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Active and passive fields in turbulent transport: The role of statistically preserved structures
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We have recently proposed that the statistics ofactive fields ~which affect the velocity field itself! in
well-developed turbulence are also dominated by the statistically preserved structures of auxiliarypassive
fields which are advected by the same velocity field. The statistically preserved structures are eigenmodes of
eigenvalue 1 of an appropriate propagator of the decaying~unforced! passive field, or equivalently, the zero
modes of a related operator. In this paper we investigate further this surprising finding via two examples of
shell models, one akin to turbulent convection in which the temperature is the active scalar, and the other akin
to magnetohydrodynamics in which the magnetic field is the active vector. In the first example, all the even
correlation functions of the active and passive fields exhibit identical scaling behavior. The second example
appears at first sight to be a counterexample: the statistical objects of the active and passive fields have entirely
different scaling exponents. We demonstrate, nevertheless, that the statistically preserved structures of the
passive vector dominate again the statistics of the active field, except that due to a dynamical conservation law
the amplitude of the leading zero mode cancels exactly. The active vector is then dominated by the subleading
zero mode of the passive vector. Our work thus suggests that the statistical properties of active fields in
turbulence can be understood with the same generality as those of passive fields.

DOI: 10.1103/PhysRevE.67.016304 PACS number~s!: 47.27.2i
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I. INTRODUCTION

The aim of this paper is to address the statistical phy
of so called ‘‘active’’ fields in developed fluid turbulence
These are fields that differ from the fundamental fluid velo
ity field u(r,t), but that interact with the velocity field in a
essential way, for example, resulting in a significant cha
in the scaling exponents of the velocity correlation functio
from the classical Kolmogorov exponents. For the sake
concreteness we will focus on two generic examples w
very different interactions between the active and the ve
ity fields.

The first is turbulent thermal convection, in which th
temperature fieldT(r,t) is driving the velocity field through
buoyancy effects. In the Boussinesq approximation the t
perature equation reads like a standard forced scalar ad
tion problem,

]T~r,t !

]t
1u~r,t !•“T~r,t !5k¹2T~r,t !1 f ~r,t !. ~1!

Here k is the thermal diffusivity andf (r,t) is a white ran-
dom force of zero mean with compact support ink space,
acting on the largest scales of the order of the outer scaL
only. The velocity field is affected by the temperature. For
incompressible fluid of unit density@1# @dropping the depen
dence on (r,t) for brevity#,

]u

]t
1u•“u52“p1n¹2u1agTẑ. ~2!

Herep, n, a, g, and ẑ are the pressure, kinematic viscosi
volume expansion coefficient, acceleration due to grav
and a unit vector in the upward direction, respectively. T
appearance ofT in the equation foru is crucial, and change
1063-651X/2003/67~1!/016304~12!/$20.00 67 0163
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the scaling exponents ofu. When the conditions are right i
may even change the scaling exponents from Kolmogoro
Bolgiano ~up to anomalies! @1#.

The second example is that of magnetohydrodynam
~MHD!, in which the magnetic fieldb(r,t) is driving the
velocity field u(r,t) according to@2#

]u

]t
1u•“u52“p1b•“b1n¹2u,

]b

]t
1u•“b5b•“u1k¹2b1f. ~3!

These equations of motion conserve~in the inviscid, un-
forced limit! three quadratic invariants, i.e., the energy, ma
netic helicity, and cross helicity@3#.

Our main interest is in the properties of the statistic
objects characterizing the active fields, including th
anomalous scaling. Here ‘‘anomalous scaling’’ means t
multipoint correlation functions are homogeneous functio
of their arguments, with exponents that cannot be gues
from dimensional analysis. Thus, for example, the fie
f(r,t) ~with f beingT or b, respectively! has simultaneous
multipoint correlation functions

F (m)~r1 ,r2 , . . . ,rm![^f~r1 ,t !f~r2 ,t !•••f~rm ,t !& f ,
~4!

where pointed brackets with subscriptf refer to averaging
over the statistics of the advecting velocity fieldand of the
forcing. The forcing is taken to be white random noise w
zero mean. When the forcing is stationary in time this obj
is time independent. Anomalous scaling means that

F (m)~lr1 , . . . ,lrm!5lzmF (m)~r1 , . . . ,rm!, ~5!
©2003 The American Physical Society04-1
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with zm having a nontrivial dependence onm. In what fol-
lows we will assume that the advecting velocity field itself
fully turbulent, and that its correlation functions are also e
hibiting scaling behavior like Eq.~5!.

The main point of this paper is that the statistical theo
of the active fields calls for consideration of auxiliary pass
fields that satisfy the same equations of motion as the ac
fields, but do not affect the velocity field itself. In other
words, for the two problems at hand we consider the follo
ing equations of motion:

]u

]t
1u•“u52“p1n¹2u1agTẑ,

]T

]t
1u•“T5k¹2T1 f ,

]C

]t
1u•“C5k¹2C1 f̃ , ~6!

on the one hand, and

]u

]t
1u•“u52“p1b•“b1n¹2u,

]b

]t
1u•“b5b•“u1k¹2b1f,

]q

]t
1u•“q5q•“u1k¹2q1 f̃, ~7!

on the other.
Note that the velocity field that appears in the equatio

for the passive fields isthe sameas the velocity field that
results from solving the coupled equations of the associa
equations for the active fields. The forcing termsf̃ in Eq. ~6!

@respectively f̃ in Eq. ~7!# have the same statistics as t
forcing termsf in Eq. ~1! @resp.f in Eq. ~3!#, but they must
have different realizations. While it is not true of course th
the statistics of the passive fields are independent of the
tistics of the velocity fields, it is true that the statistics of t
velocity fields are independent of the statistics of the pas
forcing terms. This is, however, not the case with the act
forcing terms since these forcing terms affect the act
fields that affect in their turn the velocity fields. It is thus n
at all evident at first sight that there should be any relationa
priori , between the statistics of the active fields and th
passive counterparts. On the other hand, if there were su
relationship, this would be very advantageous, since the
tistics of the passive fields is understood as explained ne

To understand the progress made in the context of pas
fields @4,5#, note that the passive fields satisfy a linear eq
tion of motion that can be written as

]f~r,t !

]t
5Lf~r,t !1 f ~r,t !, ~8!
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with the actual form of the operatorL determined by the
problem at hand. In recent work@6,7# it was clarified why
and how passive fields exhibit anomalous scaling, when
velocity field is a generic turbulent field. The key is to co
sider a problem associated with Eq.~8! which is thedecaying
problemin which the forcingf (r,t) is put to zero. The prob-
lem becomes then a linear initial value problem,

]f/]t5Lf, ~9!

with a formal solution

f~r,t !5E dr8R~r,r8,t !f~r8,0!, ~10!

with the operator

R[T1expF E
0

t

dsL~s!G , ~11!

and T1 being the time ordering operator. Define next t
time-dependentcorrelationc functions of the decaying prob
lem,

G(m)~r1 , . . . ,rm ,t ![^f~r1 ,t !•••f~rm ,t !&. ~12!

Here pointed brackets without subscriptf refer to the decay-
ing object in which averaging is taken with respect to re
izations of the velocity field only. As a result of Eq.~10! the
decaying correlation functions are developed by a propag
P rur

(m) , ~with r[r1 ,r2 , . . . ,rm),

G(m)~r1 , . . . ,rm ,t !5E drP rur
(m)~ t !G(m)~r1 , . . . ,rm,0!.

~13!

In writing this equation we made explicit use of the fact th
the initial distribution of the passive fieldf(r,0) is statisti-
cally independent of the advecting velocity field. Thus, t
operatorP rur

(m) can be written explicitly,

P rur
(m)~ t ![^R~r1 ,r1 ,t !R~r2 ,r2 ,t !•••R~rm ,rm ,t !&.

~14!

The key finding@6,7# is that the operatorP rur
(m) possesses

left eigenfunctions of eigenvalue 1, i.e., there exist tim
independent functionsZ(m)(r1 ,r2 , . . . ,rm) satisfying

Z(m)~r1 , . . . ,rm!5E drP rur
(m)~ t !Z(m)~r1 , . . . ,rm!.

~15!

The functionsZ(m) are referred to as ‘‘statistically preserve
structures,’’ being invariant to the dynamics, even thoughthe
operator is strongly time dependent and decaying. How to
form, from these functions, infinitely many conserved va
ables in the decaying problem was shown in Ref.@6#, and is
discussed again in Sec. II B. The functionsZ(m)(r) are ho-
mogeneous functions of their arguments, with anomal
scaling exponentszm ,
4-2
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Z(m)~lr!5lzmZ(m)~r!1•••, ~16!

where ‘‘••• ’’ stand for subleading scaling terms. Since E
~15! containsZ(m)(r) on both sides, the scaling exponentzm

cannot be determined from dimensional considerations,
it can be anomalous. More importantly, it was shown that
correlation functions of the forced case,F (m)(r) @Eq. ~4!#,
have exactly the same scaling exponents asZ(m)(r) @7#. In
the scaling sense

F (m)~r!;Z(m)~r!. ~17!

This is how anomalous scaling in passive fields is und
stood. Lastly, we note that for the operator governing
time derivative of Eq.~12!, Z(m)(r) is a zero mode. We will
use the terms statistically preserved structures and
modes interchangeably.

Of course, returning to the active fields, it makes no se
to consider the decaying problem; as the active field dec
the statistics of the velocity field changes, and there is v
little to say. On the other hand, we propose that it is poss
to learn a great deal from considering the forced solutio
comparing the forced correlation functions of the active fi
with those of the passive field when advected by the sa
velocity field @8#. The rest of this paper is devoted to makin
this point clear and solid.

In Sec. II we discuss the active problem@Eq. ~2!# in com-
parison with the passive problem@Eq. ~6!#. A preliminary
report of the correspondence between these problems
presented in Ref.@9#. Since we are interested in points
principle rather than quantitative details, we opt to work w
a shell model of the turbulent convection problem. Sh
models are easy to simulate and provide highly accurate
tistics. We will argue~cf. Sec. IV! that since the importan
aspects of the model are its conservation laws, results fo
for the shell model remain relevant also for the partial d
ferential equations~PDE’s!. The main result of Sec. II is tha
the forced 2mth-order correlation functions of the active an
passive fields are both dominated by the statistically p
served structures of the decaying passive problem, i.e.,
functionsZ(2m)(r) of Eq. ~15!. The anomalous scaling expo
nents are the same for the passive and activeforcedcorrela-
tion functions, they are universal@independent of the forcing
f (r,t)] and determined by the scaling exponents ofZ(2m)(r).
We present a careful discussion of the role of the statist
correlations between the forcing and the velocity field t
exist in the active case, but are absent in the passive cas
the present problem the net result of these correlations is
an amplitude factor relating the moments of the two fields
Sec. III we turn to a shell model of magnetohydrodynami
On the face of it, this is a counterexample to the previo
case: the active and passive fields exhibit radically differ
scaling exponents. The main result of this section is th
nevertheless, the statistically preserved structures of the
sive problem are shown to dominate the statistics of the
tive problem, but the existence of a conservation law in
latter results in an exact cancellation of the amplitude of
leading zero mode. We identify analytically the leading a
subleading exponents of the passive problem, and then
01630
.

nd
e

r-
e

ro

e
s,

ry
le
s,

e

as

ll
ta-

nd
-

-
he

al
t
. In
st

n
.
s
t
t,
as-
c-
e
e
d
b-

serve the cancellation of the leading contribution by the
namics. The Summary presents the general lesson for
statistical physics of the~nonlinear! active problem. We pro-
pose that the zero modes of the auxiliary passive fields
always have a dominant role in the statistics of active fiel
The active fields will thus share the same scaling expone
as the passive fields unless there exist additional conse
tion laws for the active fields. In all cases the calculation
the active scaling exponents can be achieved in the con
of the passive problem, which boils down to finding the ze
modes of a linear operator.

II. ACTIVE AND PASSIVE SCALARS IN A MODEL OF
TURBULENT CONVECTION

A. Model and numerical results

In this section we examine in detail a shell model of a
tive and passive scalars for which the statistical object can
computed to high accuracy. We consider a model that rep
duces the conservation laws and the form of coupling
tween the active field and the velocity field in Eqs.~1! and
~2!. Our model is a variant of the shell model studied in R
@10#,

]un

]t
5akn~un21

2 2lunun11!1bkn~unun212lun11
2 !

2nkn
2un1Tn , ~18!

]Tn

]t
5ãkn~un21Tn212lunTn11!1b̃kn~unTn21

2lun11Tn11!2kkn
2Tn1 f 0dn,0 , ~19!

]Cn

]t
5ãkn~un21Cn212lunCn11!1b̃kn~unCn21

2lun11Cn11!2kkn
2Cn1 f 0dn,0 . ~20!

In this model all the field variables are real andn stands for
the index of a shell of wave vectorkn5k0ln, with n
50,1, . . . ,N21. We takel52, and the parameters used
the simulation area50.01, ã5b̃5b51, k051, k5n55
310214. The number of shells isN530, and the forcing is
white noise of zero mean on the first shell.

Without the coupling toTn , the velocity equation has a
inviscid unstable Kolmogorov fixed point,un;kn

21/3. This is
changed by the coupling@10#, and the system of equation
for Tn and un exhibits an inviscid unstable Bolgiano fixe
point, un;kn

23/5, Tn;kn
21/5. The chaotic dynamics render

the statistics of the velocity field strongly non-Gaussian~cf.
inset in Fig. 1!. The exponentszn

T for the active scalar are
markedly anomalous, whereas, for the velocity, they app
closer to normal~see Fig. 1!. The equation of motion for the
passive fieldC is identical to the equation of motion ofT, but
it does not affect the velocity fieldu. This equation has a
C→2C symmetry, whereas the coupled system ofT andu
lacks this symmetry. This difference is reflected in the sta
tics of the two fields.
4-3
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To demonstrate this difference between the active
passive fields, we show in Fig. 2 the probability distributi
functions~PDF’s! of x5fn /^fn

2&1/2 wherefn is Tn or Cn ,

and T̃n[Tn2^Tn&, for n514. One clearly sees the symm
try of the PDF’s of the passive scalar, in contradistinction
the asymmetry of the PDF’s of the active scalar. This
typical to all n in the inertial range. This is a demonstratio
of the discussion after Eq.~28!. For the passive scalar th
odd moments vanish, whereas for the active scalar they
exist. The situation is altogether different for the statistics
even moments. To demonstrate the difference we plot in
3 the ~typical! PDF’s of T̃n

2 and Cn
2 for n59 and 14. In

plotting we realize that the passive scalar is defined up
constant, so for the passive scalar the PDF is plotted for
rescaled variablebCn

2 , where

b5^T̃n
2& f^Cn

2& f'0.6327. ~21!

Note that there is only one numerical freedomb, constant
for all n in the inertial range. An understanding of this n
merical constant based on dynamical considerations is g
in the following section. We find very close agreement of
the PDF’s in the inertial range. The identity of the PDF’s
T̃n

2 and Cn
2 translates automatically to the identity of th

FIG. 1. The scaling exponentszn
u of the velocity field~circles!

and zn
T of the active scalar field~squares! for evenn’s. The solid

lines are, respectively, 3n/5 andn/5 for the velocity and the active
scalar fields. Shown in the inset is the PDF ofz[ũn /^ũn

2&1/2 at shell
n514.

FIG. 2. The PDF’s of the active~solid! and passive~dashed!
scalars at shelln514. Note that the PDF of the active scalar
asymmetric.
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even-order structure functionsF (2m)(kn)[^f̃n
2m& f , where

f̃n5T̃n or Cn ~up to a constantbm). This is demonstrated in
Fig. 4. We see that the second-, fourth and sixth-order st
ture functions are barely distinguishable, with the same s
ing exponents in the inertial range. Finally, we demonstr
that the identity of the statistics of the squares of the pas
and active scalars transcends structure functions. Cons
for example, the multipoint correlation functions^T̃n

2T̃n15
2 &

and ^T̃n
2T̃n15

2 T̃2n
2 &. In Fig. 5 these correlation functions ar

compared to their passive counterparts. The conclusio
that again the multipoint correlation functions are indist
guishable once the passive ones are rescaled bybq where 2q
is the overall order of the correlation function.

B. Analysis of the results

To understand the results we start with the passive fi
demonstrating that its forced structure functions are actu
statistically preserved structures. Consider then the deca
passive problem, i.e., Eq.~20! without the forcing term. The
initial value problem for the time-dependent structure fun
tions G(2m)(kn ,t)[^Cn

2m(t)& is the shell analog of Eq.~13!,

G(2m)~kn ,t !5P n,n8
(2m)

~ t !G(2m)~kn8 ,t50!, ~22!

which defines the 2mth-order propagatorP n,n8
(2m)(t). Here and

below, repeated indices are being summed over. In Fig. 6

FIG. 3. The PDF’s ofy wherey5T̃n
2 ~solid! or bCn

2 ~dashed! at
shellsn59 and 14.

FIG. 4. The even-order structure functions^T̃n
2m& f ~circles! and

^bmCn
2m& f ~squares!, with m51, 2, and 3, from top to bottom.
4-4
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show typical decay plots for the quantityK (2m)

[(nG(2m)(kn ,t) for m51,2,3, starting from the initial con
ditions G(2m)(kn ,t50)5dn,16.

Statistically preserved structures in this case represen
eigenfunctionsZ(2m)(kn) of eigenvalue 1 satisfying

Z(2m)~kn8!5Z(2m)~kn!P n,n8
(2m)

~ t !. ~23!

The statement that we want to demonstrate is that the fo
structure functionsFn

(2m) of the passive scalar scale like the
eigenmodes of the decaying problem,

FIG. 5. Upper: log10̂ T̃n
2T̃n15

2 & f ~circles! and log10̂ b2Cn
2Cn15

2 & f

~squares!. Lower: log10̂ T̃n
2T̃n15

2 T̃2n
2 & f ~circles! and

log10̂ b3Cn
2Cn15

2 C2n
2 & f ~squares!.
01630
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F (2m)~kn![^Cn
2m& f;Z(2m)~kn!. ~24!

To demonstrate this we use the method of Ref.@6# and define
the quantitiesI (2m),

I (2m)5(
n

G(2m)~kn ,t !F (2m)~kn!. ~25!

Using Eqs.~22! and ~23! we see that if Eq.~24! is obeyed,
then the quantitiesI (2m) are time independent. Indeed, in Fi
6 we demonstrate the stationarity of these objects, thus
porting Eq. ~24!. The analytic explanation as to why th
forced solutions agree with the statistically preserved str
tures of the decaying problem was provided in Ref.@7#. Be-
fore turning to the active field, it is worthwhile to observ
how any initial condition of the decaying passive field lan
on the scaling solution that is represented by the statistic
preserved structure. Consider the initial value experim
that is reported in Fig. 7. Here we start, as an example, fr
the initial valueCn(t50)}kn

2/3. In this initial condition the
order of the amplitudes is inverted with respect to the sp
trum of the passive scalar. We plot, as a function of time,
trajectories ofCn(t) as computed just from this initial con
dition, averaged over 650 realizations. We see that the tra
tories land on a decaying scaling solution in which the or
of the amplitudes and the ratios between them are iden
to the spectrum of the zero mode of the passive field;
oes
FIG. 6. The decaying objectsK (2m) ~solid lines! and the conserved objectsI (2m) ~dashed lines! as a function of time, form51,2, and 3.
Time is measured here in units of the largest scale eddy turnover timet0[@k0AS2(k0)#21'22. In panels~b! and~c! we include in dotted
lines the quantityI (2m) in which we replacedF (2m) by its dimensional prediction@F (2)#m. We see that using the dimensional exponent d
not makeI (2m) time invariant.
4-5



e

c
e
to
or

s
F

la
t

tiv

has
her
and

nd
tive

sive
nd

x-
t
, it

n
tial
ive

he

the
e-
on
s
ak

ns
-
in

of
oth
ld,
ym-

lar

rder

w
re
sive
de-

l
e-

a

ss

CHING, COHEN, GILBERT, AND PROCACCIA PHYSICAL REVIEW E67, 016304 ~2003!
decay that we see, at a rate proportional to 1/t2, is entirely
due to dissipative effects, as explained in some detail in R
@7#.

Finally, we need to understand how the forced active s
lar Tn falls on the statistically preserved structure of the d
caying passive problem, and what is the origin of the fac
b in Eq. ~21!. To this aim we note that both equations f
passive and active fields can be written as

]fn

]t
5Ln,n8fn81 f 0dn,0 . ~26!

This equation has a formal solution in the form

fn~ t !5Rn,n8~ tu0!fn8~ t50!1E
0

t

dtRn,0~ tut! f 0~t!,

~27!

whereRn,n8(tut) is the shell analog of the operator~11!,

Rn,n8~ tut![H T1E
t

t

exp@L~s!#dsJ
n,n8

. ~28!

The first difference between the active and passive field
encountered when we take the average of this equation.
the passive case, the average can be taken by decorre
f 0 andRn,n8 . Since the mean of the forcef 0 vanishes, we ge

^Cn& f50. ~29!

Such a decorrelation is, however, not allowed in the ac
case since the forcingf 0 is correlated withTn , which is itself
correlated withu and thus withRn,n8 . Hence

^Tn& f5^Rn,n8~ tu0!Tn8~ t50!& f1E
0

t

dt^Rn,0~ tut! f 0~t!& f

~30!

FIG. 7. An example of the fate of an initial value term as
function of time, in units oft0. The initial amplitudes are inverted
in order compared to the second order zero modes of the pa
field. Shown are shellsn55, 7, . . . , 19.
01630
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andTn has a nonzero mean. Similarly, the passive scalar
zero odd moments and its PDF is symmetric. On the ot
hand, the active scalar has nonvanishing odd moments
its PDF is asymmetric.

In spite of this great difference between the active a
passive scalars, there is a close affinity between the ac
field and the statistically preserved structures of the pas
field. To see this, we note that the first term on the right-ha
side ~RHS! of Eq. ~30! represents a decaying field. We e
pect that if the initial conditionTn(t50) has any componen
on the statistically preserved structure of the passive field
will quickly relax everything else and will land exactly o
that solution. In this respect it is just the same as the ini
value experiment reported in Fig. 7. In terms of the relat
amplitudes of the differentn shells there is nothing in the
fate of the initial value term to distinguish the active and t
passive fields. The second term on the RHS of Eq.~30! is
more subtle. First, we note that for every value oft we again
face a decaying experiment that takes place between
timest and t. In the language of the passive field, the int
grand can be read from a decaying field with initial conditi
Cn(t5t)5 f 0(t)dn,0 . Indeed, in our simulations below thi
is precisely how we evaluate integrals of this type. We bre
the interval @0,t# into N subintervals$t i% i 51

N , t i5( i /N)t,
and start a decaying experiment with initial conditio
f (t i)dn,0 . MeasuringCn(t) and summing up all the contri
butions yield an approximation to the integral. Every term
the integrand is expected to land, for most of the timet
2t, on the scaling solution of the passive field, in much
the same way that the initial value term does. Thus b
terms in Eq.~30! are expected to scale like the passive fie
which nevertheless itself has zero amplitude due to the s
metry.

The correlation effects that play a role for the active sca
will be responsible for the factorb that we discovered in the
numerics. To see this we need to consider the second o
structure functions,

F (2)~kn!5^@Rn,n8~ tu0!fn8~ t50!#2& f12K Rn,n8~ tu0!fn8~ t

50!E
0

t

dtRn,0~ tut! f 0~t!L
f

1E
0

t

dt8dt9^Rn,0~ tut8!Rn,0~ tut9! f 0~t8! f 0~t9!& f .

~31!

For sufficiently long time the first two terms, denoted belo
asI1 andI2, respectively, do not contribute to the structu
functions, and any difference between the active and pas
fields must be ascribed to the last term. The last term,
noted here asI3, has a ‘‘diagonal’’ contribution, which is
obtained for t85t9 and an ‘‘off-diagonal’’ contribution,
which is the rest of the integral for whicht8Þt9. For the
passive field,Rn,n8 and f 0 decouple and only the diagona
part exists. For the active field there is no decoupling. D
noting this termI3,d , it reads, respectively,

ive
4-6
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I3,d5E dŝ Rn,0~ tus!Rn,0~ tus!& f f 0
2 ~passive!, ~32!

I3,d5E
0

t

dŝ Rn,0~ tus!Rn,0~ tus! f 0~s! f 0~s!& f ~active!.

~33!

In Fig. 8 we compare the integrands of these two expr
sions, measured directly in our simulation as explain
above. We can see that there is not much difference betw
them; the diagonal term cannot be blamed for the factorb.
On the other hand, in Fig. 9 we show the full integralI3 and
compare it with its diagonal term. We see that in the pass
case the diagonal part is everything, whereas in the ac

FIG. 8. Comparison of the integrands in Eqs.~32! ~the passive
case! and ~33! ~the active case! for n510. The plots are indistin-
guishable.

FIG. 9. The integralI3 in comparison to the diagonal partI3,d

for n510. Upper panel: the passive field. The integral agrees w
the diagonal part at all times. Lower panel: the active field. T
deviations are due to the nonvanishing contribution of the o
diagonal integral, which is also displayed in the next figure. T
dashed line in both panels represents the stationary value o
corresponding second-order structure function.
01630
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case there is a difference. Finally, we show that this diff
ence is precisely the source of the factorb. In Fig. 10 we
show^@fn(t)2Rn,n8(tu0)fn8(t50)#2&2I3,d for the passive
and the active fields. The former fluctuates all the tim
around zero. The latter is positive initially, and then becom
negative. For later times it saturates at a negative value
is precisely responsible for the factorb.

In summary, we find that the even correlation functions
the active and passive scalars share the same scaling e
nents simply because the zero modes of the decaying pa
problem dominate the statistics of both fields. It is thus p
sible to understand the anomalous statistics of the active
in the same way as that of the passive field. We believe
this is a significant result that should be put to further expe
mental and numerical tests in the PDE version of the pr
lem. We will return to this point in the discussion.

III. ACTIVE AND PASSIVE FIELDS IN A MODEL
OF MAGNETOHYDRODYNAMICS

A. Model and numerical results

In this section we examine a shell model that reprodu
the type of coupling and the conservation laws of Eqs.~3!.
We need to be careful about the dynamo effect which
want to avoid in order to have stationary statistics. We th
construct the model to mimic two-dimensional MHD,
which there is an inverse cascade of energy. Accordingly
need to have large scale damping terms in the velocity eq
tion, and a force at intermediate scales. In all our simulati
below we force both the velocity and the active fields
shells 10 and 11~denoted bynf), using white noise of zero
mean. We run the model with 35 shells. The equations are
adaptation of the MHD shell model of Ref.@11# to the Sabra
shell model@12#. All field variables are complex numbers,

h
e
-
e
he

FIG. 10. The off-diagonal integral forn510, computed as
^@fn(t)2Rn,n8(tu0)fn8(t50)#2&2I3,d for the passive and active
fields, respectively. For the passive field~dotted line! it fluctuates
around zero, while for the active field it begins positive, and th
turns negative. For longer times it saturates at a constant neg
value, giving rise to the factorb.
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dun

dt
5 ikn@al~un11* un122bn11* bn12!1b~un21* un11

2bn21* bn11!2cl21~un22un212bn22bn21!#

1 f n8dn,nf
1nkn

2un1 ñkn
24un , ~34!

dbn

dt
5 ikn@ ãl~un11* bn122bn11* un12!1b̃~un21* bn11

2bn21* un11!2 c̃l21~un22bn212bn22un21!#

1 f ndn,nf
1kkn

2bn1k̃kn
24bn . ~35!

The coefficientsa, b, c, ã, b̃, and c̃ can be parametrized a
follows:

a51, b52d, c52~12d!,

ã512d2dm , b̃5dm , c̃512dm . ~36!

This choice ensures the conservation of the total ene
and ‘‘cross helicity’’ in the inviscid limit n5 ñ5k5k̃5 f
5 f 850,

E5
1

2 (
n

~ uunu21ubnu2!, ~37!

K5(
n

Re~un* bn!. ~38!

To mimic the magnetic helicity, we can write down a gen
alized quantity

H5
1

2 (
n

sgn~d21!n
ubnu2

kn
a

, ~39!

with a.0 a fixed parameter. We demand conservation
this generalized ‘‘magnetic helicity,’’ together with the a
sence of dynamo effect. This implies

d.1→H d511l2a

dm521/~la21!.
~40!

On the other hand, whend,1 one can have dynamo, an
therefore no stationary statistics.

In addition to the conservation laws the equations of m
tion remain invariant to the phase transformationsun
→unexp(ifn) andbn→bnexp(icn). The conditions are

fn1fn112fn1250, ~41!

fn1cn112cn1250, ~42!

cn1fn112cn1250, ~43!

cn1cn112fn1250. ~44!

This impliescn5fn , ;n.
01630
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The passive field is denoted byqn , whose evolution is
given by an equation similar to Eq.~35!, i.e.,

dqn

dt
5 ikn@ ãl~un11* qn122qn11* un12!1b̃~un21* qn11

2qn21* un11!2 c̃l21~un22qn212qn22un21!#

1kkn
2qn1 f ndn,nf

. ~45!

The fieldsqn andbn are advected by the same velocity fiel
howeverbn is active, whileqn is passive. The inviscid pas
sive equation has only one conserved variable, i.e., Eq.~39!
with qn replacingbn . It also satisfies the same phase re
tions as the active field. We want to know whether the sc
ing properties ofbn are determined once again by the stat
tically preserved structures of the decaying problem of
passive fieldqn .

In Fig. 11 we show the spectra of the passive and ac
fields, respectively, obtained from a direct numerical simu
tion with the parameters as detailed in the figure legend. T
appears like a striking counterexample to the results of
preceding section: the two fields have totally different sc
ing behaviors. The active field has ‘‘standard’’ scaling exp
nents hp , defined by ^ubnup&;kn

2hp , that coincide with

those of the velocity field, defined by^uunup&;kn
2zp , and the

spectrum decays like a power law in the ‘‘inertial rang
which is between the forcing and the dissipative scales.
estimate from the numericsh25z2'0.67,h35z3'1.0, and
h45z4'1.33, in close correspondence with the Kolmo
orov dimensional predictions. The passive field has ex
nents, defined similarly bŷuqnup&;kn

2bp , that are with a
different sign. Its spectrum is an increasing function ofkn in
the inertial range. We measureb2'21.33, b3'22 and

FIG. 11. Structure functions of order 2 (3), 3 (1), and 4 (L)
for the passive field~dotted line!, active field ~dashed line!, and
velocity field ~solid line!. The two vertical lines denote the forcin
shells. Note that the scaling exponents of the active field and
velocity field coincide. The parameters areN535, a52, k0

50.0625,n510212, ñ51023. The forcing is white noise on shell
10,11.
4-8
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FIG. 12. Panel~a!: The fate of the modulus of the initial value term, averaged over 2000 realizations. Shown are shells 15, 17,
23, and 25~top to bottom from the left-most side!. At time t50 their relative amplitudes agree with the scaling exponent of theactivefield.
As time progresses the decaying field switches to the relative amplitudes which agree with the scaling exponent of thepassivefield. Panel
~b!: The modulus of four realizations of the integral as a function ofn, for time t5331024 ~in unit of t10). Note that both terms of the RHS
of Eq. ~46! exhibit the sameleadingscaling behavior. This is canceled exactly as is demonstrated in Fig. 13
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b4'22.67. If we assume that the passive field lands on
statistically preserved structures of the passive deca
problem, then it appears that the active field does not do

In the rest of this section we will show that this is actua
not a counterexample to the proposition that the active fi
lands on statistically preserved structures of the decay
passive field. It does. What happens here is that, due to
conservation law Eq.~38!, the amplitude of the leading sta
tistically preserved structure with the negative scaling ex
nent is exactly zero. The active field then lands on a suble
ing zero mode, which has standard, positive scaling expo
@the positive sign refers tor-space representation, as in E
~5!#.

B. Analysis of the results

To gain insight into this interesting situation we note th
the analog of Eq.~28! describes the dynamics of our activ
field bn ,

bn~ t !5Rn,n8~ tu0!bn8~ t50!1E
0

t

dtRn,nf
~ tut! f nf

~t!,

~46!

with an obvious redefinition of the present operatorRn,n8 . It
is very revealing to examine the time dependence of the
terms on the RHS of this equation. We measure time in u
of the eddy turnover time of the forcing shell 10. This
defined ast10[@k10A^uu10u2&#21'3.35. We will examine a
forced system which began running att52`, denoting a
generic time ast50. In Fig. 12 panel a we show the tim
dependence of the first term for six values ofn in the inertial
interval. We see that the initial conditions represent, as
pected, a standard spectrum in which the amplitudebn de-
creases as a function ofn. As time proceeds, the decayin
term cannot recognize its being active from being pass
and it switches rapidly to the statistically preserved struct
of the decaying passive field, characterized by a nega
exponent. If it were not for the second term on the RHS
Eq. ~46!, thenbn would have landed on the same solution
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qn . What about the second term? In panel~b! of Fig. 12 we
show then dependence of the term at timet5331024. We
see that also this term agrees, in itsn dependence, with the
negative exponent of the passive field. Yet, the left-hand s
bn(t) fluctuates arounddecreasingamplitudes asn increases,
meaning that the leading~negative! exponent exactly cancel
between the two terms on the RHS of Eq.~46!. We demon-
strate this cancellation in Fig. 13. There we plot the real pa
of the initial value term and the integral term at timet
50.3. We see that the two terms cancel each other.
imaginary parts exhibit the same behavior.

Next we need to understand this cancellation from
analysis of the equations of motion. With this analysis
will also show that the solution on whichbn(t) is landing is
also a statistically preserved structure of the decaying pas
field, albeit with a subleading scaling exponent.

C. Statistically preserved structures of the passive field

In the following subsection we will show that the veloci
field attains a scaling solution withz351,

FIG. 13. The real part of the initial value term~dashed line! and
integral term~solid line! as a function ofkn . This is a demonstra-
tion of the cancellation of the leading order term in favor of t
subleading one. The imaginary parts behave in the same way.
4-9
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S3~kn![Im^un21unun11* & f;kn
21 , ~47!

where Im denotes the imaginary part. In this section we w
assume this, and examine what are the scaling solutions
agree with the existence of a second order statistically
served structure for the passive field. We are not going
compute the anomalous scaling exponent exactly, but ra
obtain their dimensional estimates. Since we are after a r
cally different apparent behavior, small numerical corre
tions are not our main concern. With this caveat in mind,
can calculate the exponentb3 characterizing the third-orde
structure function,

P3~kn![Im^qn21qnqn11* &;kn
2b3 . ~48!

The condition for the existence of the second order stat
cally preserved structure is

d

dt
^uqnu2&50, ;n, ~49!

in the inviscid limit. Using Eq.~45! this condition generate
a number of third-order quantities that need to be analy
first. Denote therefore

Q3,1~kn![Im^un21qnqn11* &,

Q3,2~kn![Im^qn21unqn11* &,

Q3,3~kn![Im^qn21qnun11* &. ~50!

In order to construct scaling solutions for these objects,
mensional consideration imply that the fields involved in t
averages above have scalingsun}l2n/3 andqn}l2b3n/3. We
infer the expressions

Q3,1~kn!5uq0u2uu0ukn
2(2b311)/3

l2(b321)/3,

Q3,2~kn!5uq0u2uu0ukn
2(2b311)/3,

Q3,3~kn!5uq0u2uu0ukn
2(2b311)n/3

l (b321)/3. ~51!

We can thus rewrite

Q3,1~kn![l2(b321)/3Q̃3~kn!, ~52!

Q3,2~kn![Q̃3~kn!, ~53!

Q3,3~kn![l (b321)/3Q̃3~kn!, ~54!

whereQ̃3(kn) scales like

Q̃3~kn![l2(2b311)n/3. ~55!

Having these definitions in mind we derive, by demand
Eq. ~49! and substituting the scaling form ofQ̃3 Eq. ~55!, the
equation
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ãl2(2b322)/3~12l (b321)/3!1b̃~l2(b321)/32l (b321)/3!

1 c̃l (2b322)/3~l2(b321)/321!50. ~56!

This is a fourth-order polynomial inl (b321)/3. The four roots
are

l (b321)/35H 1

l2a

6l2a/2.

~57!

Here three of the roots correspond toa priori physical solu-
tions,

b35H 1

123a/2

123a.

~58!

In our simulations witha52 these results areb351, -2, and
-5, respectively. This is in agreement with spectral expone
b2 of the order of ~neglecting anomalies! b252/3,24/3,
210/3. To know which of these is physical, we need
consider the fluxes supported by these solutions.

The only flux that is relevant for the passive field is t
magnetic helicity. For the case considered here withd.1 it
can be conveniently computed at the shellM by evaluating

FM
H [2

1

2

d

dt (
n50

M K uqnu2

kn
a L . ~59!

Using the equations of motion to evaluate this object we fi

FM
H 52dm@kM11

12a ~ Im^qMuM11qM12* &2Im^qMqM11uM12* &!

1kM
12a~ Im^qM21uMqM11* &1Im^uM21qMqM11* &!#.

~60!

We can evaluate now the magnetic helicity flux for the thr
scaling solutions~58!. We find

FM
H }H l2aM

1

laM.

~61!

We conclude that the third solution is unphysical, since
supports a flux that diverges withM. The first two solutions
are allowed. Withb3522 we get a constant flux; this is th
leading scaling solution, and is indeed realized in the sim
lations. The solutionb351 is subleading, it is associate
with a decaying flux, and is asymptotically allowed. It is n
observed in the passive field simulations simply because
subleading.

Our main point will be that the active field will in its turn
land on the subleading statistically preserved structure
cause the additional conservation laws exclude the lead
one. We demonstrate this phenomenon in the following s
section.
4-10
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D. Why does the active field fall on a subleading zero mode?

If we accept the general philosophy that active fields
hibit scaling behaviors that are determined by the zero mo
of the auxiliary passive fields, then we should explain h
why in the present case the active field avoids theleading
zero mode, and appears to land on the subleading one.
answer is hidden of course in the conservation laws, as
expose now.

We first repeat the analysis performed in the preced
subsection to find the consequence of the equation

d

dt
^ubnu2&50, ~62!

or, equivalently,

d

dt
^uunu2&50. ~63!

Using now the definitions

B3~kn!5Im^bn21bnbn11* &;kn
2h3 ,

Q3~kn![kn
2(2h31z3)/3 , ~64!

we obtain an equation that is analogous to Eq.~56!,

ãl12(2h31z3)/3~12l (h32z3)/3!1b̃~l2(h32z3)/32l (h32z3)/3!

1 c̃l211(2h31z3)/3~l2(h32z3)/321!50. ~65!

This is a fourth-degree polynomial forlh3/3 if z3 is known.
Obviously, if we simply substituted herez351 we would get
the same predictions forh3 as obtained forb3 in Eq. ~58!.
However, we have in this case an important additional c
straint that is absent in the case of the passive field, wh
can be inferred from the additional conservation equation

d

dt
Rê un* bn&50. ~66!

Repeating the analysis as above, and introducing a new
ject A3(kn)[kn

2(h312z3) yields the two equations

alB3~kn11!1bB3~kn!1cl21B3~kn21!50, ~67!

al12(h32z3)/3A3~kn11!1bA3~kn!

1cl211(h32z3)/3A3~kn21!50, ~68!

Solving this system together with Eq.~65! yields the scaling
exponents

z3 ,h35H 1

11 logl~a/c! .
~69!

It is easy to check that, among the four possible combi
tions of this equation, the only solution allowed by Eq.~65!
is

z35h351. ~70!
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We thus conclude that as far as the active field is conside
the additional conservation law rules out the leading z
mode of the passive problem, leaving us only with the s
leading mode which is observed in the simulations.

IV. SUMMARY AND CONCLUSIONS

In this paper we considered the correspondence betw
the statistics of active fields that are advected by a turbu
velocity field, and the statistics of an auxiliary passive fie
that is advected by the same velocity, but does not affec
The two examples were akin to turbulent convection and
magnetohydrodynamics, respectively. In the first example
conserved variables for the equations of the passive and
tive fields are the same. For the second example the ac
problem exhibits additional conservation laws. This w
shown to be very significant in determining the respect
statistical physics of the two problems.

The two examples appear very different in superficial e
amination. In the first example the even-order statistics of
passive and active fields turned out to be the same up
single multiplicative factorb, common to all orders. The
forced structure functions of the active field scale with e
actly the same exponents as the passive field, which in
are dominated by the leading zero modes of the decay
problem. We analyzed in detail the source of the multiplic
tive factor b and showed that it stems from the addition
correlation effects between the forcing and the velocity fi
that are absent in the passive case. Nevertheless, these
relation effects do not cause a change in the scaling ex
nents. The general lesson that we would propose on the b
of this example is that whenever there exists a problem
which the equation of motion of the active field does n
satisfy additional conservation laws compared to the pas
case, the former field will exhibit structure functions that a
dominated by the leading zero modes of the latter. This po
is also pertinent to the second example. Here the active e
tions possess additional conservation laws, and indeed
active and passive fields exhibit different scaling expone
Nevertheless, we argued that the structure functions of
active field are still dominated by the zero modes of t
passive problem, but not the leading ones. The additio
conservation laws result in exact cancellations in the con
butions of the leading zero modes, and the active prob
lands on the next allowed subleading zero mode of the p
sive problem.

As a generalization, consider then a sufficiently turbule
velocity field which advects an active field, scalar or vect
which in its turn is forced by a force having a compact su
port in k space. An auxiliary passive field which is advect
by the same velocity field can be employed to find the z
modes of the operator involved in the passive decay pr
lem. On the basis of the intuition gained with the examp
presented above, we offer the following tentative conjectu
the forced structure function of the active field will exhib
scaling exponents that are the scaling exponents of the a
mentioned zero modes. Whenever the conservation law
the active and passive problems coincide, these will be
exponents of the leading zero modes. When the active p
4-11
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lem has additional conservation laws, these will be the ne
leading zero modes, as allowed by the conservation law

Finally, we need to consider the relation of our shell mo
els to the physical problems and the PDE’s that motiv
these models. It is important to test the conjecture stated
in that context. In light of the above discussion we exp
that much of what has been found here will translate litera
to the continuous problems. After all, the crucial aspects
the linearity of the advection equation and the existence
conservation laws. These are unchanged in the continu
problems. Of course, one can expect many more nume
difficulties, especially due to the role of angles in the mu
point correlation functions. Nevertheless, the idea that
understanding of the anomalous scaling exponent of ac
,

d
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fields boils down to the analysis of eigenfunctions of a line
operator is expected to hold verbatim.
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