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Active and passive fields in turbulent transport: The role of statistically preserved structures
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We have recently proposed that the statisticsacfive fields (which affect the velocity field itselfin
well-developed turbulence are also dominated by the statistically preserved structures of apaiisine
fields which are advected by the same velocity field. The statistically preserved structures are eigenmodes of
eigenvalue 1 of an appropriate propagator of the decaftinfprced passive field, or equivalently, the zero
modes of a related operator. In this paper we investigate further this surprising finding via two examples of
shell models, one akin to turbulent convection in which the temperature is the active scalar, and the other akin
to magnetohydrodynamics in which the magnetic field is the active vector. In the first example, all the even
correlation functions of the active and passive fields exhibit identical scaling behavior. The second example
appears at first sight to be a counterexample: the statistical objects of the active and passive fields have entirely
different scaling exponents. We demonstrate, nevertheless, that the statistically preserved structures of the
passive vector dominate again the statistics of the active field, except that due to a dynamical conservation law
the amplitude of the leading zero mode cancels exactly. The active vector is then dominated by the subleading
zero mode of the passive vector. Our work thus suggests that the statistical properties of active fields in
turbulence can be understood with the same generality as those of passive fields.

DOI: 10.1103/PhysRevE.67.016304 PACS nunerd7.27—i

. INTRODUCTION the scaling exponents of. When the conditions are right it
may even change the scaling exponents from Kolmogorov to
The aim of this paper is to address the statistical physic8olgiano (up to anomalies[1].
of so called “active” fields in developed fluid turbulence.  The second example is that of magnetohydrodynamics
These are fields that differ from the fundamental fluid veloc-(MHD), in which the magnetic field(r,t) is driving the
ity field u(r,t), but that interact with the velocity field in an velocity field u(r,t) according tq2]
essential way, for example, resulting in a significant change
in the scaling exponents of the velocity correlation functions au )
from the classical Kolmogorov exponents. For the sake of EJFU‘VUZ —Vp+Db-Vb+ Vi,
concreteness we will focus on two generic examples with
very different interactions between the active and the veloc- b
ity fields. — 4 Uu-Vb=b- Vu+«V2pb+f. 3)
The first is turbulent thermal convection, in which the o
temperature field (r,t) is driving the velocity field through These equations of motion consertie the inviscid, un-
buoyancy effects. In the Boussinesq approximation the tem: '

. . forced limit) three quadratic invariants, i.e., the energy, mag-
ggrr]ag;;%lzﬁjatlon reads like a standard forced scalar adveﬁétic helicity, and cross helicitia].

Our main interest is in the properties of the statistical
aT(r,t) objects characterizing the active fields, including their
+u(r,t)-VT(r,t)=«V2T(r,t)+f(r,t). (1) anomalous scaling. Here “anomalous scaling” means that

at multipoint correlation functions are homogeneous functions
of their arguments, with exponents that cannot be guessed
from dimensional analysis. Thus, for example, the field
¢(r,t) (with ¢ beingT or b, respectively has simultaneous
ultipoint correlation functions

FM(ry,ro, o ) =(b(r,0) d(ra,t) - - - d(rm,t))g,

Here « is the thermal diffusivity and(r,t) is a white ran-
dom force of zero mean with compact supportkirspace,
acting on the largest scales of the order of the outer dcale
only. The velocity field is affected by the temperature. For ad"
incompressible fluid of unit densifyl] [dropping the depen-

dence on (,t) for brevity], 4)
Ju R , , , ,
— +u-Vu=—Vp+rV2u+agTz 2) where pothd _brackets with su_bscrlbtef_er t_o averaging
dat over the statistics of the advecting velocity fieldd of the

R forcing. The forcing is taken to be white random noise with
Herep, v, @, g, andz are the pressure, kinematic viscosity, zero mean. When the forcing is stationary in time this object
volume expansion coefficient, acceleration due to gravityis time independenfAnomalous scaling means that
and a unit vector in the upward direction, respectively. The
appearance of in the equation fou is crucial, and changes FMNr, .. M) =NEM e o), (5)
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with £, having a nontrivial dependence om In what fol-  with the actual form of the operatof determined by the

lows we will assume that the advecting velocity field itself is problem at hand. In recent wofl6,7] it was clarified why

fully turbulent, and that its correlation functions are also ex-and how passive fields exhibit anomalous scaling, when the

hibiting scaling behavior like Eq5). velocity field is a generic turbulent field. The key is to con-
The main point of this paper is that the statistical theorysider a problem associated with E§) which is thedecaying

of the active fields calls for consideration of auxiliary passiveproblemin which the forcingf(r,t) is put to zero. The prob-

fields that satisfy the same equations of motion as the activiem becomes then a linear initial value problem,

fields, butdo not affect the velocity field itself. In other

words, for the two problems at hand we consider the follow- dplat=Ld, 9

ing equations of motion: ) )
with a formal solution

au .
—_ . — — 2
ot +u-Vu Vp+ vVeu+ agTZ, ¢(r’t):f dr’R(r,r’,t)qS(r’,O), (10)
oT ith th
E+U-VT= KV2T+1, with the operator
t
RET%X[{f ds.Z(s)|, (11)
iC - .
E+U-VC=KV2C+f, (6)

and T* being the time ordering operator. Define next the

on the one hand, and time-dependentorrelationc functions of the decaying prob-

lem,
(Z—l:+u-Vu=—Vp+b-Vb+vV2u, GM(ry, .. rm )=((r, )~ b1, 1)) (12)

Here pointed brackets without subscripefer to the decay-

b ing object in which averaging is taken with respect to real-

— +u-Vb=Db-Vu+ «xV2b+f, izations of the velocity field only. As a result of EG.0) the

at decaying correlation functions are developed by a propagator
Pﬁﬂ;), (with r=rq,ry, ... 1),

P B fe -

a—?‘FU'VQZQ‘VU‘f'KVZQ‘f‘f, 7

GM(r,, ...,rm,t)zf dBPE@)(t)G(m)(pl, e Pm0).

on the other. (13
Note that the velocity field that appears in the equations . ) . .
for the passive fields ithe sameas the velocity field that In writing this equation we made explicit use of the fact that

results from solving the coupled equations of the associateW‘Tli”i,tizl dist:jibuttior; 3{ thed past:_sive ﬁelld’_(tr'(? IIZ S_tl_?]tiSti'th
equations for the active fields. The forcing terfns Eq. (6) cally independent of the advecting veloctly Tield. Thus, the

. ~ . o operatorPE‘”,P can be written explicitly,
[respectivelyf in Eq. (7)] have the same statistics as the -£
forcing termsf in Eq. (1) [resp.f in Eq. (3)], but they must P ty=(R(r HR(r ). . R(r ).
have different realizations. While it is not true of course that flo (1) (R(r1.p OR(r2,22.1) (T'm P 1))
the statistics of the passive fields are independent of the sta-
tistics of the velocity fields, it is true that the statistics of the  The key finding[6,7] is that the operatoP ™ possesses

velocity fields are independent of the statistics of the passivFeft eigenfunctions of eigenvalue 1, i.e tnge exist time-

(14

forc!ng terms. This is, however, not the case with the act_ivq»ndependent function&™(r,,r,, . .. r) satisfying
forcing terms since these forcing terms affect the active

fields that affect in their turn the velocity fields. It is thus not

at all evident at first sight that there should be any relation, ZM(ry, ... ,rm)=J dpP{P()Z™(py, . .. o).
priori, between the statistics of the active fields and their - (15)

passive counterparts. On the other hand, if there were such a

relationship, this would be very advantageous, since the starhe functionsz(™ are referred to as “statistically preserved

tistics of the passive fields is understood as explained nextstryctures,” being invariant to the dynamics, even thotigh
To understand the progress made in the context of passivgyerator is strongly time dependent and decayiHgw to

fields[4,5], note that the passive fields satisfy a linear equaform, from these functions, infinitely many conserved vari-

tion of motion that can be written as ables in the decaying problem was shown in Réf, and is
: discussed again in Sec. Il B. The functiofi€"(r) are ho-
do(r,t . . _
& = L(rt)+E(r,1), ®) mogeneous functions of their arguments, with anomalous

at scaling exponents,,,
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ZMOD)=AmZ™M )+ (16) serve the cancellation of the leading contribution by the dy-
- - namics. The Summary presents the general lesson for the
where “- - -” stand for subleading scaling terms. Since Eq. statistical physics of thénonlineaj active problem. We pro-

(15) containsZ(™(r) on both sides, the scaling expongpt  pose that the zero modes of the auxiliary passive fields will
cannot be determined from dimensional considerations, an@lways have a dominant role in the statistics of active fields.
it can be anomalous. More importantly, it was shown that thelhe active fields will thus share the same scaling exponents
correlation functions of the forced case{™(r) [Eq. (4)], as the passive fields unless there exist additional conserva-
have exactly the same scaling exponentZ&8(r) [7]. In  tion laws for the active fields. In all cases the calculation of
the scaling sense - the active scaling exponents can be achieved in the context

of the passive problem, which boils down to finding the zero

FM(r)~zM(r). (17)  modes of a linear operator.

This is how anomalous scaling in passive fields is under- || ACTIVE AND PASSIVE SCALARS IN A MODEL OF
stood. Lastly, we note that for the operator governing the TURBULENT CONVECTION
time derivative of Eq(12), Z((r) is a zero mode. We will
use the terms statistically preserved structures and zero
modes interchangeably. In this section we examine in detail a shell model of ac-
Of course, returning to the active fields, it makes no senséve and passive scalars for which the statistical object can be
to consider the decaying problem; as the active field decaygomputed to high accuracy. We consider a model that repro-
the statistics of the velocity field changes, and there is veryluces the conservation laws and the form of coupling be-
little to say. On the other hand, we propose that it is possibléween the active field and the velocity field in Eq$) and
to learn a great deal from considering the forced solutions(2). Our model is a variant of the shell model studied in Ref.
comparing the forced correlation functions of the active field[10],
with those of the passive field when advected by the same 5
o _ ; . . u,
)[/r:eilsocr;)l(t))i/nftlecltjefr] a‘:’:;esr(;e"sg.of this paper is devoted to making o =akn(uﬁ,1—)\unun+1)+ bkn(unun,l—kuﬁﬂ)
In Sec. Il we discuss the active probl¢fq. (2)] in com- )
parison with the passive problefiEg. (6)]. A preliminary —vkpUp+Th, (18
report of the correspondence between these problems was .
presented in Refl9]. Since we are interested in points of n_~ =
principle rather than quantitative details, we opt to work with gt aKn(Un-1Tn-1 7 MUnTn 1)+ BKn(UnTn s
a shell model of the turbulent convection problem. Shell )
models are easy to simulate and provide highly accurate sta- “AUps1The1) = kKT + o8 0, (19
tistics. We will argue(cf. Sec. IV) that since the important
aspects of the model are its conservation laws, results found ~ 9Cn
for the shell model remain relevant also for the partial dif- at
ferential equation$PDE’s). The main result of Sec. Il is that )
the forced 2nth-order correlation functions of the active and ~NUn+1Chi1) — kK Crt+fobhn - (20)
passive fields are both dominated by the statistically pre- . i )
served structures of the decaying passive problem, i.)le.F,) th th!s model all the field variables are real atmnettan’ds for
functionsZ®™(r) of Eq. (15). The anomalous scaling expo- 1€ index of a shell of wave vectok,=koA", with n
nents are the same for the passive and adoveed correla- =0’1j T N_l' We taken i2,~and the parameters used in
tion functions, they are universiihdependent of the forcing the simulation area=0.01, a=b=b=1, ko=1, k=v=5
. . —14 Nl — 7 H
f(r't)] and determined by the Sca“ng exponenti@“)(r)_ X 10 . The number of shells |N—30, and the fOI‘CIng IS
We present a careful discussion of the role of the statistica{'Nité noise of zero mean on the first shell.
correlations between the forcing and the velocity field that W't_hOUt the coupling tar,, the veloplw qu?/telon h_a§ an
exist in the active case, but are absent in the passive case. if¥iscid unstable Kolmogorov fixed point,~k, “*. This is
the present problem the net result of these correlations is ju§hanged by the couplinfl0], and the system of equations
an amplitude factor relating the moments of the two fields. Infor T, and u, exhibits an inviscid unstable Bolgiano fixed
Sec. Il we turn to a shell model of magnetohydrodynamicspoint, u,~k, #°, T,~k;"®. The chaotic dynamics renders
On the face of it, this is a counterexample to the previoughe statistics of the velocity field strongly non-Gaussiei
case: the active and passive fields exhibit radically differeninset in Fig. 2. The exponentg,, for the active scalar are
scaling exponents. The main result of this section is thatmarkedly anomalous, whereas, for the velocity, they appear
nevertheless, the statistically preserved structures of the pasloser to normalsee Fig. 1 The equation of motion for the
sive problem are shown to dominate the statistics of the agassive fieldC is identical to the equation of motion @f but
tive problem, but the existence of a conservation law in theét does not affect the velocity field. This equation has a
latter results in an exact cancellation of the amplitude of theC— — C symmetry, whereas the coupled systeniraindu
leading zero mode. We identify analytically the leading andlacks this symmetry. This difference is reflected in the statis-
subleading exponents of the passive problem, and then olies of the two fields.

A. Model and numerical results

:akn(unflcnfl_ AUGChHy 1) +Bkn(uncnfl
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FIG. 1. The scaling exponents of the velocity field(circles
and gl of the active scalar fieldsquares for evenn’s. The solid
lines are, respectively,r85 andn/5 for the velocity and the active
scalar fields. Shown in the inset is the PDFzefl, /(U2)Y? at shell -
n=14. even-order structure functions®™(k,)=($2™, where

$,=T, or C, (up to a constang™). This is demonstrated in
To demonstrate this difference between the active angtig. 4. We see that the second-, fourth and sixth-order struc-
passive fields, we show in Fig. 2 the probability distributionture functions are barely distinguishable, with the same scal-
functions(PDF’9) of x= ¢, /(¢ﬁ>1’2 where ¢, is T,, or C,, ing exponents in the inertial range. Finally, we demonstrate
andT,=T,—(T,), for n=14. One clearly sees the symme- that the identity of the statistics of the squares of the passive
try of the PDF'’s of the passive scalar, in contradistinction toand active scalars transcends structure functions. Consider,
the asymmetry of the PDF’s of the active scalar. This isfor example, the multipoint correlation functiod3272. ;)

typical to alln in the inertial range. This is a demonstration gnq (T2T2,.T2). In Fig. 5 these correlation functions are

of the discussion after Eq28). For the passive scalar the compared to their passive counterparts. The conclusion is

odd moments vanish, whereas for the active scalar they aj5; again the multipoint correlation functions are indistin-

exist. The situation is altogether different for the statistics Ofguishable once the passive ones are rescalggfhyhere 2y

even moments. To demonstrate the difference we plot in Figs the overall order of the correlation function.
3 the (typical) PDF’'s of T2 and C2 for n=9 and 14. In

plotting we realize that the passive scalar is defined up to a
constant, so for the passive scalar the PDF is plotted for the

FIG. 3. The PDF’s ofy wherey=T?2 (solid) or 3C?2 (dashel at
shellsn=9 and 14.

B. Analysis of the results

rescaled variablﬁcﬁ, where To understand the results we start with the passive field,
demonstrating that its forced structure functions are actually
B=(T2){(C2);~0.6327 1) statistically preserved structures. Consider then the decaying

n n " "

N hat there i | ical freed passive problem, i.e., EGR0) without the forcing term. The

f cl)lte t. a:; ere '?. oln yone r'lAumerldca treed_mcintshtfint initial value problem for the time-dependent structure func-
or all n In the inertial range. An understanding ot this nu- tions G?™(k,,t)=(C2™(t)) is the shell analog of Eq13),
merical constant based on dynamical considerations is given

in the following section. We find very close agreement of all G (k t):P(Zm,)(t)G(Zm)(k ,,t=0) (22)
the PDF’s in the inertial range. The identity of the PDF’s of n n.n m '

T, and C;, translates automatically to the identity of the which defines the @th-order propagataP 2™ (t). Here and

n,n’
below, repeated indices are being summed over. In Fig. 6 we

0
gl 25
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22
&
=1 A -12.5
o) _3 | &
=) e
Vo -175
—4 ¢ &
225
-5 . . . . .
-15 -10 -5 0 5 10 15 275

X

FIG. 2. The PDF’s of the activésolid) and passivgdashed ~
scalars at shelh=14. Note that the PDF of the active scalar is  FIG. 4. The even-order structure functiofE2™); (circles and
asymmetric. (BMC2™) (squares with m=1, 2, and 3, from top to bottom.
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B IR FEM (k) =(CAM)~ZM (ky). (24
g :
% To demonstrate this we use the method of R&fand define
s the quantitied ?™,
s
g
2 (2m) 2m) (2m)
2 1M =2 GEM(ky HFEM (k). (25
E n

5 Using Egs.(22) and (23) we see that if Eq(24) is obeyed,
log,, k. then the quantities®™ are time independent. Indeed, in Fig.

6 we demonstrate the stationarity of these objects, thus sup-
FIG. 5. Upper: logy(T2T2, 5); (circles and logo8°C2C2,5);  borting Eq. (24). The analytic explanation as to why the
(squares  Lower:  logg(T2T2,.12)  (circles and  forced solutions agree with the statistically preserved struc-
log,o B3C2C2, C2 ) (squares tures of the decaying problem was provided in Rél. Be-
fore turning to the active field, it is worthwhile to observe
show typical decay plots for the quantityk@™ how any in!tial condjtion of t'he decaying passive field' Iands
=>,G@M(k, t) for m=1,2,3, starting from the initial con- ©N the scaling solution that is represented by the statistically

ditions G@CM(k,, ,t=0)= 6, 16 preserved structure. Consider the initial value experiment
n» n,16- . . .

Statistically preserved structures in this case represent leffiat I reported in Fig. 7. Hgge we start, as an example, from
eigenfunctionsZ@™ (k) of eigenvalue 1 satisfying the initial valueC,(t=0)s=k;”. In this initial condition the

order of the amplitudes is inverted with respect to the spec-
trum of the passive scalar. We plot, as a function of time, the
trajectories ofC,(t) as computed just from this initial con-
dition, averaged over 650 realizations. We see that the trajec-
The statement that we want to demonstrate is that the force@ries land on a decaying scaling solution in which the order
structure function& ™ of the passive scalar scale like these of the amplitudes and the ratios between them are identical
eigenmodes of the decaying problem, to the spectrum of the zero mode of the passive field; the

Z@™ (k) =Z2@™ (k) PC(t). (23)

n,n’

e 10

L-

,,,,,,,,

K2 j2)
K& 14

K, [6)

FIG. 6. The decaying objects®*™ (solid lines and the conserved objedt€™ (dashed lingsas a function of time, fom=1,2, and 3.
Time is measured here in units of the largest scale eddy turnoverrjmpky\S,(ko) 1 *~22. In paneldb) and(c) we include in dotted
lines the quantity @™ in which we replacedr®™ by its dimensional predictiofF(?]™. We see that using the dimensional exponent does
not makel ™ time invariant.
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10° , , ' ' ' ' ‘ ‘ g andT, has a nonzero mean. Similarly, the passive scalar has
zero odd moments and its PDF is symmetric. On the other
hand, the active scalar has nonvanishing odd moments and
its PDF is asymmetric.
10° : In spite of this great difference between the active and
passive scalars, there is a close affinity between the active
field and the statistically preserved structures of the passive
field. To see this, we note that the first term on the right-hand
side (RHS) of Eq. (30) represents a decaying field. We ex-
pect that if the initial conditio ,(t=0) has any component
on the statistically preserved structure of the passive field, it
will quickly relax everything else and will land exactly on
0% 1 that solution. In this respect it is just the same as the initial
30 100 150 200 250 300 350 400 430 value experiment reported in Fig. 7. In terms of the relative
t amplitudes of the different shells there is nothing in the
L fate of the initial value term to distinguish the active and the
funEtIiE . Z)f ﬁmneeT:TEiltz g‘; thengttienictJi;F;wnlln||t_|taldvalue term ?S dapassive fields. The second term on the RHS of &4) is
. ’ 70- plitudes are Inverted  ore subtle. First, we note that for every valuerafle again
in order compared to the second order zero modes of the passiye ..~ decaying experiment that takes place between the
field. Shown are shells=5, 7,..., 19. . ! . )
times 7 andt. In the language of the passive field, the inte-
grand can be read from a decaying field with initial condition
due to dissipative effects, as explained in some detail in Re{.:”(t_ T)_fO(T) ono- Indeed, In our S|mulat!ons below this
Is precisely how we evaluate integrals of this type. We break

[7]. . : i N n
Finally, we need to understand how the forced active scat-he interval[0t] into N subintervalsizi}i—;, 7i=(i/N)t,

lar T,, falls on the statistically preserved structure of the de2nd start a decaying experiment with initial conditions

caying passive problem, and what is the origin of the factor]l;( T!)‘S”vo'. I\I/IdeasuringCn(t) and sun;]mi'ng up ;aIIEthe contri-'
B in Eq. (21). To this aim we note that both equations for huthns yie dar_1 appromm(;;\tlonlto ;[j eflntegra. ;/e:]y term in
passive and active fields can be written as the integrand Is expected to land, for most of the time

— 7, on the scaling solution of the passive field, in much of

2
F1i

decay that we see, at a rate proportional i3,1is entirely

i the same way that the initial value term does. Thus both
_n =L b+ Fodno (26) terms in Eq.(30) are expected to scale like the passive field,
Jt which nevertheless itself has zero amplitude due to the sym-
metry.

This equation has a formal solution in the form The correlation effects that play a role for the active scalar

. will be responsible for the factgs that we discovered in the
D=R. (t0) b (t=0)+ | drR. «(t|7)f , numerics. To see this we need to consider the second order
B0~ R (110) by (t=0)+ | drRyoltlmfg(r),  Numerics. To see

(27)
whereR, /(t|7) is the shell analog of the operatir), F(Z)(kn):<[Rn,n’(t|0)¢n’(t:0)]2>f+2< R (t]0) i (t
t t
Rn,n,(t|r)E|T+f exp[ﬁ(s)]ds} . (28 =0)f darvo(t|r)f0(r)>
i n,n’ 0 f
The first difference between the active and passive fields is + ftda-’dﬁ’(R ot 7R ot 7)ol 7)) Fo( 7))t
encountered when we take the average of this equation. For 0 " "

the passive case, the average can be taken by decorrelating

fp andR, /. Since the mean of the fordg vanishes, we get (31)

For sufficiently long time the first two terms, denoted below
asZ, andZ,, respectively, do not contribute to the structure

. , _ functions, and any difference between the active and passive
Such a decorrelation is, however, not allowed in the activgje|qs must be ascribed to the last term. The last term, de-

case since the forcinty is cor'related withT,, whichisitself  5iaq here ag,, has a “diagonal” contribution, which is
correlated withu and thus withR,, - . Hence obtained for 7’=7" and an “off-diagonal” contribution,
t which is the rest of the integral for which’# 7’. For the
TV =(R. (tl0)T...(t=0 +f dr(R. (t| 7 f passive field Ry andfo depouple an_d only the dlagonal
(T o= (Ro (1[0 To (t=0))s 0 Raglt ol 7)1 part exists. For the active field there is no decoupling. De-
(300 noting this termZz 4, it reads, respectively,

(Cn)1=0. (29
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—14 -3

x 10 x 10

5 10 15 20

t
FIG. 8. Comparison of the integrands in E32) (the passive FIG. 10. The off-diagonaztl integral fon=10, computed as
casé and (33) (the active cagefor n=10. The plots are indistin- ([bn(t) = R0 (t|0) by (t=0)]%) —Z34 for the passive and active
guishable. fields, respectively. For the passive fidldbtted ling it fluctuates

around zero, while for the active field it begins positive, and then
turns negative. For longer times it saturates at a constant negative

IS,d:f dS<Rn,O(t|S)Rn,O(t|S)>ffS (passive, (32 value, giving rise to the factg8.

t case there is a difference. Finally, we show that this differ-
I3,d:f ds(Rn o(t[S)Rn o(t[S)fo(S)fo(S))¢  (active). ence is precisely the source of the facfr In Fig. 10 we

0 3y Show([en(t) - Ry (£]0) by (t=0)1%) ~ T34 for the passive

and the active fields. The former fluctuates all the time

In Fig. 8 we compare the integrands of these two expresaround zero. The latter is positive initially, and then becomes
sions, measured directly in our simulation as explainediegative. For later times it saturates at a negative value that
above. We can see that there is not much difference betwed# precisely responsible for the factgt
them; the diagonal term cannot be blamed for the fagtor In summary, we find that the even correlation functions of
On the other hand, in Fig. 9 we show the full integfgland  the active and passive scalars share the same scaling expo-
compare it with its diagonal term. We see that in the passiveaents simply because the zero modes of the decaying passive
case the diagonal part is everything, whereas in the activproblem dominate the statistics of both fields. It is thus pos-
sible to understand the anomalous statistics of the active field
in the same way as that of the passive field. We believe that
this is a significant result that should be put to further experi-
mental and numerical tests in the PDE version of the prob-
lem. We will return to this point in the discussion.

_g

x 10

Ill. ACTIVE AND PASSIVE FIELDS IN A MODEL
OF MAGNETOHYDRODYNAMICS

A. Model and numerical results

In this section we examine a shell model that reproduces
the type of coupling and the conservation laws of E&$.
We need to be careful about the dynamo effect which we
‘ ‘ . ‘ want to avoid in order to have stationary statistics. We thus
5 10 15 20 construct the model to mimic two-dimensional MHD, in
which there is an inverse cascade of energy. Accordingly we

FIG. 9. The integrall in comparison to the diagonal pa;, ~ "eed to have large scale damping terms in the velocity equa-
for n=10. Upper panel: the passive field. The integral agrees witfion, and a force at intermediate scales. In all our simulations
the diagonal part at all times. Lower panel: the active field. Thebelow we force both the velocity and the active fields on
deviations are due to the nonvanishing contribution of the off-Shells 10 and 11denoted byn;), using white noise of zero
diagonal integral, which is also displayed in the next figure. Themean. We run the model with 35 shells. The equations are an
dashed line in both panels represents the stationary value of tr@daptation of the MHD shell model of R¢fl1] to the Sabra
corresponding second-order structure function. shell model[12]. All field variables are complex numbers,
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40

du, |
d_tn =ikp[aN(uf, 1Un2—= bRy 1bns2) +D(UR - 1Un1y

- b:—lbn+ 1) - C)\il(un—zun—l_ bn—2bn—1)]

+ 11000, + vKGUL+ VK, Uy, (34)

db, . -~ -
d_tn =ikp[an(uf,1bnso— by jUn2) +B(UR_ by g

—b}_Uni1) =N HUp_ by 1= by sUn_1)]

+f08nn,+ kb + kb, (35)
The coefficientsa, b, ¢, a, b, andc can be parametrized as s 10 15 20 2 30 35
follows: n
a=1 b=—5, c=—(1-6) FIG. 11. Structure functions of order X(), 3 (+), and 4 (¢)
o Ny b ' for the passive fielddotted ling, active field (dashed ling and
a=1-6—-6,, b=6,, c=1-56,. (36) velocity field (solid line). The two vertical lines denote the forcing

shells. Note that the scaling exponents of the active field and the
This choice ensures the conservation of the total energyelocity field coincide. The parameters aM=35, a=2, kg

and “cross helicity” in the inviscid limity=v=«k=«=f =0.0625,r=10"*2, »=10"2. The forcing is white noise on shells
=f'=0, 10,11.
1 The passive field is denoted ly,, whose evolution is
— 2 2
E= 2 zn: (lun|*+ bl ), (37) given by an equation similar to EQ35), i.e.,
dqn ; = * * Tl *
K=> Re(u¥b,). (39) W:|kn[a)\(un+1qn+2_qn+1un+2)+b(un—lqn+1
n
e _TAy 1 _
To mimic the magnetic helicity, we can write down a gener- Gn—1Un+1) = CA~(Un-—20n-17 Gn-2Un-1)]
alized quantity + kk2q,+ fndhn,- (45)
2
H= l 2 sgr(6— 1)n|b”| (39) The fieldsg, andb, are advected by the same velocity field,
27 ke ' howeverb,, is active, whileq,, is passive. The inviscid pas-

n . . . .
sive equation has only one conserved variable, i.e.(89).

with a>0 a fixed parameter. We demand conservation ofwith q,, replacingb,,. It also satisfies the same phase rela-
this generalized “magnetic helicity,” together with the ab- tions as the active field. We want to know whether the scal-

sence of dynamo effect. This implies ing properties ob,, are determined once again by the statis-
tically preserved structures of the decaying problem of the

6=1+N"¢ passive fieldy,,.
o=1— S=—1(\"—1). (40 In Fig. 11 we show the spectra of the passive and active

fields, respectively, obtained from a direct numerical simula-

On the other hand, whef<1 one can have dynamo, and tion with the parameters as detailed in the figure legend. This
therefore no stationary statistics. appears like a striking counterexample to the results of the
In addition to the conservation laws the equations of mopreceding section: the two fields have totally different scal-
tion remain invariant to the phase transformations ing behaviors. The active field has “standard” scaling expo-

—upexplie,) andb,—b,exp,). The conditions are nents n,, defined by(|b,|P)~k_ ", that coincide with

those of the velocity field, defined fju,|?)~k ‘» and the

+ —_ =
$nt Pni1~ Pni2=0, “D spectrum decays like a power law in the “inertial range”
_ hich is between the forcing and the dissipative scales. We
i1 Pns o= 42 VW
$nt i1 ¥ni2=0, (42 stimate from the numerics,= {,~0.67, 73={3~1.0, and
n _ _ 4 na={4,~1.33, in close correspondence with the Kolmog-
Yot $ne1” ¥ne2=0, “3 orov dimensional predictions. The passive field has expo-
Yot Pns1— by 2=0. (44y  nents, defined similarly by|dn|P)~k_ 7, that are with a
different sign. Its spectrum is an increasing functiorkgin
This impliesy,= ¢,,, Vn. the inertial range. We measug@,~ —1.33, B3~—2 and
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FIG. 12. Panela): The fate of the modulus of the initial value term, averaged over 2000 realizations. Shown are shells 15, 17, 19, 21,
23, and 25top to bottom from the left-most sigleAt time t=0 their relative amplitudes agree with the scaling exponent oattigefield.
As time progresses the decaying field switches to the relative amplitudes which agree with the scaling expongratssiiifeeld. Panel
(b): The modulus of four realizations of the integral as a function,dbr timet=23X10"* (in unit of 7). Note that both terms of the RHS
of Eq. (46) exhibit the saméeadingscaling behavior. This is canceled exactly as is demonstrated in Fig. 13

Ba~—2.67. If we assume that the passive field lands on the),,. What about the second term? In pafi®l of Fig. 12 we
statistically preserved structures of the passive decayinghow then dependence of the term at timhe 3x 10”4, We
problem, then it appears that the active field does not do s@ee that also this term agrees, inritslependence, with the

In the rest of this section we will show that this is actually negative exponent of the passive field. Yet, the left-hand side
not a counterexample to the proposition that the active fieldPn(t) fluctuates aroundecreasingamplitudes as increases,
lands on statistically preserved structures of the decayingi€aning that the leadingegative exponent exactly cancels
passive field. It does. What happens here is that, due to tHeetween the two terms on the RHS of E46). We demon-
conservation law Eq(38), the amplitude of the leading sta- Strate this cancellation in Fig. 13. There we plot the real parts
tistically preserved structure with the negative scaling expo©f the initial value term and the integral term at tire
nent is exactly zero. The active field then lands on a sublead=0-3. We see that the two terms cancel each other. The
ing zero mode, which has standard, positive scaling exponefiiaginary parts exhibit the same behavior.

[the positive sign refers to-space representation, as in Eq.  Next we need to understand this cancellation from the
5)]. analysis of the equations of motion. With this analysis we

will also show that the solution on whidhy(t) is landing is
also a statistically preserved structure of the decaying passive

S o ) o field, albeit with a subleading scaling exponent.
To gain insight into this interesting situation we note that

the analog of Eq(28) describes the dynamics of our active C. Statistically preserved structures of the passive field
field b,

B. Analysis of the results

In the following subsection we will show that the velocity
¢ field attains a scaling solution witty=1,
bn(t) = Rn,n’(t|0)bn’(t: 0)+ deTRn,nf(tl T)fnf(T)v

15007,

) = = initial condition
o =

= 1000f F
with an obvious redefinition of the present operda®qr, . It % S
is very revealing to examine the time dependence of the two S 00}
terms on the RHS of this equation. We measure time in units f
of the eddy turnover time of the forcing shell 10. This is =
defined asrjg=[ki0\{|u;q?)] *~3.35. We will examine a =
forced system which began running tat —, denoting a < sool
generic time ag=0. In Fig. 12 panel a we show the time =t
dependence of the first term for six valuesndgh the inertial ‘%\_mo’
interval. We see that the initial conditions represent, as ex- =
pected, a standard spectrum in which the amplitbgele- c<:50 . . ‘ . ‘ ‘
creases as a function of As time proceeds, the decaying % 22 24 26 28 30 32

term cannot recognize its being active from being passive,

and it switches rapidly to the statistically preserved structure giG. 13. The real part of the initial value terfdashed lingand
of the decaying passive field, characterized by a negativ@itegral term(solid line) as a function ok, . This is a demonstra-
exponent. If it were not for the second term on the RHS oftion of the cancellation of the leading order term in favor of the

Eq. (46), thenb, would have landed on the same solution assubleading one. The imaginary parts behave in the same way.
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Sa(kn) =IM(Up_ g% 1) ~ky L, (47)  EN- @B DI 1 \(Ba- I3y | () (BB \ (Ba= 13

where Im denotes the imaginary part. In this section we will + NPT\~ (BemDR_1) =, (56)
assume this, and examine what are the scaling solutions that

agree with the existence of a second order statistically preFhis is a fourth-order polynomial in#
served structure for the passive field. We are not going t@re

compute the anomalous scaling exponent exactly, but rather

obtain their dimensional estimates. Since we are after a radi- 1
cally different apparent behavior, small numerical correc- ANBa—DR_{ \ "« (57)
tions are not our main concern. With this caveat in mind, we
can calculate the exponegt characterizing the third-order
structure function,

3~ 13 The four roots

N2

Here three of the roots correspondaariori physical solu-

_ tions,
P3(kn) =IM(0n- 105+ 1)~ K, 2. (48)
1
The condition for the existence of the second order statisti-
cally preserved structure is Bs=1| 1—3al2 (58
1-3a.
_ 2y . . .
dt<|q”| )=0. Vvn, (49 In our simulations withw=2 these results aig;=1, -2, and

-5, respectively. This is in agreement with spectral exponents
in the inviscid limit. Using Eq(45) this condition generates B, of the order of(neglecting anomaligsB,=2/3,—4/3,
a number of third-order quantities that need to be analyzed 10/3. To know which of these is physical, we need to

first. Denote therefore consider the fluxes supported by these solutions.
The only flux that is relevant for the passive field is the
Q3 1(kn)=IM(Uy— 19,05+ 1), magnetic helicity. For the case considered here Withl it

can be conveniently computed at the sidlby evaluating
Q3,2(kn)E|m<qn—lunq:+1>'

wo 1d & ladl?
Qadkn) =IM(Gn 10,05, ). (50 M= d S | e ) %9

In order to construct scaling solutions for these objects, diysing the equations of motion to evaluate this object we find
mensional consideration imply that the fields involved in the

H -n/3 —B3n/3 —a
averages above have scalings-A "= andgpA 7, We Dy =~ S Ky L(IM{ A Up 1 103+ 2) = IM( AT+ 1URy 4 2))
infer the expressions
(28t 1)a + Ky (MO — U+ 1) T 1M(Up - 1A+ 1)) ]
Qs.1(kn) = |do|*[uolK,, Far D\ ~(Bs= D13

(60)
Qs Akp)= |q0|2|u0|k;(2’33+1)/3, We can evaluate now the magnetic helicity flux for the three
scaling solutiong58). We find
Qs a(kn) = |QO|2|U0|k;(2ﬁ3+1)”/3)\(33*1)’3. (51 - aM
We can thus rewrite Doy 1 (62)
)\aM

Qaa(kn)=\"#s"DRQ4(ky), (52)
We conclude that the third solution is unphysical, since it
Qs Ak,)=04(k,), (53 supports a flux that diverges witl. The first two solutions
’ are allowed. WithB;= —2 we get a constant flux; this is the
leading scaling solution, and is indeed realized in the simu-

=)\ (B3~ 1)/
Qa (k) =AF3DRQ;(k,), 59 Jations. The solution3;=1 is subleading, it is associated
~ . with a decaying flux, and is asymptotically allowed. It is not
whereQs(k,) scales like observed in the passive field simulations simply because it is
O.(k.)=)\—(2Bz+1)ni3 55 subleadlng. . . . . e
Qa(kny)=A . (55) Our main point will be that the active field will in its turn

_ o o ) ~ land on the subleading statistically preserved structure be-
Having these definitions in mind we derive, by demandingcause the additional conservation laws exclude the leading
Eq. (49 and substituting the scaling form &f; Eq. (55), the  one. We demonstrate this phenomenon in the following sub-
equation section.
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D. Why does the active field fall on a subleading zero mode?  \We thus conclude that as far as the active field is considered,

If we accept the general philosophy that active fields exthe additional conservation law rules out the leading zero
ode of the passive problem, leaving us only with the sub-

hibit scaling behaviors that are determined by the zero mode&°% S ’ > )
of the auxiliary passive fields, then we should explain herd€2ding mode which is observed in the simulations.
why in the present case the active field avoids ldeding

zero mo_de, .and appears to !and on the sublgading one. The IV. SUMMARY AND CONCLUSIONS
answer is hidden of course in the conservation laws, as we
expose Now. In this paper we considered the correspondence between
We first repeat the analysis performed in the precedinghe statistics of active fields that are advected by a turbulent
subsection to find the consequence of the equation velocity field, and the statistics of an auxiliary passive field
that is advected by the same velocity, but does not affect it.
i<|b |2>:0 62) The two examples were akin to turbulent convection and to
de' " ' magnetohydrodynamics, respectively. In the first example the
conserved variables for the equations of the passive and ac-
or, equivalently, tive fields are the same. For the second example the active
problem exhibits additional conservation laws. This was
%<|Un|2):0- (63 shown to be very significant in determining the respective

statistical physics of the two problems.
The two examples appear very different in superficial ex-

Using now the definitions amination. In the first example the even-order statistics of the

Ba(ky) =Im(by_1byb*, )~k 7 passive and active fields turned out to be the same up to a
s\%n n-1¥nFn+l/ B o single multiplicative factord, common to all orders. The
_L-(2nat a3 forced structure functions of the active field scale with ex-
Qa(kn)=k, ’ (64) actly the same exponents as the passive field, which in turn

are dominated by the leading zero modes of the decaying
problem. We analyzed in detail the source of the multiplica-
tive factor 8 and showed that it stems from the additional
correlation effects between the forcing and the velocity field
+E)\*1+(2’73+43)’3()\*(’73*53)’3— 1)=0. (65) that are absent in the passive case. Neyertheless,'these cor-
relation effects do not cause a change in the scaling expo-
This is a fourth-degree polynomial for”s” if 5 is known.  nents. The general lesson that we would propose on the basis
Obviously, if we simply substituted hetg=1 we would get  Of this example is that whenever there exists a problem in
the same predictions fop, as obtained foB; in Eq. (58). which the equation of motion of the active field does not
However, we have in this case an important additional consatisfy additional conservation laws compared to the passive
straint that is absent in the case of the passi\/e field, whickase, the former field will exhibit structure functions that are

can be inferred from the additional conservation equation dominated by the leading zero modes of the latter. This point
is also pertinent to the second example. Here the active equa-

tions possess additional conservation laws, and indeed the
active and passive fields exhibit different scaling exponents.
Nevertheless, we argued that the structure functions of the
Repeating the analysis as above, and introducing a new olactive field are still dominated by the zero modes of the
jectAs(kn)Ek;(%”Q) yields the two equations passive problem, but not the leading ones. The additional
conservation laws result in exact cancellations in the contri-
anB;(K,. 1)+ bBs(k,)+ch " 1Bs(k,_1)=0, (67) butions of the leading zero modes, and the active problem
lands on the next allowed subleading zero mode of the pas-
ant = (17 EBAL (K q) +bAg(Kp) sive problem.
_ _ As a generalization, consider then a sufficiently turbulent
Fon TP A (ky 1) =0, (68) velocity ?ield which advects an active field, scalaryor vector,
Solving this system together with E(65) yields the scaling Which in its tum is forced by a force having a compact sup-
exponents port in k space. An_au>_<|I|ary passive field which is advected
by the same velocity field can be employed to find the zero
1 modes of the operator involved in the passive decay prob-
{3,m3= 1+log, (a/c) (69 lem. On the basis of the intuition gained with the examples
N ' presented above, we offer the following tentative conjecture:

It is easy to check that’ among the four possib'e Combinathe forced structure function of the active field will exhibit

tions of this equation, the only solution allowed by Eg5)  Scaling exponents that are the scaling exponents of the afore-
is mentioned zero modes. Whenever the conservation laws of

the active and passive problems coincide, these will be the
{3=m3=1. (70 exponents of the leading zero modes. When the active prob-

we obtain an equation that is analogous to &),

ani-(@nst {3)/3(1_ )\(713—(3)/3) +B()\ —(n3—¢3)3__ )\(713—(3)/3)

d
GREUADY)=0. (66)
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lem has additional conservation laws, these will be the nextfields boils down to the analysis of eigenfunctions of a linear
leading zero modes, as allowed by the conservation laws. operator is expected to hold verbatim.

Finally, we need to consider the relation of our shell mod-
els to the physical problems and the PDE'’s that motivate
these models. It is important to test the conjecture stated here ACKNOWLEDGMENTS
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