2S42
r4S5

4 G J , ~33!

Ez5EjH e@C1#1e3F2
C2

2
1r2C32

r4C4

4 G1e5F2
3C3

8

2
3r2C4

8
1

17r4C5

16
2

3r6C6

8
1

r8C7

32 G J . ~34!

Similarly, the magnetic field components are given by

FIG. 8. ~Color online!. ~a! Coordinate system employed in th
Gaussian-beam analysis. The field propagation directions are a
z1 andz2 , E1x andE2x point alongx1 andx2, respectively, andy1

and y are out of the page~and y2 is into the page! through the
common coordinate origin at O.~b! Geometry of the Gaussia
beam~see the text for explanations!. On the circle on the left hand
side of~b! the dots mark the initial positions, in thexy plane, of 13
electrons; one at the center and 12 evenly distributed on the circ
ference, whose motion and energetics we discuss in Figs. 11–
01650
ius

er

Bx50, ~35!

By5EH S01e2Fr2S2

2
2

r4S3

4 G1e4F2
S2

8
1

r2S3

4
1

5r4S4

16

2
r6S5

4
1

r8S6

32 G J , ~36!

Bz5EyH e@C1#1e3FC2

2
1

r2C3

2
2

r4C4

4 G
1e5F3C3

8
1

3r2C4

8
1

3r4C5

16
2

r6C6

4
1

r8C7

32 G J .

~37!

In Eqs.~32!–~37!, we have taken

E5E0

w0

w
g~h!expF2

r 2

w2G , ~38!

Sn5S w0

w D n

sin~c1ncG!, ~39!

Cn5S w0

w D n

cos~c1ncG!. ~40!

Furthermore,k5v/c, kA05E0 , r 25x21y2, andr5r /w0.
For a continuous beam with a stationary focus we will ta
g(h)51 in this work. For more of the details of the calcu
lation leading to Eqs.~32!–~37! see the Appendix in Ref
@47#. These equations were derived from a vector poten
polarized alongx, has an amplitudeA0, and a frequencyv.
The remaining symbols in Eqs.~32!–~37! have the following
definitions

c5c01cP2cR1cG , ~41!

cP5vt2kz, ~42!

cG5tan21 z, ~43!

cR5
kr2

2R
, ~44!

R~z!5z1
zr

2

z
. ~45!

Note that c0 is a constant,cP5h is the plane wave
phase,cG is the Guoy phase associated with the fact tha
Gaussian-beam undergoes a total phase change ofp as z
changes from2` to 1`, cR is the phase associated wit
the curvature of the wave fronts, and thatR(z) is the radius
of curvature of a wave-front intersecting the beam axis at
coordinatez. The fields given above satisfy Maxwell’s equ
tions“•E505“•B, plus terms of ordere6 @46,47#.

A laser system is often characterized by its output pow
P. For the fields given by Eqs.~32!–~37! the power may be
calculated by integrating the time-averaged Poynting vec

ng

m-
.
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over a plane through the beam focus and perpendicular t
axis. Dropping terms in the result of ordere6 and smaller,
one gets

P@TW#5
pw0

2

2
I 0F11

e2

4
1

e4

8 G ,
'0.0216S qw0

l D 2F11
e2

4
1

e4

8 G , ~46!

whereI 05I (0,0,0)5cE0
2/8p is the peak intensity~at the fo-

cus!. Equation~46! clearly shows that for a fixed laser outp
power, the peak intensity is inversely proportional to t
square of the beam waist radius, or equivalentlyq is in-
versely proportional tow0. Note that Eq.~46! has already
been used to compute theq value employed in Figs. 2–5.

For the crossed-beam acceleration scheme two set
fields are needed, one for each beam with subscripts 1 a
used to distinguish their parameter values and propaga
characteristics. The resultant field components then enter
the equations of motion~6! in the form

Ex5~E1x2E2x!cosu1~E1z2E2z!sinu, ~47!

Ey5E1y2E2y , ~48!

Ez52~E1x1E2x!sinu1~E1z1E2z!cosu. ~49!

Similarly,

Bx5~B1z2B2z!sinu, ~50!

By5B1y2B2y , ~51!

Bz5~B1z1B2z!cosu. ~52!

Retention of terms of ordere and higher in the field expres
sions brings about corrections which can be quite impor
when ultrahigh-intensity laser systems are employed. For
business of acceleration the corrections to the electric fi
terms affect the energy gain directly through theb•E term in
the second of Eqs.~6!, while corrections to the magneti
field components play an indirect role via theb3B term in
the first equation. We have recently demonstrated@46,47#
that focusing down to a waist radius of a few microns
quires inclusion of all corrections, i.e., up to and includi
thee5 terms. Previous calculations for the crossed-beam c
figuration @1–4# have at most included the term of ordere.

The remainder of this section will be devoted to the d
cussion of a number of issues related to the accelera
scheme and based upon numerical calculations using the
fields. Obviously, solutions based on low-order perturbat
theory @48# cannot be relied upon, considering the hig
intensity fields we are concerned with in this work. We w
assume that the two beams have the same intensity and
quency, that their propagation directions and field com
nents point as shown in Fig. 8~a!, and that they have a com
mon stationary focus at O. The electron will be assumed
01650
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be injected att50 from a point with coordinates (x0 ,y0 ,z0).
b0 will be used to denote the magnitude of the electro
initial scaled velocity.

B. A preferred crossing angle

Continued improvements in the technology of optic
components@4# capable of withstanding present-day las
field intensities@9–11# have motivated us to explore domain
of high q andu values. Guided by the analytic work deve
oped in Sec. II and Fig. 3 we have found that, correspond
to a given set of laser parameters and electron initial con
tions, a crossing angle exists that renders the energy g
due to interaction with a given number of field cycles,
maximum. This is apparently made possible by construc
interference of the two beams.

Figure 3 seems to suggest that, if the electron-field in
action is to terminate in the neighborhood of any one of
points corresponding toh5(2M11/2)p, where M
50,1,2, . . . , theelectron will escape with a maximum en
ergy gain. The gain will be an absolute maximum forM
53 in the sin2 pattern case, for example. Confining attenti
to the situation corresponding to one of these maxima in
energy gain, we have found that a maximum gain is a
obtained for a particular crossing angle. In a sense, at
crossing angle, constructive interference of the cross
beams presents the electron with a maximum electric fi
strength to interact with and absorb energy from. As it tu
out, the optimal crossing angle, in the case of accelera
from rest, lends itself to an analytic derivation. So, setti
h5(2M11/2)p, b050, andg051 in Eqs.~15! and ~20!,
and extremizing the gain expression with respect tou, one
gets the value

umax5tan21F1

qG , ~53!

in the plane-wave case. So, the optimal crossing angle ca
quite large, in which case the resulting gain would be sm
of course.

The equation resulting from extremizing the energy g
is quite complicated in the case of a sin2 wave pattern. Thus
we opt for showing the preferred crossing angle graphica
in Fig. 9 for interaction corresponding toM52, i.e., h
55p/2. The gain is shown clearly to exhibit an absolu
maximum as a function of the crossing angle. Note th
guided by hindsight from Figs. 2 and 3, the case displaye
Fig. 9~b! would have resulted in a duplicate of 9~a! had we
opted for a calculation of the gain ath513p/2 instead. This
choice corresponds to a point close to the focus of the pu
pattern. It is also interesting to note that a net gain res
even when the crossing angle isp/2 ~the counter-
propagating beam case!.

Figure 9~c! is similar to ~a! and ~b! but for the Gaussian-
beam case. General agreement with the plane-wave ana
predictions is obvious. While the plane-wave analysis ex
gerates the gain, it gives a smaller optimum crossing h
angle than does the Gaussian-beam calculation.
1-9
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SALAMIN, MOCKEN, AND KEITEL PHYSICAL REVIEW E 67, 016501 ~2003!
In order to get a feeling for what energy gains and ene
gradients may be optimally achieved, we have chosen
crossing half-angleu53.1° for further calculations. This
angle lies roughly in a neighborhood of theumax of Fig. 9~c!.
Samples of gain vs forward distance results are shown in
10. Note that the electron-field interaction seems to termin
within 1 mm, for the parameters used. The electron ga
more than 1.8 GeV from interaction with the 10 PW bea
and over 400 MeV from the 1 PW fields. These gains cor
spond to the energy gradients 1.8 TeV/m and 0.4 TeV
respectively, assuming all the gain occurred over a forw
distance of roughly 1 mm.

C. Off-axis parallel injection

Only a small fraction of the electrons in a bunch, of tran
verse dimensions of a few microns@20#, sent along thez axis

FIG. 9. ~a! and~b! Electron energy gain at the end of interactio
with 1.25 field cycles~one cycle meansDh52p) of two beams vs
the crossing half-angleu. ~c! The same, but for the Gaussian-bea
case where motion of the electron is followed for a time equival
to 104 laser field periods~one period here meansT5l/c). The
initial injection energy,g051.0002, and the legends given in~a!
apply everywhere.

FIG. 10. Energy gain vs the forward distance of travel when
crossing half-angle isu'umax in Fig. 9~c!.
01650
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of Fig. 8~a! will typically enter the interaction region with
precisely zero initial transverse coordinates. The rest w
come in, perhaps parallel to, but a transverse distance fr
that axis. In this section, we consider the trajectories of
electrons whose initial coordinates in thexy plane are as
follows: one is incident perfectly axially,x05y050; a sec-
ond has initialxy coordinates (x0 ,y0)5(0.5,0) mm, and the
remaining 11 electrons are initially equally spaced on
circumference of a circle in thexy plane of radius 0.5mm
and centered on the point (0,0,25) mm. These initial coor-
dinates are marked on the circle on the left of Fig. 8~b! and
given the labels 0,1,2, . . . ,12. Theresulting subsequent tra
jectories are shown in Figs. 11 and 12. The perfect symm
of the configuration on both sides of thexz plane is reflected
in all the trajectories displayed in Figs. 11 and 12, and in
gains in Fig. 13 as well.

Note first the case of electrons whose initial coordina
are confined to thexz plane, those labeled by 1, 0, and
Numerical solution of the equations of motion then yie
trajectories, in the full fields, that are also confined to th
plane. At all points in thexz plane (y50), the field compo-
nentsEy andBz vanish identically at all times. This is easy t
see from the geometrical symmetry of the configuration a
from the choice of identical beams we have made@or else by
settingy50 in Eqs.~33! and ~37!#. With Bx50, these are
the only field components capable of inducing motion out
the xz plane for an electron initially moving in it. Henc
three of the above mentioned electrons, those with initialxy
coordinates~0.5,0!, ~0,0!, and (20.5,0) mm and labeled by
1, 0, and 7, respectively, will follow trajectories confined

t

e

FIG. 11. ~a!–~c! Projections, onto thexz, yz, and xy planes,
respectively, of the trajectories of 13 electrons injected paralle
the z axis and whose initial coordinates in thexy plane are as
follows. One of them starts at the center of a circle of rad
0.5 mm and the rest are evenly distributed on the circumference
the same circle, with the first at (x0 ,y0)5(0.5,0) mm, and so on. In
~d!–~f! we merely zoom on small portions of~a!–~c!, respectively.
The remaining parameters are:l51.056mm, w057 mm, z05
20.5 mm, g056, u53.1°, laser power at 1 PW, and interactio
time equivalent to 1000 laser periods.
1-10
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RELATIVISTIC ELECTRON DYNAMICS IN INTENSE . . . PHYSICAL REVIEW E 67, 016501 ~2003!
the xz plane. They make excursions transverse toz whose
sizes depend upon the value ofx0. In particular, axial injec-
tion through the point (x0 ,y0)5(0,0) leads to a perfectly
axial trajectory. This trajectory is clearly evident as a strai
line in Figs. 11~a!–11~e! and itsxy projection appears in Fig
11~f! as the dot at~0,0!.

Overall, we note that electrons which are injected in
manner just described~over a circle of radius 0.5mm) get
spread out asymmetrically in the transverse dimensions.
spreading is from 0.5mm to about 40mm in thex direction,
and from 0.5mm to a maximum of roughly 14mm in they
direction. A careful look at the trajectory portions display
in Figs. 11~d!–11~f! reveals clearly that points slightly to th

FIG. 12. Same as Fig. 11, but for a laser power of 10 PW

FIG. 13. Electron energy gain as a function of the axial dista
for the electrons whose trajectories are given in Figs. 11 and 12
this figure the interaction time has been taken equivalent to 5
laser field periods.
01650
t

e

he

right of the common focus of the crossed beams act lik
strongscattering centerfor the electrons. That neighborhoo
may be viewed as adynamic scattering center, one that os-
cillates by responding to the local phase variations of
fields. Conversely, roughly the same neighborhood, for
situation depicted in Fig. 12, acts like a center of attract
causing the trajectories to bend in directions opposite th
of Fig. 11. In both cases, however, the electron appear
gain momentum from the fields in the form of a few viole
impulses, as evidenced by the sudden kicks along the tra
tories shown.

We conclude from Figs. 11 and 12 that, provided t
space charge effects are neglected, most electrons in a
micro bunch~a bunch of electrons with, say, a circular cro
section of transverse radius less than 1mm), which is in-
jected initially with its center of mass on thez axis, will
follow trajectories that diverge considerably due to the sc
tering process described above.

Now to answer the question of whether the final ene
gain will suffer any spreading as a result of the electro
possessing a spread in the injection positions, we have
culated the gain with axial distances for all cases conside
in Figs. 11 and 12. The results are shown in Fig. 13, wh
the interaction time has been taken as equivalent to 5
laser periods. Here too, because of the fact that the fi
exhibit rapid local phase variations, electrons injected alo
different initial paths experience drastically different field
This results in them gaining widely differing amounts of e
ergy as can be seen in Fig. 13~b!. In this figure, the above-
mentioned 13 electrons gain energies in the approxim
range 80–240 MeV. By contrast, one sees in Fig. 13~a!, and
from examination of the data used to construct it, that
electrons injected through (x0 ,y0)5(0,0), ~0.5,0!, and
~20.5,0! mm ~initial positions corresponding to 0, 4, and 1
respectively! gain about 1.86 GeV. Gain by the remainin
electrons is as follows: 1 and 7 gain 1.168 GeV; 2, 6, 8, a
12 gain 1.175; and finally 3, 5, 9, and 11 escape with a ne
about 1.193 GeV each. These associations reflect q
clearly the perfect symmetry exhibited by the configuratio
and by the fields, on both sides of thexz plane.

D. Effect of injection energy spread

Our theoretical study in this paper has been confined
the single-particle aspects. In a real accelerator design e
trons will be injected in bunches of certain characterist
which must be taken into account@20,49#.

In this subsection, we calculate the spread in energy g
dW that may result from a spreaddE05mc2dg0 in the in-
jection energy. In the plane-wave case, to begin with, n
thatdg05b0g0

3db0. Next, differentiation with respect tob0

of Eqs.~10!, ~15!, and~20! yields

dW5F ~cosu2b0!1
s~12b0 cosu!

As21sin2 u
G dE0

b0 sin2u
, ~54!

wheres(h) is given in Eq.~15!. Assuming an initial injec-
tion energy spreaddE0 /E050.5% @24#, Eq. ~54! gives, for

e
In
0
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SALAMIN, MOCKEN, AND KEITEL PHYSICAL REVIEW E 67, 016501 ~2003!
electrons ejected at a point corresponding toh513p/2 in
Fig. 3, dW/W50.0042%, almost the same for both puls
shape functions.

A look at Fig. 14 leads to the following conclusion. Slig
variations in the initial injection energy lead to enormo
jumps in the final resulting gain, as long as those inject
energies do not exceed a few MeV. Agreement with the re
of the order-of-magnitude calculation made above, howe
is good for injection energies in excess of about 5 MeV, d
to the saturation alluded to in our comments on Fig. 4 abo
These conclusions agree quite well with the numerical c
culations employing the full Gaussian-beam fields, as is
picted in Fig. 12. Saturation is seen here to set in for val
of g0 beyond about 10.

IV. SUMMARY AND CONCLUSIONS

The dynamics of a single electron injected in vacuu
through the intersection point of two laser beams has b
investigated analytically and numerically. The analytic wo
resulted in exact working equations for the crossed-beam
ser accelerator when the electron is injected axially, i.e., w
its initial direction of motion making equal angles with th
beam propagation directions. In particular, expressions
terms ofh5v(t2z cosu/c), for the energy gradient, the en
ergy gain, and the velocity, have been found. Only the fi
expression for the scattered electronz coordinate has bee
left with an integral which could be easily performed n
merically. The obtained velocity and coordinate expressi
were then used to show that the acceleration process ma
accompanied by radiative losses. Sample, reasonably pre
emission spectra, containing typically up to 20 harmonics
the laser frequency have been obtained.

In both analytic and numerical investigations the be
crossing angle has been assumed arbitrary; in other wo
nowhere has the analysis been restricted to small cros
angles@2,4#. Otherwise, the two beams have been assum
identical as far as their intensities, frequencies, and w
radii are concerned. In the numerical simulations, the fie
of a Gaussian beam have been used, where terms of ord
to and includinge5, wheree is the beam diffraction angle
have been employed in modeling them.

It can be fairly stated that good qualitative agreement
tween the simple plane-wave analysis and the precise
merical computations has been established. In particu
both have arrived at the conclusion that, for a given se
field parameters and initial conditions, a crossing angle ex
l.
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for which gain can be a maximum. Apparently, for such
angle, the electron encounters fields that interfere const
tively maximally and favor gain. Furthermore, energy ga
of several GeV have been shown to result from interact
with laser beams of present-day PW power.

Our single-particle calculations have also made it poss
to arrive at important conclusions regarding the dynamics
an electron bunch in this acceleration scheme. For lo
energy electrons~typically less than a few MeV! a small
distribution of initial injection energies~or speeds! leads to
an enormous distribution of energy gains~or final speeds!.
Conversely, for electrons incident on the arrangement w
high injection energies, the final gains turn out to be har
sensitive to any spread in those initial injection energies.
high injection energies, the swift energy gain results in
electron reaching an ultrarelativistic speed; it hencefo
rides with the waveand gains little extra energy. Thi
saturation phenomenon implies a limit on the utility o
the crossed-beam configuration as a booster accelerator
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FIG. 14. Electron energy gain as a function of the interact
time, given on a logarithmic scale in terms of the laser periodT
5l/c. The lines shown differ in the initial scaled injection energ
and demonstrate saturation with increasingg0 at a gain of about 2.1
GeV.
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