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Nonuniform non-neutral plasma in a trap
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An analytical model for breathing oscillations in a nonuniform non-neutral plasma slab is developed. The
plasma is relatively small and warm with the smallest dimension only of several Debye lengths. Nonuniformity
in the equilibrium results in a frequency shift associated with pressure and boundary effects. The plasma size
and temperature, being related to the frequency shift, can therefore be evaluated from frequency measurements.
In particular, for small nonuniform plasmas the frequency of the breathing mode is twice that predicted by the
cold fluid theory. Nonlinear oscillations are also considered and the pressure is shown to have an important
effect on the dynamics. Analytical solutions for linear and nonlinear oscillations are obtained and compared
with that from one-dimensional particle-in-cell simulations. Good agreement is found.
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[. INTRODUCTION plasma. As we will see, boundary effects result in a fre-
quency shift proportional to the square of the ratio of the
A trapped cloud of identical charges can be considered aBebye length to the typical cloud dimension. If one keeps the
a non-neutral plasmid,2] if its size is large compared to the plasma temperature on the same level and increases the num-
interparticle spacing and Debye length. There has been mudyer of trapped particles the shift disappears, indicating that it
interest in linear electrostatic waves in trapped non-neutrahas a boundary origin. That is, the shift is negligible for cold
plasmas|[3]. These modes can be easily excited and meaer large plasmas, but it can significantly change spectrum for
sured, providing useful information on the plasma shapesmall and warm ones.
size, and density. The plasma modes are usually studied in The simplest oscillatory mode of a trapped non-neutral
the background of an equilibrium state. The existence oplasma cloud corresponds to the center-of-mass motion. It is
such a state is an important feature of the trapped non-neutrabt affected by the plasma shape and density under the har-
plasma[4]. An important case, where the equilibrium statemonic trap approximation. We shall, therefore, concentrate
can be found analytically, is when the plasma is small comon the breathingquadrupolg¢ mode, which can be readily
pared to the dimensions of the trap and resides in a nearlgescribed in both the linear and nonlinear regimes. This
quadratic trap potentialthe harmonic trap The cold- mode is analogous to the well-known volume Langmuir os-
plasma-fluid approximation then leads to a constant-densitygillations in uniform infinite plasmas. For the sake of sim-
equilibrium[5], which is invoked in most studies of electro- plicity we consider a non-neutral plasma slab in a one-
static modes in non-neutral plasmas. dimensional harmonic trap. Such a geometry appears
The pressure and temperature effects are completely igraturally in experiment§8] and was investigated both ana-
nored in the cold-plasma-fluid approximation. These effectdytically and numerically[9]. In contrast with the previous
can, however, be important if the equilibrium density is notwork we ignore the effect of nonharmonic terms in the trap-
constant. For example, at very low temperatures the fluighing field and the fact that the aspect ratio of a thin oblate
model is inadequate and the plasma equilibrium is markedlplasma, being small, is honzero. Our slab is, therefore, per-
nonuniform. Corresponding corrections to the plasma frefectly one-dimensional and confined by a perfectly parabolic
guencies were recently fouri@]. On the other hand, even a potential well. Making these simplifications we concentrate
constant-density plasma cloud behaves quite differently neasn temperature and boundary effects, both are treated ana
the boundary. The size of the boundary region is usuallyytically in a nonperturbative manner. The plasma equilib-
comparable to the Debye length. If the latter is far less thamium, and linear and nonlinear oscillations, are then investi-
the plasma siz¢as was the case for most previous studies ofgated in a single framework. First, we neglect temperature
plasma oscillations the boundary effects on the volume os- effects and consider nonlinear oscillations of such a slab.
cillations are negligible. However, some non-neutral plas-Then we take pressure into account and consider the equilib-
mas, such as that of pure electron or positron, are often relaium state, as well as the linear and nonlinear breathing
tively small and warm, and the smallest dimension of theplasma oscillations, demonstrating the effects of nonunifor-
cloud is only several Debye lengthg]. The equilibrium  mity. In connection to the nonlinear oscillations we also ad-
state is, therefore, significantly nonuniform. The goal of thedress an important issue concerning wave breaking and col-
present paper is to describe the oscillatory modes in such lapsing solutions. Such solutions are well-known artifacts of
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the cold-plasma approximatidi0]. We will see how wave requires the latter to be sharp. If initially the plasma is
breaking is prevented by the pressure. Regular solutions exisbunded in the regiofix| <R,, then at its boundarR(t)
formally for any amplitude, but it appears to be unstable if=A(t)R,. The solution(3) is a particular ong11] as it is
the amplitude is too large. The theoretical results are comassociated with a special velocity distributi(®). The distri-

pared with that from particle-in-ce{PIC) simulations. bution can be realized, for example, by a temporary shut-
down of the trapping force of the stationary equilibrium
Il. COLD-PLASMA SLAB state. The plasma expansion caused by Coulomb repulsion

- ) will then lead to the desired initial particle velocities. On the
The equilibrium properties of a cold-plasma slab can beyther hand, the simple solutidB) clearly exhibits two most
easily understood in the Lagrangian frame from a considermportant properties of cold-plasma oscillations, namely, the
a collection of particles with equal massand chargeq is  of wave breaking for perturbations with>1. As we shall

stored in a one-dimensional trap with a harmonic trappingsee, hoth these features are considerably modified by pres-
force mwgx on the particle at the point, wherewq is re-  syre and boundary effects.

ferred to as the trap frequency. The trapping force may be
thought of as resulting from an imaginary static background
of opposite charges with constant density such that
47rq2nb/m=w§. The trapping force is opposed by Coulomb  In this section we discuss the equilibrium properties of a
repulsion of the trapped particles. For a cold uniform plasmalasma slab, assuming that the trapped particles have a uni-
with the constant density the condition of equilibrium sim-  form temperaturel,. We introduce the thermal velocityy

ply indicates than=n,, so that the two forces equilibrate =(T,/m)¥? and the characteristic length=v1/wy. The
each other. The quantity,, being uniform, is also useful for latter quantity being close to the Debye length is also uni-
normalizing the plasma density in more complicated situaform and useful for normalizing lengths. The equilibrium

IIl. NONUNIFORM EQUILIBRIUM

tions. density profile is uniquely determined by the parameter
When the particles are pushed, saytat0, the equilib-

rium will be broken. Simple arguments first applied by Daw- A= L

son[10] lead to a full description of the subsequent plasma ~2n,L’

oscillations. In the one-dimensional case the repulsion force

acting on any particular particle remains fixed as long as thevhere\'is the total number of trapped particles per slab area
ordering of the particles is unchanged, whereas the trappingnd A7(2n,) is the cold-fluid value of the plasma radiRs.
force increases with the particle coordinate. The motion offhe familiar case of sufficiently large or cold plasma corre-
the particle follows the equation sponds toA>1. The case\~1 corresponds to sufficiently
small and warm plasmas with the size of several Debye
lengths. IfA<<1 the particles interactions are negligible com-
pared with their thermal energy and the trap potential. In the
latter limit we have a collection of independent particles

so that all particles undergo harmonic oscillations with theather than a real plasma with collective behavior.

initial velocity of any particle is proportional to its position: Particle distribution one can directly solve the Poisson equa-
tion, assuming that the particles obey the Boltzmann distri-

d?x(t)
dt?

= w2x(0) — wdx(1) (1)

dx(t) bution in the space-charge and trapping electric fields. Such a
T =awex(0), (2 solution has been intensively discussed in the literature for
t=0 different geometriegssee Ref[12] for detail9 and here we

only outline one-dimensional results in an easy-to-use form.
The nonuniform equilibrium density=ny(x) can be written
as

where the dimensionless parameger const. The particle
trajectories are then given by

X(t)=A(t)x(0) and A(t)=1+asinwgt, (3 g(X) = N FXIL). @
where the dimensionless propaga#qt) is identical for all _ _ ) )
particles. This propagator is in fact a Jacobian of the transwhere the dimensionless functidf(¢) is even and obeys the
formation from the Lagrangian variables to the Eulerian€duation
frame. A characteristic property of all quadrupole plasma

modes is that the Jacobian depends on time, but not on space. i i dF(é) —FE-1 )
The Jacobian must also remain positive for regular solutions. dé| F(¢) dé '

The well-known wave breaking phenomenon occurs then for

a>1. with dF/d¢|;_o=0 and F(0) being a free parameter deter-

The plasma densitn(t) =n,/A(t) remains uniform for mined byA. The function/(£) must be positive and tend to
the breathing mode. Recall that the trapped plasma alwayzero at infinity. Physically meaningful solutions correspond
has a boundary and that the uniform density approximatioio 0<(0)<1. Different solutions are possible for different

016408-2



NONUNIFORM NON-NEUTRAL PLASMA IN A TRAP PHYSICAL REVIEW E67, 016408 (2003

plasma distributions. Accordingly waefinethe densityN(t)

and half-sizeR(t) of the nonuniform plasma slab through the
) equations
R J n(t,x)dx=N(t)R(t)
Ny, 0
0.
and
0.
* 1
J n(t,x)xdx= EN(t)R(t)Z,
5 10 15 20 0

x/L

-

o
w

o
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[N

N

o o whereNy=N(0) andRy=R(0) are calculated using the ini-
FIG. 1. Equilibrium plasma distribution=no(x) versus space tjal equilibrium profile. For cold or large plasmaR,
coordinate for different initial valueis,(0)/ny, . As the total number =M (2n,), whereas for the Gaussian Iinﬂo=(8/7-r)1’2L.
of particles increases or the temperature decreases the Gaussigfe corresponding plasma density i, =A7(2R,). The
density profile gradually changes to a step profile. quantity N, can now be used tdefinea mean plasma fre-

uenc
F(0), asshown in Fig. 1. The particular solution should be a Y
chosen according to the integral condition ;p: 47PNy /m,
fw}‘(g)dng (6) which is equal tow, for A>1 and tends to zero as,A*?
0 ' for A<1.

Note that due to the conservation of particle number the
indicating that the trapped cloud contain$ particles per  productN(t)R(t) is constant. We can thesefinea dimen-
slab area. The reader should guard against the apparegibnless parametek(t) such that
simple scaling form of Eq4), sinceF(¢) depends implicitly
on the plasma parameters because of (Bq. Ng

Figure 1 shows how the Gaussian density profile changes N(t)= A(D) and  R(t)=RoA(1), @)
to the step profile. Large or cold-plasmas correspond to

F(0)—1. Here the density is constam(x) =n, as long as  where A(0)=1. One can get a simple equation fa(t),

IX|<AN(2n,) and it quickly tends to zero otherwise. The starting from the standard one-dimensional plasma-fluid
opposite case of independent particles with Gaussian distrmodel

bution corresponds t&(0)<1. In the following sections we

trace in detail the evolution of the plasma oscillations as the an 9
plasma evolves to a small and warm state. F 5(”0) =0, ®
IV. BASIC EQUATIONS Jv v q ) 1 0P
. —+v—=—E-0iX— — —, 9
We now generalize the problem of cold non-neutral gt ox m mn Jx
plasma oscillations to include pressure and boundary effects.
We assume the width of the plasma slab to be of the order of JE
several Debye lengths and much larger than the interparticle 5:4”(1”' (10
spacing. The plasma equilibrium is significantly nonuniform.
A nonuniform equilibrium density profilen=ngy(x) invali- where the trapping force and pressure are included if®qg.

dates the familiar periodic solutions of the form ekgl. = The equation of state for the pressurét,x) will be speci-
Furthermore, the very definitions of the mean plasma densitffjed later. We consider symmetric oscillations of the plasma
plasma frequency, and actual cloud size requires separagab, so that the velocity and electric fieldE should vanish
consideration for small plasmas. The problem of linear ancht x=0, and all the other plasma parameters should vanish
nonlinear breathing oscillations can nevertheless still bgufficiently fast forx—o. The equilibrium solution isv
solved provided that the plasma is initially in an equilibrium =0 andn=ny(x) with corresponding values for the pressure
and that the initial velocity of each particle is proportional to and electric field. The steady equilibrium state is then dis-
its position. In this case a direct generalization of the aboveurbed by introducing the initial velocity
solution (3) can be found.

Our approach, similar to that used by Chandrasekh@jr v(0X)=awX, (11
for gravitating fluids, is to consider appropriate moments of
the number densityi(t,x). This approach is known to be whereais a constant with the same value and meaning as in
useful for a non-neutral plasm&]. It also provides a clear Eg. (2). To proceed, we multiply Eq@8) by xdx and inte-
definition of the mean slab width and density for arbitrary grate fromx=0 to x=cc to obtain
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d o] o0 2
&L nxdx= Jo nvdx, (12
1.5
which when evaluated dt=0 leads to the initial condition
dA/dt|;—o=aw,. Thus we have generalized Eg). We now P
multiply Eq. (9) by ndx and integrate. After some algebra % To
and using Eqgs(10) and (12), we obtain a simple moment
equation 0.5
d2 oo 2702/ [ 2 P(t,0 0
_+w§ J' nxdx= q J' ndx +¥, 2 4 6 8 10
dt? 0 m 0 m Ro/L
where the last term is the pressurexatO. FIG. 2. The actual value of the equilibrium central pressure

(thick line) from Egs.(4) and(13) and that(thin line) predicted by

The derivation up to this point isxactwithin the frame- ;q. (14) versus the size of the plasma cloud.

work of the plasma-fluid equations. One can easily obtain

closed set of equations for a cold pressureless plasma and

{:%%?g%%ﬂeliiglggofgsr g“\:vear} rgy I|E(4$)—(3_?_. Thel pdrobtlr? m Pf Eq. (1) for plasma oscillations. In what follows we solve it
X . plasma. 70 include thermag, compare the results with simulations.

effects we adopt a simple approach originally developed by

Dubin [14]. The equilibrium pressure

Equation(16) is seen to be a selfconsistent generalization

V. SMALL OSCILLATIONS

P(0x)=no(X)To 13 In this section, we investigate thermal and finite-size ef-

fects in the theory of linear breathing oscillations. We also

is artificially replaced with compare our results with that of other authors. Equatid)

2 should admit an equilibrium solutioA=1, so that
P(0x)=aNgTo| 1- = (14) )
Ro 2_"2 vT
wp=wpt ZQE (17
for |x| <Ry andP(0,x) =0 otherwise. The constaatcan be 0

?fg)sgg di?ﬂ;ffg\r/irr‘tﬂ‘?’:‘ﬁé;zgogi?gn?;g;n rvevguiir;:ee?r::t?eigisis an additional constraint for equilibrium. For cold or large
to be identical. That isg= 2 for our infinite one-dimensional plasmas the last term in EQL7) is small andw, = wo. In the
plasma slab. Assuming an adiabatic equation of state we fRpposite warm limit t.h? plasma f(equency can be neglected
nally obtain and we obtain the minimum possibdRy=(2a)?L. We see

that the slab cannot be arbitrary thin because of the tempera-

N\ 3 2 ture effect. Note that for the Gaussian distributiéty
p(t,x)zaNOTo(_) (1_ = (15) =(8/7)Y2L which is slightly different from our prediction
No R for a=2. The approximate character of E{J5) is respon-

sible for this difference. One can then improve the choice of

where the parameter is kept to make our formulas more 4 (j.e., replacel with 4/, the latter is 15% legsor even
flexible. make it state dependent. Such an improvement, being te-

Of course, Eq.(14) is a crude approximation for large dious, has however no significant influence on the results
plasmas with constant density since the actual pressure graptained. We will, therefore, stay in the framework of the
dient is not linear inx but concentrated at the edge of the present model.
plasma where the density falls to zero. On the other hand, W
Eq. (14) is quite reasonable for the small plasmas of interes h Note that generally botts, andR, depend ooV, To, and

! . fhe trap parameters. Such a dependence is determined b
here. We can check it by calculating the actual pressure at tr\g bp ’ y

i : . s.(5) and (6) and cannot be extracted directly from Eq.
plasma center directly from the numerical solutions of Eq as.(5) © y q

Y ; '(17). Nevertheless we can use E7) to check the validity
(5) and comparing it with that predicted by E@4). Indeed of our approach. To this end we solved numerically E§s.
these two vgilues are close to each other for small plasmas, &hd(6) and used the equilibrium profitey(x) for calculating
shown in Fig. 2. Finally we evaluate the pressurexatO, —

pass to the variabla(t) in the moment equation, and obtain the density moments and for evaluatifg, No, and w,. _
The results of each calculation can be presented as a point in

42A 2 w2 the (Ng/n,,Ry/L) plane, as shown in Fig. 3. The theoretical
iy ng:;Lr_T, (16)  expressior(17) is also plotted in this plane. We see that the
dt? P R3AS agreement between the equilibrium theory and our moment

equation(17) is quite reasonable. Note that although the ap-
where we recall thatA(0)=1, dA/dt|;—p=aw,, and « proximation (14) is not valid for large plasmas, the whole

=3, unless specified otherwise. boundary effect also disappears in this limit. That is why a
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1 . e v o o where the right-hand side is a small perturbation. The cold-
plasma result
0.8
A(t)=1+asinwgt (29
0.6
ﬂ—; is reproduced when the temperature term is ignored. Note

that the solution(19) is nonlinear because the amplitude
need not be small. It is also clear that the expres§rorior
the average density is nonlinear. The frequency wq of
such a nonlinear oscillation happens to be the same for all
amplitudes in the pressureless limit. The amplitude depen-
dence of the frequency appears when the temperature term is
not ignored, but included as a perturbation. Thus, by standard

FIG. 3. Equilibrium plasma density versus slab dimension. Theperturbation techniqug46], we obtain a modified frequency
result from Eqgs(5) and(6) (points is in good agreement with that
of Eq. (17) (solid line). v%

w?=wi+6a—(1-a%) %, (20)

good agreement is achieved in Fig. 3 despite of our crude Ro
approximation for the pressure.

Small oscillations around the equilibrium have a fre-

2 4 6 8 10 12 14 16
Ry /L

where for givena<<l the temperature should be small
enough for the pressure term to be a small correction. If the

uenc ) : .
d y amplitude is small as well we obtain the frequency
2
v 2 2
2_ 2 T v v
o _“’0"'60‘?' (18 w2=w%+6a—;+15a—2a2,
0 0 0

where the last term is seen to have the usual Bohm-Grosghere the familiar squared-amplitude nonlinear frequency
form 3k?v2 with k~1/R,. Forvr=0 we reproduce the cold- shift appears in the right. For low temperature plasmas this
plasma resulto=w,. In the warm case we insert the mini- shift is a second order correction. On the other handafor
mum Ro[ = (2a)YL] to see thaiv=2w,. So the frequency —1 the pressure cannot be considered as a perturbation, no
increases with the temperature and is finally twice its coldmatter how small the temperature is. In this case (&) is
value. invalid and should be replaced by the full integral of Eg.

We are now in a good position to compare our predictiong16). No blow-up solution then exists fa@=1. In particular,
with that of other theories. The latter were developed for arfor a>1 the pressure term behaves like an infinite repulsive
ellipsoidal plasma cloud, the slab limit can be obtained wherpotential wall located at=0. Thus, in the first approxima-
one of the semiaxes is much less than the others. Note, thdbn one hasA(t)=|asinwgt|. We see that the linear fre-
the 3D version of Eq(14) results ina=3 when integrating quency, which was close @, is replaced by @, exhib-
over the ellipsoid. With this correction Eq&l7) and (18) iting a nonlinear frequency shift.
agree with the existing resultsee, for example, Eq$26)
and(28) from Ref.[15]).

The spectrum predicted by E@.8) is compared with that . ) . ) o
from the plasma simulations in Sec. VII. Before doing this EQuation(16) can also be easily considered in the limit of
let us first consider finite-amplitude oscillations. small plasmas, i.e., wheRy— (2a)"4 and w,—0. Using

Eq. (17) we rewrite Eq.(16) in the form

B. Gaussian case

VI. NONLINEAR OSCILLATIONS 2 2
d A 2A wq — 1 1
In this section we investigate E(L6) to include thermal dt2 @A~ E“"p ~a3)’

and finite-size effects in the theory of nonlinear breathing

oscillations. We first consider two special cases of cold larggyhere the right-hand side is a small perturbation. Ignoring
sharply bounded plasmas and small warm Gaussian plasmage |atter one obtains a nonlinear solution

A. Sharply bounded plasmas a® . a’
_ A(t)= 1+?+asm Zth—?cos 2wpt, (21
In this case we havBy>L and w,— wq. Using Eq.(17)
one can rewrite Eq(16) in the form ) .
which shows that the characteristic perider =/ w, regard-

d2A U% 1 less of the amplitude. Note, that the right side of E2{) is
— wS(A— 1)=-2a—|1- = always positive and no blow-up solution exists. A more gen-
dt Ro A eral amplitude-dependent frequency can be obtained by tak-
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4

a A

FIG. 4. The factory from Eq.(22) versus amplitude. FIG. 5. The effective potentidl (A) for e=0.5. Black circles

o — _ _ indicate minimum and maximum values @&(t) for different
ing into account thew, terms. A canonical version of pertur- choices ofE,.

bation theory is well suited for this calculatiddi7]. The
modified frequency is

1 €
UA)=-A2—(1—€e)A+ oAz

w?=4wi— win(a), (22) 2 A2
where ande=2a(L/Ry)2[0,1]. The two above considered limit-
ing cases correspond t&=0 ande=1. To solve the general
n(a)= 3_2(ﬂ) ' problem we note that the Hamiltonian should be equal to
m\ds s=a2 Eo=3a2+U(1) due to the initial conditions. A solution is
then given by
1 1
f(s)=E(k) \/1+—s+ s+ —s?, A dA
25T Nstg -l === @3
1 V2[Eq—U(A)]
21/ s+ ESZ which is an elliptic integral. To calculate it, one has to inves-
5 4 tigate the roots of the corresponding polynomial. The oscil-
k= lations are bounded in the regioA;<A<A,, where
14 ESJF \ /S_’_Esz A, a,€) are two properly chosen real roots of the equation
2 U(A)=E,. A typical plot of the effective potential energy

U(A) and a graphical illustration of what is meant by proper
andE(k) is the full elliptic integral of the second kind. The roots for different values dE, is shown in Fig. 5. For given
small amplitude limit of Eq(22) is plasma parameters one can find these two roots and put Eq.

(23) in the form

1
w2=4wg— 3;2+—5c:2a2

P 32°P AdA

A
T= ,

and again the amplitude term is a second order correction. In fl V(A= A)(A-ADQ(A)
contrast with Eq(20), no modification of Eq(22) is needed
with an increase of the amplitude because the fag{@) is  where Q(A) is a quadratic polynomial responsible for the
a decreasing function of the amplitude, as shown in Fig. 4.two other roots of the equatiod(A)=E,. Figure 5 shows

that these roots are initially complex, but become real and

C. General solution negative with increase @&,. In any case their sum, s& ,

is a negative real number. It is also important to note that
bothQ(A;) andQ(A,) are positive. One can then pass to the
new variabled, where

It is also possible to find a general solution of E&6) in
terms of elliptical functions. To obtain such a solution we
introduce the dimensionless time=wyt and the Hamil-
tonian function o, 0 A—A,

A2 D, 2T AL—A

H= E ( E +U(A),
and p1'2=[Q(A1'2)]1’2. The expression for the oscillation pe-
with riod T is then given by
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[l

0 5 10 15 20 25 30 2 4 6 8 10 12 14
Ry /L

FIG. 6. Typical behavior of the plasma radius. The simulation  FIG. 8. Frequency of plasma oscillations versus slab dimension.
(point agrees with the theorgsolid line). The pressureless solu- The S|muI§thn resulfpoints is in good agreement with that of the
tion (dashed lingis also shown for comparison. theory (solid line).

2 As the theory describes only symmetric oscillations, only
(Act A2)K(K) + (P2t P2) [H(V’k)_K(k)], the regionx>0 needs to be considered in the computation.
VP1P2 VP1P2(Ar+A,—As) The boundary ak=0 is assumed to be absorbing and re-
emitting. The total area covered by the computation is con-
whereK (k) andII(v,k) are full elliptic integrals of the first  siderably larger than the plasma size, so that the particles
and the third kind, respectively. The corresponding paramnever reach the right boundarg.g., they never leave the

2(00 =

eters are trap)_
5 ) 5 To study breathing plasma oscillations we first prepared
o Aem AV (P p)” (P2 Py the above-described equilibrium distributiog(x) with the
4p1p, ' 4pip, desired sizeR, and Maxwellian velocities for the particles.

The equilibrium retains on the background of small thermal
and our definition for the elliptic integrals follows that of fluctuations if the plasma is allowed to evolve freely. Breath-
Ref.[18]. ing oscillations are initialized by forcing the particles to per-

form additional (nonthermal motion with initial velocities

VII. SIMULATION proportional to their positions in accordance with Efjl).

i i i ._Properly chosen initial perturbations can generate oscilla-
We have also performed one-dimensional PIC simulationgions that remain smale.g., almost linear but still consid-

for the problems considered above. For the computation, thg 5y |arger than the thermal fluctuations. The plasma is
time is normalized byw,, and the length by.. Being close  then allowed to move freely in both the self-consistent and

to the plasma frequency and Debye length, these two NOkanhing electric fields, and the moments of the density are
malization parameters are also well defined for nonuniform,, 5i,ated to obtair\(t).

distributions. Thus, the dimensionless plg\sm_a densityng An example of the oscillations is shown in Fig. 6, which
and the normalized electric field E/mwgl (i.e., the trap-  shows the oscillation of the plasma half-sigét) for R,

ping force atx=L is used to normalize forcesFor different  —7| anda=0.1. The behavior is in good agreement with
runs, we use from $0to 1¢° particles per Debye length. the theoretical curve obtained from E(.6), whereas the
constant frequency of the cold-plasma solut{8his inaccu-
4.3 rate.
After approximately one hundred periods a Fourier trans-
4.2 form of the A(t) is used to obtain the frequency. Then the
41 whole procedure is repeated for the nBy. As the plasma

size decreases the oscillations become modulated as shown
in Fig. 7 for Rg=4L anda=0.1. Nevertheless, the corre-
sponding Fourier transform still has a sharp peak and yields
the correct frequency.
3.8 The R, dependence of the frequency is presented in Fig. 8
starting from the GaussiaRo[ =(2«)2L]. The frequency
of the linear oscillations agrees well with the theory as given
25 50 75 100 125 150 175 by Eq. (18).
wot ; . . . .
To investigate the nonlinearity we also studied the behav-

FIG. 7. The breathing oscillation for small plasmas is modu-ior of the oscillations for the sang, but differenta. As the
lated. The present theory accurately predicts the frequency, but n@mplitude of the excitation exceeds some critical value,
the modulation. bounce oscillations very similar to that shown in Fig. 7 begin

|
[y
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0 5 10 15 20 25 30 -5 -10 -5 0 5 10 15
wot x/L

FIG. 9. The half size of the plasma cloud versus time for a FIG. 10. Phase space of 3000 representative particles and their
) ) . - _ -1 . . . .
solution witha>1 from theory(solid line) and simulatior(pointg. ~ Mirror images at=6.23v, - for the solution displayed in Fig. 9.
Such a solution would inevitably blow up in the cold-plasma limit. The Spiral arms are developing and indicating instability of the
Pressure accounts for the regular plasma behavior observed heFé’,IUt'on-

whereas the apparent instability is not described by the present . ) o .
theory. instability requires a kinetic approach and is beyond the

scope of the present work.

to appear. Generally, the smaller the plasma the smaller the
critical amplitude; forRy<5L the oscillations seem to be

always modulated. _ _ _ In this paper we considered analytically the boundary ef-
Figure 9 showsR(t) for a strongly nonlinear regime with  fect on the linear and nonlinear breathing oscillations of a
a=1.2 andR,="7L. Note that no blow-up solution appears, yrapped non-neutral plasma slab. It is shown that the fre-
in contrast to the cold-plasma case. The theory correctly pregyency of the oscillations differs from that predicted by the
dicts the maximum and minimum plasma densities as yvell 88old fluid approximation. The frequency depends on the
the nonlinear frequency. However, strong modulation isyiasma temperature and can be used to obtain the latter in an
clearly observed, indicating that the solution is unstable. Th%xperiment. The effects considered here have a boundary re-
instability destroys the oscillations within a few periods after|5teq origin, i.e., they disappear with an increase of the
Its onset. , - , plasma size. Our approach leads to simple analytical descrip-
In general, several instabilities, such as trapping of thjons of both the linear and nonlinear oscillations despite the
plasma fluid by the wavgl9] or development of streaming ponuniform plasma distribution. As expected, the familiar
instabilities[20], are possible in our system. To follow the ¢o|q-plasma blow-up solutions are prevented by the pressure
evolution it is useful to consider the phase planentv,).  effects. Even for strongly nonlinear oscillation the theory
Each particle is then represented by a point, and the wholgccyrately predicts the amplitude and frequency, but not the

system forms a barlike cloud. HefRy andmur are the half  gtapjlity of the solution. The analytical results agree reason-
dimensions of the bar and theaxis is an “equilibrium po-  gp|y well with that from PIC simulations.

sition.” The breathing mode corresponds to rocking oscilla-

tion (a_1<_ 1) or rotation _(a> 1) of the barlike cloud arou_nd _ ACKNOWLEDGMENTS

the origin. As the amplitude increases, such an oscillation is

accompanied by development of spiral arms, as shown in This work was partially supported by the Sonderfors-
Fig. 10. The phenomenon is similar to the formation of thechungsbereich 191. One of the auth¢B$.A) would like to
galactic spiral arms, but it takes place in the phase planthank the Humboldt Foundation for financial support and A.
rather then in the real space. A detailed description of théV. Ignatov for useful discussions.

VIIl. CONCLUSION
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