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Coarsening dynamics of dewetting films
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Lubrication theory for unstable thin liquid films on solid substrates is used to model the coarsening dynamics
in the long-time behavior of dewetting films. The dominant physical effects that drive the fluid dynamics in
dewetting films are surface tension and intermolecular interactions with the solid substrate. Instabilities in these
films lead to rupture and other morphological changes that promote nonuniformity in the films. Following the
initial instabilities, the films break up into near-equilibrium droplets connected by an ultrathin film. For longer
times, the fluid will undergo a coarsening process in which droplets both move and exchange mass on slow
time scales. The dynamics of this coarsening process will be obtained through the asymptotic reduction of the
long-wave PDE governing the thin film to a set of ODEs for the evolution of the droplets. From this, a scaling
law that governs the coarsening rate is derived.
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[. INTRODUCTION this physical system, in which isolated droplets formed in the
initial stages of dewetting slowly move and exchange mass

The study of instabilities of thin fluid films on solid sub- to “coarsen” and yield fewer, larger droplets.
strates is of great importance in understanding coating flows In the limit of low Reynolds number, the Navier-Stokes
used in many industrial processes. These instabilities lead @duations for the flow of a very thin, slowly varying film of
rupture, the formation of dry spots, and further morpho|ogi_ViSCOUS ||qU|d can be reduced to an evolution equation for
cal changes that promote nonuniformity in the film; this dy-the film thickness,h=h(x,y,t), using lubrication theory
namical behavior in unstable thin films is generally called[26,27. This is a long-wave theory that holds for smooth,
“dewetting.” Experimental studies have shown this behaviorslowly varying fluid layers on solid surfaces, in the limits of
in polymer films[1-6], liquid crystal films[7-9], liquid small thickness and small gradientshofln nondimensional
metals[7,10], and evaporating film$11,12. During these form, the model is a nonlinear fourth-order parabolic diffu-
dewetting processes, droplets are formed which are corfion equatiori27]
nected by ultrathin films. In analogy to spinodal decomposi- oh
tion described by the Cahn-Hilliard equatipha], this evo- —=V.(hVp), (1.2
lution is sometimes called spinodal dewettiig®,14,15. ot

Recent experimental and theoretical work on dewettin
films has focused on the details of instability and patter
formation in the early stages of the dewetting process. Thi&Y
process, which starts with near-rupture of the quid_Iayer, p=TI(h)—V2h. (1.2
eventually produces an array of holes or “dry spots” in the
film which become wider over timl6]. In theoretical work,  The Laplacian term in Eq1.2) gives the linearized contri-
it has been suggested that the propagation of the initial inbution of surface tension to the total pressure due to a slowly
stability of a flat film may be controlled by either linear or varying curved fluid interface. The combined effects of all
nonlinear mechanismigl7—-22. Eventually the rims of the intermolecular forces, such as van der Waals interactions and
growing holes merge, giving rise to polygonal-shaped netBorn repulsion, for a homogeneous film of thicknéssn a
works of fluid ridges[2,23]. These ridges are themselves solid substrate is given by the disjoining pressure, the deriva-
unstable, and eventually break into isolated droplets, whosgve of the potentiald (h),
structure has been studigts,24).

The dominant physical effects that drive the fluid dynam-
ics in this problem are surface tension and intermolecular
interactions with the solid substrafg5]; the dynamics of
this problem for long times will be analyzed using a simpli- The form of the intermolecular potential for interactions be-
fied mathematical model. In this paper, we explore the longtween the liquid film and the solid substrate can be derived
time asymptotics of a one-dimensional lubrication model forusing density functional theof28,29. Many studies in fluid

dynamics have used lubrication models incorporating dis-

joining pressures to describe the dynamics of wetting and
*Electronic address: kglasner@math.arizona.edu contact line motior{30] and other problemgl2,27,31-3%
"Electronic address: witelski@math.duke.edu More recently, similar models have been rederived using a

g{/vhere the hydrodynamic pressyseén the thin film is given

du
I(h)= 5. (1.3
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U(h)=u(hle), (1.9

Prmax [-oooo|oee T

(k) = dU/dh where the functioi/ is independent oé. This scaling is also
! N chosen to ensure that tlggadientsof equilibrium and near-
" - equilibrium solutions remain bounded, as is shown in the

0 ;“ following section. This providea posteriorijustification for

W using the lubrication approximation. In contrast, in the study
i [24], the energy of the ultrathin film scaled like some nega-
L tive power of €, leading to equilibrium droplet solutions
0 € which approached functions ase—0.

h Property (1.4) implies that the functiori/(H) with H
=h/e has a uniqgue minimum ati=1, and property(1.6)
states that the disjoining pressure satisfidd(h)
=¢e ' (h/e)=0(elh) ash—o. A potential which satisfies

variational, diffuse-interface approafi7,38. We will make  all of the above assumptions is given by
use of a scaled form of an intermolecular potential that can L o
be derived from the fundamental physics of intermolecular S B
s phy . UH)=
forces[28,29. However, we will show that our analysis ap-
plies to broader classes of potentials, with applications to
coarsening problems in other physical systems. with 1<n<m, which yields the effective conjoining and
Our analysis will describe the dynamics of coarsening fordisjoining pressure
€ n € m—n
h) ' (h) |

a class of problems described by any potential function that
satisfies a few general assumptions. We only need to assume M(h)=e1
(1.9 For this model, the maximum pressumg,.,=0(e %) is
achieved athpea=(m/n) M "¢, and the absolute mini-

the following in the structure of the potentidl(h):
I1(h) has a unique maximum sy, at hpeae €, mum pressure fon= e is I1(€)=0. This particular potential
(1.5  was considered in Ref24], and with the exponenta(m)
1 =(3,9) it corresponds to the standard 6—12 Lennard-Jones
II(h)=o(h™") and U(h)—0 ash—=, (1.6  potential[14,15,25,27. For numerical simulations in this pa-
per, we will use the moddll.10 with (n,m)=(3,4), as has

FIG. 1. Sketch of the intermolecular potentidih) and the
disjoining pressurél(h)=dU/dh.

(1.9

m—-1  n—-1 '

(1.10

U(h) has a unique minimum dt= e,

rl1imOU(h)=00. (1.7 appeared in other studies of dewetting filii®,24,27,31
- We will restrict attention to the one-dimensional problem
Figure 1 shows a typical plot of the potentld(h) and the oh o 3 2
corresponding disjoining pressufg(h). Property(1.4) de- —=—|h®—|II(h)——> ) (1.1
at X dx Ix

fines the film thicknes$i= e corresponding to the globally
stable homogeneous film. The value efestablishes the . . . L .
scale of the ultrathin film(UTF) which will connect meta- In wc_>rk|r_19 with this problem, it is convenient to study the
stable liquid droplets formed after the destabilization of theSOIUtlon in terms of the pressure
initial fluid layer. Property(1.5 states that there is a film _ 1y _
thickness for which conjoining and disjoining pressures bal- P=II(h) =he= et (W €)=y, (112
ance; this is necessary for there to exist stable localized dropyng the flux
let solutions[24]. Property(1.6) requires that the disjoining
pressure is negligible for thick film&> e. Finally, Eq.(1.7) J=—h%p,. (1.13
states that the short-range repulsive intermolecular forces are
assumed to be dominant at very short scales. Early studies of Numerical simulations of thin films with intermolecular
van der Waals driven instabilities of thin films by Williams forces show complex pattern formation during which films
and Davig 33,34 and de Genn€gl’80] did not include repul- evolve to a metastable state composed of a collection of
sive interactions, and in this case classical solutions of Ecdroplets connected by the UTF layer of thickness approxi-
(1.D can cease to exist in finite time due to singularitiesmately e, see Fig. 4. A comparison with physical experi-
which occur if the film rupturesh—0 [39,4(. In contrast, ments shows striking similarities to the characteristic fea-
with the short-range repulsive forces corresponding to Eqtures of dewetting including the formation of capillarity
(1.7) the problem is globally well posef®4] and solutions ridges at the edges of growing hol@s. [41]) as well as the
exist for all times. development of polygonal ridge structures.

One focus of this paper is to consider the limit of small There is considerable similarity between Eg.11) and
while simultaneously keeping the interaction energies finitethe Cahn-Hilliard equatiori13] whose late-time behavior

To this end, we will suppose that the potential can be writterrepresents the coarsening of regions of phase separation in
in the form binary alloys. The important differences are as follows.
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COARSENING DYNAMICS OF DEWETTING FILMS

(i) The potentialU(h) has only a single minimum,

whereas Cahn-Hilliard dynamics usually considers a poten-

tial with two minima.

(i) The mobility coefficient in Eq(1.11), h® is nearly
degenerate fon— e, which leads to different relaxation time
scales for the dropletevhereh=0(1)] and for the UTF
regions [where h=0(€)]. The original statement of the
Cahn-Hilliard equation13] included nonconstant mobilities,
and has been the subject of recent stu#es.

The limiting behavior of Cahn-Hilliard-type equations are

frequently expressed as free boundary problems, as was for-

mally derived by Pegf43]. In the context of a distinguished
asymptotic limit, our equation will also yield a similar type
of finite-dimensional ODE approximation.

A further asymptotic regime of Cahn-Hilliard dynamics is
described by the theories of Lifshitz and SlyoZeM] and
Wagner{45], who characterize the statistical evolution of the
phase separated regiofthis is known popularly as “LSW
theory”). Mitlin [46,47] has proposed and studied a LSW-
type model of coarsening behavior in fluid dewetting. We
also study the statistics of dewetting using our finite-
dimensional approximation.

In the following section, we begin with an analysis of the
form of the structure of the equilibrium droplet solutions. In

Sec. lll, energetic arguments are used to describe the ex-
pected long-time dynamics. In Sec. IV, evolution equations

PHYSICAL REVIEW E57, 016302 (2003
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FIG. 2. A stable steady-state droplet solutiofx;p) showing
the three regions in the asymptotic structure of the solutionefor
—0: (i) the droplet core(ii) the contact line, andiii) the outer
ultrathin film. The dashed curve shows the leading order asymptotic

solution for the droplet core, the parabd®a7), with width 2w.

this value determines the thickness of the ultrathin film far

away from the droplet. Oncbmin@ is determined, we can
write the first integral of Eq(2.1) as

1/dh|> _
5| ax =R(h),

(2.3

where

are derived for a single near-equilibrium droplet in response

to externally imposed fluxes. These evolution equations are
then extended to describe the dynamics of arrays of interact-

ing droplets in Sec. V. And finally, in Sec. VI a scaling law is
derived to describe coarsening in very large sets of droplet

Il. STEADY-STATE SOLUTIONS

Stable steady solutions of E(L.11) which represent iso-
lated fluid droplets were analyzed previou$B4], and we

R(h)=U(h)=U(hyin) = p(h—hpin). (2.4

At the maximum of the dropleh,=0 atx=0, and hence

%max is determined by the condition

R(hma) =0. (2.5

The values ofhy,n, hmax May be obtained graphically by
constructing the tangent-secant line with sigpéor the po-

briefly review them here. Nontrivial steady-state solutions oftentialU(h), see Fig. 3. The homoclinic solution can then be

Eq. (1.11) have uniform, constant pressupe=p=0, and

consequentl}hzﬁ(x;a) satisfies the second-order ordinary
differential equation

2

a
=

> =T1(h)—p. (2.

o

X

Given the structure ofI(h) for any value ofﬁin the range
0<p<pmax. @ phase plane analysis shows that an isolate

droplet on an unbounded domain is given by the homoclinic

solution of Eq.(2.1), see Fig. 2. The maximum pressure
pmaxzﬂ(hpeal)=0(e*1) is large, and there is a continuous
family of droplet solutions parametrized by the pressprre
For any fixed, finite pressure in this rangE,: O(1), the

minimum thickness of film in the droplet solution is the
O(e) fixed point of Eqg.(2.1), the root of the equation

I (hmin) =P, (2.2

obtained from Eq(2.3) via quadrature.

To get more insight into the droplet solutions, we consider
their asymptotic properties for the lim¢—0. In the limit
€—0, the structure of the solution breaks down into three
regimes[24] (see Fig. 2 (i) the droplet corecontaining the
bulk of the fluid mass(ii) the contact linevhere asymptotic
matching between the core and the outer film takes place,
and (iii) the outer regionthe uniform ultrathin film that ex-
tends indefinitely away from the base of the droplet.

In region (iii), away from the droplet core, the ultrathin
film differs from the minimum thickness by exponentially
%mall terms,h(x) ~hyin(p). To leading orderh,,,~¢ and
solving Eq.(2.2) to next order ass—0 vyields the depen-
dence on the pressure,

hmin(P) ~ €+ € :
min(P) ~ € 62/[”(1)

(2.6
Moreover, from Eq(2.5 we also obtain that the droplet core
satisfiesh,.(p)~—U(1)/p. In the core region, the film
thickness satisfiee<h<h,,,,, consequently the disjoining
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FIG. 3. Construction oh,;, andh,,, from the potential (h)
for a droplet solution with a given value of the presspre

pressure is negligiblel,'[(F)=o(1). Therefore, in the core,
the leading order solution of E@2.1) is a parabolic profile
(see Fig. 2,

h(x)~ —p< w2—x?), for |x|<|w], (2.7)

where the parametew gives an effective measure of the
width of the droplet. From Eq2.7), the maximum is given

by hypax™ 2pvv2 From this and the earlier esUmateh;;ﬁax(p)
we obtain the core width as

— A
W(p):?’ A~2|U(1)|. (2.9

Further interpretation of the constahis provided by exam-
ining the contact line, regiofii). In this region, where the
droplet core must asymptot|cally match to the ultrathin film,

we rescale the film thickness d{f{x)—eH(z), in a small

neighborhood of the edge of the cores —w+ ez. Using
these scalings, to leading orderas 0, Eq.(2.1) reduces to

—=U'(H), (2.9

and the local structure of the droplet contact line is given b)F

the transition layer solution that satlsfid$2—> ©)—1 and

matches to the core regioﬁ,(z—wo) =0(e 1)—=. Analo-
gous to Eq(2.3), the first integral of the leading order equa-
tion (2.9) is

1(dH\?  _
5(53 =UH)—U(1). (2.10

Asymptotic matching of the slope of the solution oo
then yields a measure of the macroscopic contact angle,

dh
dx| _

dH
=limo= V2|U(=)—U1)|=A.  (2.10)

PHYSICAL REVIEW E67, 016302 (2003

FIG. 4. A numerical simulation of the early stages of dewetting
in thin films: instability of an initially uniform fluid layewith h
~1) leading to near-rupture of the film, the growth of holes in the
layer (whereh~€), and the coalescence of the fluid into isolated
droplets.

The parameteA is a universal constant given in terms of the

molecular potentiau(ﬁ), and determines the contact angle
to leading order, independent of the ultrathin film scaknd

the pressurg. Moreover, the value ofA gives an upper
bound, independent af, on the maximum slope of equilib-
rium solutions. This value also gives a leading order bound
applicable to near-equilibrium solutions that we will consider
later. The existence of such a uniform bound for the gradi-
ents of the solutiom is necessary to maintain the applicabil-
ity of the original lubrication approximation. Another impor-
tant point is that Eq(2.11) relates the interfacial energies to
the contact angle, and is equivalent to the Young condition
for shallow angles. This fact has been exploited by other
authors for the purpose of numerical computations
[35,36,48.

Finally, we define the droplet mass by that of the core
region,

o w— — 2A3
m(D)EJWh(X:D)dst—F- (2.12

As a consequence, the size and mass of droplets may be

measured in terms of the pressyre The error in this ap-
proximation of the mass is of the order of the thickness of
the ultrathin film and vanishes &s-0. We will make use of
g.(2.12 later to relate conservation of mass to an evolution
equation for the droplet pressure.

Ill. DYNAMICS OF THE ONE-DIMENSIONAL PROBLEM

Both analysis and numerical simulation identify a se-
guence of dynamical regimes for equatidnll). Initially, a
flat layer of fluid is subject to a long-wave instabiligee
Fig. 4). In the absence of conjoining effects in the pressure
II(h), this instability would yield finite-time rupture of the
fluid layer [39,40. For potentials of the form ofJ(h), the
fluid dewets, it forms growing holes or dry sp¢i6] where
the layer narrows down to an ultrathin film of heigit-e.
The fluid then rapidly converges to a series of parabolic-
shaped droplets separated by the ultrathin film. Each droplet
is very nearly an equilibrium solution like those already dis-
cussed. But there is a slow variation in the outer mean field
(the ultrathin film between neighboring droplets that leads

016302-4



COARSENING DYNAMICS OF DEWETTING FILMS PHYSICAL REVIEW B57, 016302 (2003

4 Similarly, the second term in Eq3.3) is minus one half
/’ times the rate of energy dissipation.
3 To demonstrate that the coarsening process is energeti-
\ cally favorable, we show that the merger of two equal-sized

droplets to form a single larger droplet and an UTF layer
h 2 yields a decrease in energy. Within each droplet core, the
film satisfiesh> e, therefore the potential energy is negli-
gible, and hence, using E(R.8)

w

0 E(two dropl 2f 1h2d 2 3
o 00 (two dropletg~ 7W§X x~3—6, (3.5

T

FIG. 5. Later stages in dewetting dynami@ontinuing from  where the half-width of each droplet 8= A/E Eqg. (2.8).
Fig. 4): once formed, the near-equilibrium fluid droplets evolve on ¢ comparison, in a single droplet with masg'zme cor-
a slower time scale, with dynamics including both mass exchange . ~ — . L~
and spatial drift fesponding pressure ip~p/y2 and the half-width isw
~J2A/p. The merger of the two droplets creates an ultra-

to a coarsening process which governs the long-time evoluhin layer with the length W— 2w~ (4—2+/2)A/p. Hence

tion of the droplets. the energy of the merged droplet is approximately
Two features of the coarsening process are appdseset

Fig. 5. The first is that larger droplets gain mass at the V2A3 4-2\2

expense of smaller droplets, in a fashion similar to Ostwald E(single droplet and UTF~——+ AU(e).

ripening. In our case, however, droplets also appear to move 3p p

on time scales comparable to those of mass exchange. The 3.6

causes for both of these phenomena will be explained next

by a variational argument. A more systematic derivation ofNot only is the surface energy of the droplet reduced relative
the dynamics follows. to Eq. (3.5), but also the ultrathin film further reduces the

energy since the potentid) (€) is negative. Consequently,
the total energy decreases as small droplets exchange mass
through the UTF layer to form fewer, larger drops. This pro-
The slow process which ensues after the formation ofjides a driving force for the mass redistribution.
metastable droplets may be understood by utilizing the math- Since the energy is translation invariant, it may seem that
ematical structure of the evolution equation. Equatibll)  there is no energetic advantage for droplets to move. Indeed,
has the energy there is no energy lost in the translating process alone, and
the first integral in Eq(3.3) is essentially zero for a moving
E(h):f U(h)+ Ehfdx, (3.1) droplet. On the other hand, there may be nonzero _fluxes im-
2 posed on the droplet by the ultrathin film on either side of the
droplet. The flux minimizing the second term in E®.3
which physically represents the sum of surface energy angi| therefore not be zero throughout the interior of the drop-
intermolecular energies. In fact, E(L.11) represents a gen- |et, but rather is constrained to match the fluxes on either
eralized gradient flovicf. [49]) of this energy and, subject to sjde of the droplet. As will be made precise in the following
no-flux boundary conditions, the rate of energy dissipation isection, it is this flux which gives rise to droplet motion.

Energy considerations

(jj—f: — f h3p§dX$0. (3.2 IV. DYNAMICS OF A SINGLE DROP

We now describe long-time metastable dynamics of dew-
There is an associated variational principle; the fllix  etting films by first focusing on the dynamics of a single
—h3p, minimizes the functional droplet. Following the complicated initial transient behavior
in Eq. (1.12), the film will converge to form one or more
near-equilibrium droplets, see Fig. 5. These droplets will in-
teract and evolve on long time scales. The droplets will move
and change mass in response to fluxes imposed on them
where the first variation of the enerd$.1) is SE=U’(h) through the ultrathin film mean field. To explain this behav-
—h,,=p. Evaluated at the minimizer, the first term in this ior, we first consider the evolution of a single droplet on a
functional is just the change in energy interval, —L=<x=<L, that is large compared with the width

of the droplet, with fluxe$1.13 imposed at the boundaries,

1132
F(J):—f SEJ dx+ EJFdx, (3.3

dE
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9 (—dy
&_x[hsa_x]

wherea>0 is a small parameter, together with the boundary ; _ 9
conditions, Lly=|T"(h)—

huod —L)=0, hy(L)=0. (4.2

. 4.7

The null space of’ ' is two dimensional and is spanned by

The latter conditions imposed on the ultrathin film corre-the two bounded functions,

spond to the physical observation that away from the drop- —

lets, there is little variation in the curvature of the film; it will 1 B fx h(X')—hmind ) 49

be shown that in the UTF the primary contribution to the flux P100=1, ()= o h(x')3 XL

is from the gradient of the disjoining pressure. These bound-

ary conditions are needed to specify a well-posed problentaking the inner product ofy; with Eq. (4.5 on[—L,L]

for the fourth-order equatioft.11). Note that in the no-flux gives an equation for the evolution of the droplet pressure,
case,J_=J,=0, boundary conditiong4.1) and (4.2 re- o

duce toh,(=L)=h,,(*£L)=0, and yield the boundary dP L oh ~ o~
value problem for equilibrium droplets on finite domains, E:< f_l_ &—de) (J+—3-),
considered in Refl24]. As an initial condition, we will use

h ilibri I [uti ith ini- —. . .
the equi |bru£n droplet solution, centeredat 0, with ini where we have used the fact thatﬂs an odd function with

ual pressurep=Py, that IShO(X):h,(X; Po). For any finite exponential decay outside pf-w,w] to eliminate the con-
domain,h(x) is not an exact solution of the homogeneousyp, \tion of the first term on the left in Eq4.5). Similarly,
boundary value problem, but it experiences only exponenUaﬁaking the inner product ofs, with Eq. (4.5) using integra-

small boundary influences and is called a quasiequilibriumy;, PR ;

. . _ y parts, and again invoking even or odd symmetry
solution by Warc{5(_)]. We will neglect these small effects in gives an equation for the motion of the droplet,
the presence of finite fluxes.

Because droplets only change in response to the imposed

4.9

L h—=h.
fluxes, we introduce a new time scale selected by the scale of f h _hm'”dx
the fluxes, dX -t h® -~
a9 T2 J.+J). (410
T=ot. (4.3 2J ﬂdx
-L h®

Later we will relateo to the other parameters in the model.

Assuming that the solution evolves quasistatically, we asAt this point we note tha# is an artificial parameter, and we
sume that the fluxes cause the positid(r) and pressure can eliminate it to write these two evolution equations in the
P(7) of the droplet to vary slowly in time and we seek a original time scale and in terms of the unscaled fluxes as,
perturbation solution forr— 0 of the form

dp X
_:CP(PVX)(JJr_‘Jf)v _:_Cx(P,X)(J++J,),

h(x,t)=h(x—X(7);P(7))+chy(x,7)+O(c?). (4.4) dt dt
(4.11
Substituting this ansatz into the evolution equatfi@rll) to
leading order ino yields whereCp andCy are coefficient functions given by the in-
_ _ tegrals of the equilibrium droplet(x—X;P) in Egs. (4.9),
_EEJF(;_EE_ L (4.5 We now examine the integrals in Eqg&l.9) and (4.10

more closely to show that to leading order, these coefficients
where/ is the linear operator for the spatial operator on theare only dependent on the droplet press@rén particular,
right side of Eq.(1.11), we show that the dominant contributions to the coefficients
are given by the droplet core and contact line regions, hence
we reduce the integrals over the whole domain in E4®)
' (4.6 and(4.10 to localized integrals over the droplet core. Con-
_ N _ sider Cy, sinceh(x) approached,,, exponentially agx|
subject_to the boundfary condlfuons given by E@k1), and o0, the integrands decay exponentially faf>w, and we
(4.2). Since the leading term in Ed4.4) represents a two can either extend it to-{,) or truncate the range of in-

parameter X,P) family of homogeneous equilibrium solu- tegration to|x|<v7with onlv small errors. so that
tions of Eq.(1.11) and £ is a singular operator, the left side 9 - y '

of Eq. (4.5 will need to satisfy two solvability conditions to

8°g

X2

— 0
3_
hax

£g=— II'(h)g—

ensure the existence of a unique solution ligr The solv- f‘” h_hmindx

ability conditions, given by applications of the Fredholm al- ~w h3

ternative, are expressed in terms of orthogonality of the left Cx~Cx(P)= — (4.12
side of Eq.(4.5) with the adjoint nullvectors, see Waf80]. 2]‘” ﬂdx

The operatolL is not self-adjoint; the adjoint operator is -w h®
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In practice, we evaluate this coefficient using integrals over
(—,) using the phase plane representaii@rd) of h(x),
these integrals can be easily computed as singular integrals
over h,n=h=h,,,,, the difference with exact evaluation of 3
Eq. (4.12 is negligible. Note that since these integrals are
translation invariant inx, Cy is independent ofX. From
analysis of Eq(4.12), it can be shown thaty=0(e ?) as
e—0.

A different approach must be applied @ since in the
limit that L—<c, the integral in Eq(4.10 diverges. This is €

because af|—, h(x)—hy(p), and as in Eq(2.6), -10 0 10
T
dhﬁinzo(ez) (4.13 FIG. 6. The slow translational motion of a near-equilibrium
dp droplet solution of Eq.(1.11) due to equal imposed fluxes,,
=J_, Eq.(4.10.

so that the contribution to the integral from the ultrathin film -
region will be O(Le?). As will be discussed further in the lution of the droplets is slow, with the velocity being
following section, we will restrict our attention to the regime O(€?/L) or smaller andD(e%)-corrections to the static con-

where tact angled=tan A for advancing and receding contact
lines.
e’L<1. (4.14 We conclude this section by illustrating the two special

_ . . . cases for the evolution law@.11) in which the two equa-
Then the contribution from the ultrathin film region will be tions decouple.

negligible, and we can approximate the integral with one (1) If 3, =J_, thendP/dt=0, hence there is no change
over only the droplet core in pressure or mass of the droplet; this yields a pure transla-

— o\t tional mode, see Fig. 6. In fact, sin€(P) is fixed, if the
J'W, ﬁ—_dx> (4.15 fluxes are held constant, then the solution is a constant ve-
—W ap

(2) If J,=-J_, then dX/dt=0, hence there is no

Cp"’Cp(P)Z ) . -
locity traveling pulseh~h(x—ct;P).
to within O(€?) errors. We calculate this coefficient from the change in the position of the droplet; this is a pure change-

definition of droplet mas¢2.12), so that of-mass(pressurg mode, see Fig. 7. For large dropsith
d 1 P small p), the scaling relations found earlier suggest that this
Cp(P)= (_E(E)) ~— i_ (4.1  mode of evolution can be approximately described by a self-

dp 3A3 similar solution of the formh(x,t) ~H(x/P(t))/P(t). In the

. _ o following section we go on to study how the dynamics of a
From Eq.(4.16), also notice that equatio.9) is just a  single droplet given by Eq4.11) can be used to describe the

statement of conservation of mass in the form coupled dynamics of an array of interacting droplets.
dmdP _ V. DYNAMICS OF ARRAYS OF INTERACTING DROPLETS
g =d - (4.17)

We now make use of Eq4.11) as a building block to
Notice that moving contact lines occur in this model as adescribe the dynamics for problems with multiple dr{ps],
result of droplet drift or changes in mass. Accompanying the
motion of the contact lines there will also be modifications to
the equilibrium droplet shape, given to leading order by the
solution of Eq.(4.5) for hy(x, 7). Many authors have pointed
out serious fundamental problems regarding the motion of
contact lines in lubrication models that neglect the influence 1
of the disjoining pressurg80,36,51,52 The inclusion of the
effect of intermolecular forces in the mathematical model
(1.12) overcomes these problerhi36]. As we will show in
the following section, for the long-time dynamics of dewet-
ting films, the relevant scale for the fluxes imposed on the
droplets is smallJ=0(€%/L). Therefore, in the absence of
other external forces, the droplets will remain very close to

equilibrium, with O(€e3) corrections toh(x—X(t);P(t)) in FIG. 7. The slow mass growth of a near-equilibrium droplet

Eq. (4.4). The near-equilibrium model of droplet dynamics solution of Eq.(1.11) due to opposite imposed fluxes, = —J_,
given by Eq.(4.11 can be expected to hold while the evo- Eq. (4.9).

—-10 0 10
T
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the generic case of interest for dewetting films, where large
numbers of droplets are typically initially formed.

Suppose that several droplets are present, connected to
each other by an ultrathin fluid layer with~ €. In this case,
the fluxes imposed on each droplet are due to neighboring 5, 1
drops. Our goal is to derive asymptotically valid expressions
for the fluxesJ. (1.13 which then may be used to com-
pletely describe the evolution of droplets by using Eg11).
This will involve a more careful examination of the structure

of the ultrathin film between the droplets. €

Let L be a typical distance between droplets, which is 0=Xi X3 X X4 =150
assumed large but not so large as to violate(Bd.4). In the £
UTF, rescale space using the new coordinatesx where FIG. 8. The film thickness at time=8000 (after initial tran-

5=L"1is a small quantity. We also scale the film thicknesssients have vanish¢drom a numerical solution of Eq(1.11) for

by h=e€eH. For droplets with fixed mas&nd hence fixed e=0.1 showing four well-defined drops with a connective ultrathin
pressurg the fluxes between drops will have the scalefiim.

0O(€%6), so the time scalé4.3) is set by

r= €365t (5.1) ture of the ultrathin film is then given by a solution of
dyV(h) =0 subject to the boundary conditions thAth) at
In terms of the rescaled variables and Ef.8), Eq. (1.11) a contact line isV(h,,, for that particular drop. Conse-
yields the equation for the ultrathin film outside the dropletquently, we obtain that the flux dV/dx between droplets is
cores, constant. In particular, the flux between two neighboring

5 drops, labeled bk andk+1 and characterized by their po-

H 9 ] 9*H it is i
26-17 " _ " [ 1437 o 2% 't sitions X and pressureB, is given by
26t — aZ(H U (H)— €6 azZD' (5.2
First we note that for,5—0, the last term in Eq(5.2) is . B ‘
always negligible; this corresponds to the physical expecta- Jeks1=— V(hm"ﬁp“l)) V(hm'”(_Pk)) . (5.9
tion that the curvature of the UTF is negligible compared to ’ [Xi+1=W(Pys 1) = [ X+ W(Py)]

its disjoining pressure. Hence, to leading order &2 be-
comes the second-order nonlinear diffusion equation,
) Since the thickness of the ultrathin film varies by only a
625—1ﬁ: J [V(H)] (5.3 small amount, the mobility coefficient in the definition of the
ar 922 ’ ' flux (1.13 is always of the ordeh3~ €3. We conclude that
since the flux is approximately constant, the pressure in the
UTF is approximately piecewise linear. This is born out by
the results of numerical simulations of EG.11), see Figs. 8,
dy d’u S
3”7 (5.4) In summary, we have reduced Ed.11) to a system of
dH dH? 2N ordinary differential equations for the evolution of posi-

] ] tions X, and pressureB, of an array ofN drops,
In terms of the unscaled variables, we may define the corre-

sponding quantity

where the “chemical potential” functiol(H) is defined(up
to an additive constanby

dv_ .d?U 5
ah Mg (5.9
so thatV(h) is just a rescaling o¥/(H), P
V(h)=€?V(hle). (5.6)

Notice that the(unscaledl flux between droplets is therefore

J=—3a,V(h). (5.7) L -

T

From Eq.(5.3 we note that if our assumptiof@.14 on
the thickness of the UTF compared to the separation length FIG. 9. The corresponding pressuie12 at t==8000 for the
between droplets holds, then the ultrathin film evolves quasolution shown in Fig. 8. Note the near-constant pressure plateaus
sistatically, slaved to the evolution of the droplets. The struccorresponding to the cores of the near-equilibrium droplets.
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Pmax

P

0
0 200000

400000
t
FIG. 10. Comparison of predictions for droplet pressure&)
from the direct numerical solution of the POE.11) (dotg and the
ODE model of coarsening5.9 (solid curve$ for the problem
shown in Fig. 8. Note the collapse of two dropletsRsand P,

exceedpax in finite time.

dPy
T Cp(Pi) (It 15— Jik-1)s

dx, (5.9

i = Sx(POk ikt dkk-1), k=12, N,

where the fluxes are defined by E§.8) and the coefficient
functions are given by Eq$4.12 and (4.15.

These equations were integrated numerically using
fourth-order Runge-Kutta scheme with an adaptive time step.
If a droplet shrinks in size, its mass decreases and hence by
Eq. (2.12) its pressure increases. The pressure of the droplet

will eventually become larger tham,,, at which point the
droplet is no longer near an equilibrium state. These

lapsing” droplets are very small and rapidly become part o
the UTF mean field, so they are simply deleted from th
array of finite drops when this occurs. Comparison of thi
coarsening model to the dynamics of the PDE for a smal

array of drops is shown in Figs. 10, 11.
The second equation in E¢p.9) allows for motion of the

droplets and hence the possibility of collisions betwee

them. For practical computation of E(p.9), we identify the

50
W
SO
Xy
—
0
0 200000 400000

t
FIG. 11. Comparison of predictions for droplet positioqgt)
from the direct numerical solution of the POE.11) (dotg and the
ODE model of coarsening5.9 (solid curve$ for the problem
shown in Fig. 8. The termination of th%, andX, branches occurs
when those droplets collapse.

COI}[17,18]. For long times, the arrays of droplets will evolve

€
S,.

n
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0 100
T

FIG. 12. Profiles of a typical subset of widely spaced, nearly
identical droplets considered in the analysis of the scaling proper-
ties of the coarsening process.

onset of a collision when the contact lines of two neighbor-
ing droplets are within ®(€) distance from each other. The
dynamics of collisions are far from equilibrium, and hence
occur on short time scales compared to the near-equilibrium
coarsening process. Neglecting the time of collision, the two
drops are replaced by a single larger droplet with a pressure
corresponding to the total mass of the two drops. The posi-
tion of the resulting droplet was determined by the center of
mass of the colliding droplets.

a VI. SCALING LAW FOR THE DROPLET COARSENING
PROCESS

Dewetting instabilities of nearly uniform layers in large
Systems can be expected to form large numbers of droplets
with comparable masses and similar separation distances

slowly according to the coarsening dynamics derived above.
For such problems, the computational costs of direct simula-
Fons of the PDE(1.11) are prohibitive. Noting the time
scales in Figs. 10 and 11, the solution of E5.9) for large
arrays for very long times can also become very costly. As an
alternative to these numerical approaches, and to gain more
Insight into the physical mechanisms of the coarsening pro-
cess in this problem, we derive a power-rule scaling law for
the average number of drops at, as a function of tiN).
We now consider the coarsening dynamics for large arrays of
drops,N—o. As an example, we solve E@5.9) starting
from N=1000 droplets of nearly equal mass, with large but
nearly uniform spacing between adjacent dropletsee Fig.
12. Figure 13 shows th¥,(t) world lines for the positions
of a typical subset of droplets in the array. In this example,
there is relatively little drift of the droplets compared to their
average spacing, so there were no collisions; the termination
of X,(t) lines indicates the collapse of those droplets. A log-
log plot of the number of drops as a function of time for this
simulation shows good agreement with a scaling law of the
form

N(t)=0(t~%5), (6.2)
see Fig. 14. This behavior is reproduced for the long-time
behavior from broad classes of initial data and appears to be
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3000 influence of droplet motion on the time scale for pressure
evolution. Therefore, the pressure evolution equation be-
EBe———————m—— comes
——a
;—— dPy, €3 5
Xk BB W“rpk(PHl_zpk‘F Pk—l)- (6-3)
—_—
I
—_——— Since we have assumed thigt> P, ;, the time scale for the
% evolution of P, is much faster than that of its neighbors,
therefore this equation further reduces to the local model,
I
2000
3 5 7
10 10 , 10 dP, 1 y 64
—_ — —
dt Lk 4

FIG. 13. World linesX,(t) for a set of drops in a large array
from a simulation of the coarsening dynamics given by &g9).

X,(1) lines end when a droplet collapses to negligible mass. The solution of this model shows collapse of the droplet in a

finite time, as the pressure divergestasT,,

the generic behavior of the coarsening process. We now

present a heuristic argument for the occurrence of this Pk(t)x(

power-law scaling behavior in the coarsening dynamics for

dewetting. o
This scaling behavior can be derived by considering thdf the initial pressure of the collapsing drop i, then its

dynamics given by Eq(5.9) that control the collapse of a collapse time scales like

single typical droplet in the array. Let this drop, with index

have somewhat smaller ma@sd hence higher pressueg) TchIZSL_ (6.6)

than its neighbors. We will assume that the separation be-

tween dropletsL is relatively large, so that we can neglect

the droplet motion and focus on the equation for the evolu

tion of the droplet pressures. By E(t.16, we haveCp

« P23, and from Eq.5.9) it is clear that droplets with larger

pressures(that is smaller masspsvolve on faster time

scales. In fact, we will show that the collapse of small drop

lets occurs in finite time. Using ER.6), to leading order the

chemical potential yields/(h,,;)~€P. Consequently, the

flux (5.8 is approximated to leading order by

-1/3

C

(6.5

The typical droplet pressure relates to the masd/oyP 2

[see Eq.2.12]. Both M andL scale likeN~* by the con-
servation of mass and the definition of the average separation
distance on a finite size system, respectively. Therefore Eq.
(6.6) yields the relation for the collapse time scale of it
“droplet,

T.xeN~52, (6.7

3P, . 3p Note that dgring t_he colla_pse of ea_ch droplgt, we assume that
Jesi— € Tkl € Tk 6.2 the separation distande is approximately fixed. Although
: L individual droplets will move, it seems evident again from
the numerical simulations that theseragedroplet spacing
Here we have assumed tHat= X, ;— X, is large compared Will be unaffected. Therefore, the scaling.7) should be
to the average droplet width and that we can neglect th€orrect when averaged over a large number of droplets. We
also assume that varies on a slower time scale in response
to reduction in the number of droplets due to collapse of
individual drops, consistent with our assumption that the mo-
tion of droplets is slower than the evolution of pressures.

As can be seen from Fig. 13, as time progresses, a roughly
constant fraction of droplets vanish per unit time. We assume
that the droplet collapses are independent uncorrelated
events. Therefore, at a given time a constant fraction of drop-
lets will be collapsing, which means that the droplet number
N(t) satisfies

102

102 o@t~2/%)

10

dN N
Y7
105 107 , 10° 101! E o TC &« N, (68)

FIG. 14. Log-log plot of the number of drops as a function of This may be integrated to yield the desired scaling relation,
time. A line corresponding to the scaling lai§.1) is shown for
comparison. Noct =25, (6.9
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VII. DISCUSSION AND CONCLUSIONS line motion.

Our work has implications for coarsening processes in
eneral. In certain regimes, it seems possible that collision of
roplets, as opposed to their collapse, is the mechanism re-

;::msAvjﬁlrggr?eeisrirelfgr%n ;Zf}ﬂﬁf:ﬁﬁtf’g f(;)ezr?\llveo(ﬁrrgrina&mg sponsible for coarsening. Because the mathematical structure
' P of our model is similar to those describing coarsening of

dimensional elliptic boundary value _problem analogous tqninary mixtures, interface motion may be important for these
Eqg. (5.3). We also expect that a scaling law for the droplet
) . ; ) . processes as well.

number can be derived for two-dimensional films, which
would be highly useful for comparison with experiments.

A further challenge is to und.e.rsltand the asymptotu_:s for ACKNOWLEDGMENTS
small e of droplets far from equilibrium. Since the addition
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We have given an asymptotic description of the late-stag
coarsening dynamics of a one-dimensional dewetting thi
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