
-0320

PHYSICAL REVIEW E 67, 016302 ~2003!
Coarsening dynamics of dewetting films

K. B. Glasner*
Department of Mathematics, The University of Arizona, 617 North Santa Rita, Tucson, Arizona, 85721

T. P. Witelski†

Department of Mathematics and Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708
~Received 6 May 2002; published 10 January 2003!

Lubrication theory for unstable thin liquid films on solid substrates is used to model the coarsening dynamics
in the long-time behavior of dewetting films. The dominant physical effects that drive the fluid dynamics in
dewetting films are surface tension and intermolecular interactions with the solid substrate. Instabilities in these
films lead to rupture and other morphological changes that promote nonuniformity in the films. Following the
initial instabilities, the films break up into near-equilibrium droplets connected by an ultrathin film. For longer
times, the fluid will undergo a coarsening process in which droplets both move and exchange mass on slow
time scales. The dynamics of this coarsening process will be obtained through the asymptotic reduction of the
long-wave PDE governing the thin film to a set of ODEs for the evolution of the droplets. From this, a scaling
law that governs the coarsening rate is derived.
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I. INTRODUCTION

The study of instabilities of thin fluid films on solid sub
strates is of great importance in understanding coating fl
used in many industrial processes. These instabilities lea
rupture, the formation of dry spots, and further morpholo
cal changes that promote nonuniformity in the film; this d
namical behavior in unstable thin films is generally call
‘‘dewetting.’’ Experimental studies have shown this behav
in polymer films @1–6#, liquid crystal films @7–9#, liquid
metals @7,10#, and evaporating films@11,12#. During these
dewetting processes, droplets are formed which are c
nected by ultrathin films. In analogy to spinodal decompo
tion described by the Cahn-Hilliard equation@13#, this evo-
lution is sometimes called spinodal dewetting@12,14,15#.

Recent experimental and theoretical work on dewett
films has focused on the details of instability and patt
formation in the early stages of the dewetting process. T
process, which starts with near-rupture of the fluid lay
eventually produces an array of holes or ‘‘dry spots’’ in t
film which become wider over time@16#. In theoretical work,
it has been suggested that the propagation of the initial
stability of a flat film may be controlled by either linear o
nonlinear mechanisms@17–22#. Eventually the rims of the
growing holes merge, giving rise to polygonal-shaped n
works of fluid ridges@2,23#. These ridges are themselve
unstable, and eventually break into isolated droplets, wh
structure has been studied@15,24#.

The dominant physical effects that drive the fluid dyna
ics in this problem are surface tension and intermolecu
interactions with the solid substrate@25#; the dynamics of
this problem for long times will be analyzed using a simp
fied mathematical model. In this paper, we explore the lo
time asymptotics of a one-dimensional lubrication model
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this physical system, in which isolated droplets formed in
initial stages of dewetting slowly move and exchange m
to ‘‘coarsen’’ and yield fewer, larger droplets.

In the limit of low Reynolds number, the Navier-Stoke
equations for the flow of a very thin, slowly varying film o
viscous liquid can be reduced to an evolution equation
the film thickness,h5h(x,y,t), using lubrication theory
@26,27#. This is a long-wave theory that holds for smoot
slowly varying fluid layers on solid surfaces, in the limits
small thickness and small gradients ofh. In nondimensional
form, the model is a nonlinear fourth-order parabolic diff
sion equation@27#

]h

]t
5“•~h3

“p!, ~1.1!

where the hydrodynamic pressurep in the thin film is given
by

p5P~h!2¹2h. ~1.2!

The Laplacian term in Eq.~1.2! gives the linearized contri-
bution of surface tension to the total pressure due to a slo
varying curved fluid interface. The combined effects of
intermolecular forces, such as van der Waals interactions
Born repulsion, for a homogeneous film of thicknessh on a
solid substrate is given by the disjoining pressure, the der
tive of the potentialU(h),

P~h![
dU

dh
. ~1.3!

The form of the intermolecular potential for interactions b
tween the liquid film and the solid substrate can be deriv
using density functional theory@28,29#. Many studies in fluid
dynamics have used lubrication models incorporating d
joining pressures to describe the dynamics of wetting a
contact line motion@30# and other problems@12,27,31–36#.
More recently, similar models have been rederived usin
©2003 The American Physical Society02-1
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variational, diffuse-interface approach@37,38#. We will make
use of a scaled form of an intermolecular potential that
be derived from the fundamental physics of intermolecu
forces@28,29#. However, we will show that our analysis ap
plies to broader classes of potentials, with applications
coarsening problems in other physical systems.

Our analysis will describe the dynamics of coarsening
a class of problems described by any potential function
satisfies a few general assumptions. We only need to ass
the following in the structure of the potentialU(h):

U~h! has a unique minimum ath5e, ~1.4!

P~h! has a unique maximum,pmax, at hpeak.e,
~1.5!

P~h!5o~h21! and U~h!→0 as h→`, ~1.6!

lim
h→0

U~h!5`. ~1.7!

Figure 1 shows a typical plot of the potentialU(h) and the
corresponding disjoining pressureP(h). Property~1.4! de-
fines the film thicknessh5e corresponding to the globally
stable homogeneous film. The value ofe establishes the
scale of the ultrathin film~UTF! which will connect meta-
stable liquid droplets formed after the destabilization of
initial fluid layer. Property~1.5! states that there is a film
thickness for which conjoining and disjoining pressures b
ance; this is necessary for there to exist stable localized d
let solutions@24#. Property~1.6! requires that the disjoining
pressure is negligible for thick films,h@e. Finally, Eq.~1.7!
states that the short-range repulsive intermolecular forces
assumed to be dominant at very short scales. Early studie
van der Waals driven instabilities of thin films by William
and Davis@33,34# and de Gennes@30# did not include repul-
sive interactions, and in this case classical solutions of
~1.1! can cease to exist in finite time due to singularit
which occur if the film ruptures,h→0 @39,40#. In contrast,
with the short-range repulsive forces corresponding to
~1.7! the problem is globally well posed@24# and solutions
exist for all times.

One focus of this paper is to consider the limit of smale
while simultaneously keeping the interaction energies fin
To this end, we will suppose that the potential can be writ
in the form

FIG. 1. Sketch of the intermolecular potentialU(h) and the
disjoining pressureP(h)5dU/dh.
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U~h!5U~h/e!, ~1.8!

where the functionU is independent ofe. This scaling is also
chosen to ensure that thegradientsof equilibrium and near-
equilibrium solutions remain bounded, as is shown in
following section. This providesa posteriori justification for
using the lubrication approximation. In contrast, in the stu
@24#, the energy of the ultrathin film scaled like some neg
tive power of e, leading to equilibrium droplet solution
which approachedd functions ase→0.

Property ~1.4! implies that the functionU(H) with H
5h/e has a unique minimum atH51, and property~1.6!
states that the disjoining pressure satisfiesP(h)
5e21U8(h/e)5o(e/h) ash→`. A potential which satisfies
all of the above assumptions is given by

U~H !5
H2(m21)

m21
2

H2(n21)

n21
, ~1.9!

with 1,n,m, which yields the effective conjoining an
disjoining pressure

P~h!5e21S e

hD nF12S e

hD m2nG . ~1.10!

For this model, the maximum pressurepmax5O(e21) is
achieved athpeak5(m/n)1/[m2n]e, and the absolute mini-
mum pressure forh>e is P(e)50. This particular potential
was considered in Ref.@24#, and with the exponents (n,m)
5(3,9) it corresponds to the standard 6–12 Lennard-Jo
potential@14,15,25,27#. For numerical simulations in this pa
per, we will use the model~1.10! with (n,m)5(3,4), as has
appeared in other studies of dewetting films@12,24,27,31#.

We will restrict attention to the one-dimensional proble

]h

]t
5

]

]xS h3
]

]x FP~h!2
]2h

]x2G D . ~1.11!

In working with this problem, it is convenient to study th
solution in terms of the pressure

p[P~h!2hxx5e21U8~h/e!2hxx , ~1.12!

and the flux

J[2h3px . ~1.13!

Numerical simulations of thin films with intermolecula
forces show complex pattern formation during which film
evolve to a metastable state composed of a collection
droplets connected by the UTF layer of thickness appro
mately e, see Fig. 4. A comparison with physical expe
ments shows striking similarities to the characteristic fe
tures of dewetting including the formation of capillarit
ridges at the edges of growing holes~cf. @41#! as well as the
development of polygonal ridge structures@2#.

There is considerable similarity between Eq.~1.11! and
the Cahn-Hilliard equation@13# whose late-time behavio
represents the coarsening of regions of phase separatio
binary alloys. The important differences are as follows.
2-2
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COARSENING DYNAMICS OF DEWETTING FILMS PHYSICAL REVIEW E67, 016302 ~2003!
~i! The potential U(h) has only a single minimum
whereas Cahn-Hilliard dynamics usually considers a po
tial with two minima.

~ii ! The mobility coefficient in Eq.~1.11!, h3 is nearly
degenerate forh→e, which leads to different relaxation tim
scales for the droplets@where h5O(1)] and for the UTF
regions @where h5O(e)]. The original statement of the
Cahn-Hilliard equation@13# included nonconstant mobilities
and has been the subject of recent studies@42#.

The limiting behavior of Cahn-Hilliard-type equations a
frequently expressed as free boundary problems, as was
mally derived by Pego@43#. In the context of a distinguishe
asymptotic limit, our equation will also yield a similar typ
of finite-dimensional ODE approximation.

A further asymptotic regime of Cahn-Hilliard dynamics
described by the theories of Lifshitz and Slyozov@44# and
Wagner@45#, who characterize the statistical evolution of t
phase separated regions~this is known popularly as ‘‘LSW
theory’’!. Mitlin @46,47# has proposed and studied a LSW
type model of coarsening behavior in fluid dewetting. W
also study the statistics of dewetting using our fini
dimensional approximation.

In the following section, we begin with an analysis of th
form of the structure of the equilibrium droplet solutions.
Sec. III, energetic arguments are used to describe the
pected long-time dynamics. In Sec. IV, evolution equatio
are derived for a single near-equilibrium droplet in respo
to externally imposed fluxes. These evolution equations
then extended to describe the dynamics of arrays of inter
ing droplets in Sec. V. And finally, in Sec. VI a scaling law
derived to describe coarsening in very large sets of drop

II. STEADY-STATE SOLUTIONS

Stable steady solutions of Eq.~1.11! which represent iso-
lated fluid droplets were analyzed previously@24#, and we
briefly review them here. Nontrivial steady-state solutions
Eq. ~1.11! have uniform, constant pressurep5 p̄>0, and
consequentlyh5h̄(x; p̄) satisfies the second-order ordina
differential equation

d2h̄

dx2
5P~ h̄!2 p̄. ~2.1!

Given the structure ofP(h) for any value ofp̄ in the range
0, p̄,pmax, a phase plane analysis shows that an isola
droplet on an unbounded domain is given by the homocl
solution of Eq. ~2.1!, see Fig. 2. The maximum pressu
pmax5P(hpeak)5O(e21) is large, and there is a continuou
family of droplet solutions parametrized by the pressurep̄.
For any fixed, finite pressure in this range,p̄5O(1), the
minimum thickness of film in the droplet solution is th
O(e) fixed point of Eq.~2.1!, the root of the equation

P~hmin!5 p̄, ~2.2!
01630
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this value determines the thickness of the ultrathin film
away from the droplet. Oncehmin(p̄) is determined, we can
write the first integral of Eq.~2.1! as

1

2
S dh̄

dx
D 2

5R~ h̄!, ~2.3!

where

R~ h̄![U~ h̄!2U~hmin!2 p̄~ h̄2hmin!. ~2.4!

At the maximum of the dropleth̄x50 at x50, and hence
hmax is determined by the condition

R~hmax!50. ~2.5!

The values ofhmin , hmax may be obtained graphically b
constructing the tangent-secant line with slopep̄ for the po-
tentialU(h), see Fig. 3. The homoclinic solution can then
obtained from Eq.~2.3! via quadrature.

To get more insight into the droplet solutions, we consid
their asymptotic properties for the limite→0. In the limit
e→0, the structure of the solution breaks down into thr
regimes@24# ~see Fig. 2!: ~i! the droplet corecontaining the
bulk of the fluid mass,~ii ! the contact linewhere asymptotic
matching between the core and the outer film takes pla
and ~iii ! the outer region, the uniform ultrathin film that ex-
tends indefinitely away from the base of the droplet.

In region ~iii !, away from the droplet core, the ultrathi
film differs from the minimum thickness by exponential
small terms,h̄(x);hmin(p̄). To leading order,hmin;e and
solving Eq. ~2.2! to next order ase→0 yields the depen-
dence on the pressure,

hmin~ p̄!;e1e2
p̄

U 9~1!
. ~2.6!

Moreover, from Eq.~2.5! we also obtain that the droplet cor
satisfieshmax(p̄);2U(1)/p̄. In the core region, the film
thickness satisfiese!h̄<hmax, consequently the disjoining

FIG. 2. A stable steady-state droplet solutionh̄(x; p̄) showing
the three regions in the asymptotic structure of the solution foe
→0: ~i! the droplet core,~ii ! the contact line, and~iii ! the outer
ultrathin film. The dashed curve shows the leading order asympt

solution for the droplet core, the parabola~2.7!, with width 2w̄.
2-3
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pressure is negligible,P(h̄)5o(1). Therefore, in the core
the leading order solution of Eq.~2.1! is a parabolic profile
~see Fig. 2!,

h̄~x!;
1

2
p̄~w̄22x2!, for uxu!uw̄u, ~2.7!

where the parameterw̄ gives an effective measure of th
width of the droplet. From Eq.~2.7!, the maximum is given
by hmax;

1
2p̄w̄2. From this and the earlier estimate ofhmax(p̄),

we obtain the core width as

w̄~ p̄!5
A

p̄
, A;A2uU~1!u. ~2.8!

Further interpretation of the constantA is provided by exam-
ining the contact line, region~ii !. In this region, where the
droplet core must asymptotically match to the ultrathin fil
we rescale the film thickness ash̄(x)5eH̄(z), in a small
neighborhood of the edge of the core,x52w̄1ez. Using
these scalings, to leading order ase→0, Eq.~2.1! reduces to

d2H̄

dz2
5U8~H̄ !, ~2.9!

and the local structure of the droplet contact line is given
the transition layer solution that satisfiesH̄(z→2`)→1 and
matches to the core region,H̄(z→`)5O(e21)→`. Analo-
gous to Eq.~2.3!, the first integral of the leading order equ
tion ~2.9! is

1

2
S dH̄

dz
D 2

5U~H̄ !2U~1!. ~2.10!

Asymptotic matching of the slope of the solution forz→`
then yields a measure of the macroscopic contact angle

dh̄

dx
U

2w̄

5 lim
z→`

dH̄

dz
5A2uU~`!2U~1!u5A. ~2.11!

FIG. 3. Construction ofhmin andhmax from the potentialU(h)

for a droplet solution with a given value of the pressurep̄.
ds

01630
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The parameterA is a universal constant given in terms of th
molecular potentialU(H̄), and determines the contact ang
to leading order, independent of the ultrathin film scalee and
the pressurep̄. Moreover, the value ofA gives an upper
bound, independent ofe, on the maximum slope of equilib
rium solutions. This value also gives a leading order bou
applicable to near-equilibrium solutions that we will consid
later. The existence of such a uniform bound for the gra
ents of the solutionh is necessary to maintain the applicab
ity of the original lubrication approximation. Another impo
tant point is that Eq.~2.11! relates the interfacial energies t
the contact angle, and is equivalent to the Young condit
for shallow angles. This fact has been exploited by ot
authors for the purpose of numerical computatio
@35,36,48#.

Finally, we define the droplet mass by that of the co
region,

m̄~ p̄![E
2w̄

w̄
h̄~x; p̄!dx;

2A3

3p̄2
. ~2.12!

As a consequence, the size and mass of droplets ma
measured in terms of the pressurep̄. The error in this ap-
proximation of the mass is of the order of the thickness
the ultrathin film and vanishes ase→0. We will make use of
Eq. ~2.12! later to relate conservation of mass to an evolut
equation for the droplet pressure.

III. DYNAMICS OF THE ONE-DIMENSIONAL PROBLEM

Both analysis and numerical simulation identify a s
quence of dynamical regimes for equation~1.11!. Initially, a
flat layer of fluid is subject to a long-wave instability~see
Fig. 4!. In the absence of conjoining effects in the press
P(h), this instability would yield finite-time rupture of the
fluid layer @39,40#. For potentials of the form ofU(h), the
fluid dewets, it forms growing holes or dry spots@16# where
the layer narrows down to an ultrathin film of heighth;e.
The fluid then rapidly converges to a series of parabo
shaped droplets separated by the ultrathin film. Each dro
is very nearly an equilibrium solution like those already d
cussed. But there is a slow variation in the outer mean fi
~the ultrathin film! between neighboring droplets that lea

FIG. 4. A numerical simulation of the early stages of dewetti
in thin films: instability of an initially uniform fluid layer~with h
'1) leading to near-rupture of the film, the growth of holes in t
layer ~whereh;e), and the coalescence of the fluid into isolat
droplets.
2-4
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COARSENING DYNAMICS OF DEWETTING FILMS PHYSICAL REVIEW E67, 016302 ~2003!
to a coarsening process which governs the long-time ev
tion of the droplets.

Two features of the coarsening process are apparent~see
Fig. 5!. The first is that larger droplets gain mass at t
expense of smaller droplets, in a fashion similar to Ostw
ripening. In our case, however, droplets also appear to m
on time scales comparable to those of mass exchange.
causes for both of these phenomena will be explained n
by a variational argument. A more systematic derivation
the dynamics follows.

Energy considerations

The slow process which ensues after the formation
metastable droplets may be understood by utilizing the m
ematical structure of the evolution equation. Equation~1.11!
has the energy

E~h!5E U~h!1
1

2
hx

2dx, ~3.1!

which physically represents the sum of surface energy
intermolecular energies. In fact, Eq.~1.11! represents a gen
eralized gradient flow~cf. @49#! of this energy and, subject t
no-flux boundary conditions, the rate of energy dissipation

dE

dt
52E h3px

2dx<0. ~3.2!

There is an associated variational principle; the fluxJ5
2h3px minimizes the functional

F~J!52E dEJxdx1
1

2E J2

h3 dx, ~3.3!

where the first variation of the energy~3.1! is dE5U8(h)
2hxx5p. Evaluated at the minimizer, the first term in th
functional is just the change in energy

2E dEJxdx5E dEhtdx5
dE

dt
. ~3.4!

FIG. 5. Later stages in dewetting dynamics~continuing from
Fig. 4!: once formed, the near-equilibrium fluid droplets evolve
a slower time scale, with dynamics including both mass excha
and spatial drift.
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Similarly, the second term in Eq.~3.3! is minus one half
times the rate of energy dissipation.

To demonstrate that the coarsening process is ener
cally favorable, we show that the merger of two equal-siz
droplets to form a single larger droplet and an UTF lay
yields a decrease in energy. Within each droplet core,
film satisfiesh@e, therefore the potential energy is neg
gible, and hence, using Eq.~2.8!

E~ two droplets!;2E
2w̄

w̄ 1

2
hx

2dx;
2A3

3p̄
, ~3.5!

where the half-width of each droplet isw̄5A/ p̄, Eq. ~2.8!.
For comparison, in a single droplet with mass 2m̄, the cor-
responding pressure isp̃; p̄/A2 and the half-width isw̃
;A2A/ p̄. The merger of the two droplets creates an ult
thin layer with the length 4w̄22w̃;(422A2)A/ p̄. Hence
the energy of the merged droplet is approximately

E~single droplet and UTF!;
A2A3

3p̄
1

422A2

p̄
AU~e!.

~3.6!

Not only is the surface energy of the droplet reduced rela
to Eq. ~3.5!, but also the ultrathin film further reduces th
energy since the potentialU(e) is negative. Consequently
the total energy decreases as small droplets exchange
through the UTF layer to form fewer, larger drops. This pr
vides a driving force for the mass redistribution.

Since the energy is translation invariant, it may seem t
there is no energetic advantage for droplets to move. Ind
there is no energy lost in the translating process alone,
the first integral in Eq.~3.3! is essentially zero for a moving
droplet. On the other hand, there may be nonzero fluxes
posed on the droplet by the ultrathin film on either side of
droplet. The flux minimizing the second term in Eq.~3.3!
will therefore not be zero throughout the interior of the dro
let, but rather is constrained to match the fluxes on eit
side of the droplet. As will be made precise in the followin
section, it is this flux which gives rise to droplet motion.

IV. DYNAMICS OF A SINGLE DROP

We now describe long-time metastable dynamics of de
etting films by first focusing on the dynamics of a sing
droplet. Following the complicated initial transient behavi
in Eq. ~1.11!, the film will converge to form one or more
near-equilibrium droplets, see Fig. 5. These droplets will
teract and evolve on long time scales. The droplets will mo
and change mass in response to fluxes imposed on t
through the ultrathin film mean field. To explain this beha
ior, we first consider the evolution of a single droplet on
interval, 2L<x<L, that is large compared with the widt
of the droplet, with fluxes~1.13! imposed at the boundaries

J~2L !5s J̃2 , J~L !5s J̃1 , ~4.1!

e

2-5



ar

e
op
ll
ux
n
le

s

us
ti
um
n

s
le

l.
as

a

th

-
e

l-
le

y

e,

try

e
he
,

-

nts

nts
nce

n-

-
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wheres.0 is a small parameter, together with the bound
conditions,

hxxx~2L !50, hxxx~L !50. ~4.2!

The latter conditions imposed on the ultrathin film corr
spond to the physical observation that away from the dr
lets, there is little variation in the curvature of the film; it wi
be shown that in the UTF the primary contribution to the fl
is from the gradient of the disjoining pressure. These bou
ary conditions are needed to specify a well-posed prob
for the fourth-order equation~1.11!. Note that in the no-flux
case,J̃25 J̃150, boundary conditions~4.1! and ~4.2! re-
duce to hx(6L)5hxxx(6L)50, and yield the boundary
value problem for equilibrium droplets on finite domain
considered in Ref.@24#. As an initial condition, we will use
the equilibrium droplet solution, centered atx50, with ini-
tial pressurep̄5P0, that ish0(x)5h̄(x;P0). For any finite
domain, h̄(x) is not an exact solution of the homogeneo
boundary value problem, but it experiences only exponen
small boundary influences and is called a quasiequilibri
solution by Ward@50#. We will neglect these small effects i
the presence of finite fluxes.

Because droplets only change in response to the impo
fluxes, we introduce a new time scale selected by the sca
the fluxes,

t5st. ~4.3!

Later we will relates to the other parameters in the mode
Assuming that the solution evolves quasistatically, we
sume that the fluxes cause the positionX(t) and pressure
P(t) of the droplet to vary slowly in time and we seek
perturbation solution fors→0 of the form

h~x,t !5h̄„x2X~t!;P~t!…1sh1~x,t!1O~s2!. ~4.4!

Substituting this ansatz into the evolution equation~1.11! to
leading order ins yields

2
]h̄

]x

dX

dt
1

]h̄

] p̄

dP

dt
5Lh1 , ~4.5!

whereL is the linear operator for the spatial operator on
right side of Eq.~1.11!,

Lg5
]

]x S h̄3
]

]x FP8~ h̄!g2
]2g

]x2G D , ~4.6!

subject to the boundary conditions given by Eqs.~4.1!, and
~4.2!. Since the leading term in Eq.~4.4! represents a two
parameter (X,P) family of homogeneous equilibrium solu
tions of Eq.~1.11! andL is a singular operator, the left sid
of Eq. ~4.5! will need to satisfy two solvability conditions to
ensure the existence of a unique solution forh1. The solv-
ability conditions, given by applications of the Fredholm a
ternative, are expressed in terms of orthogonality of the
side of Eq.~4.5! with the adjoint nullvectors, see Ward@50#.
The operatorL is not self-adjoint; the adjoint operator is
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L †c5S P8~ h̄!2
]2

]x2D F ]

]x H h̄3
]c

]x J G . ~4.7!

The null space ofL † is two dimensional and is spanned b
the two bounded functions,

c1~x!51, c2~x!5E
0

x h̄~x8!2hmin

h̄~x8!3
dx8. ~4.8!

Taking the inner product ofc1 with Eq. ~4.5! on @2L,L#
gives an equation for the evolution of the droplet pressur

dP

dt
5S E

2L

L ]h̄

] p̄
dxD 21

~ J̃12 J̃2!, ~4.9!

where we have used the fact that]xh̄ is an odd function with
exponential decay outside of@2w̄,w̄# to eliminate the con-
tribution of the first term on the left in Eq.~4.5!. Similarly,
taking the inner product ofc2 with Eq. ~4.5! using integra-
tion by parts, and again invoking even or odd symme
gives an equation for the motion of the droplet,

dX

dt
52S E

2L

L h̄2hmin

h̄3
dx

2E
2L

L ~ h̄2hmin!
2

h̄3
dx
D ~ J̃11 J̃2!. ~4.10!

At this point we note thats is an artificial parameter, and w
can eliminate it to write these two evolution equations in t
original time scale and in terms of the unscaled fluxes as

dP

dt
5CP~P,X!~J12J2!,

dX

dt
52CX~P,X!~J11J2!,

~4.11!

whereCP andCX are coefficient functions given by the in
tegrals of the equilibrium dropleth̄(x2X;P) in Eqs. ~4.9!,
and ~4.10!.

We now examine the integrals in Eqs.~4.9! and ~4.10!
more closely to show that to leading order, these coefficie
are only dependent on the droplet pressureP. In particular,
we show that the dominant contributions to the coefficie
are given by the droplet core and contact line regions, he
we reduce the integrals over the whole domain in Eqs.~4.9!
and ~4.10! to localized integrals over the droplet core. Co
sider CX , since h̄(x) approacheshmin exponentially asuxu
→`, the integrands decay exponentially foruxu@w̄, and we
can either extend it to (2`,`) or truncate the range of in
tegration touxu<w̄ with only small errors, so that

CX;CX~P!5S E
2w̄

w̄ h̄2hmin

h̄3
dx

2E
2w̄

w̄ ~ h̄2hmin!
2

h̄3
dx
D . ~4.12!
2-6
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In practice, we evaluate this coefficient using integrals o
(2`,`) using the phase plane representation~2.3! of h̄(x),
these integrals can be easily computed as singular integ
over hmin<h<hmax, the difference with exact evaluation o
Eq. ~4.12! is negligible. Note that since these integrals a
translation invariant inx, CX is independent ofX. From
analysis of Eq.~4.12!, it can be shown thatCX5O(e21) as
e→0.

A different approach must be applied toCP since in the
limit that L→`, the integral in Eq.~4.10! diverges. This is
because asuxu→`, h̄(x)→hmin(p̄), and as in Eq.~2.6!,

dhmin

dp̄
5O~e2!, ~4.13!

so that the contribution to the integral from the ultrathin fi
region will be O(Le2). As will be discussed further in the
following section, we will restrict our attention to the regim
where

e2L!1. ~4.14!

Then the contribution from the ultrathin film region will b
negligible, and we can approximate the integral with o
over only the droplet core

CP;CP~P!5S E
2w̄

w̄ ]h̄

] p̄
dxD 21

, ~4.15!

to within O(e2) errors. We calculate this coefficient from th
definition of droplet mass~2.12!, so that

CP~P!5S d

dp
m̄~ p̄! D 21

;2
4p̄3

3A3
. ~4.16!

From Eq. ~4.16!, also notice that equation~4.9! is just a
statement of conservation of mass in the form

dm

dP

dP

dt
5J12J2 . ~4.17!

Notice that moving contact lines occur in this model as
result of droplet drift or changes in mass. Accompanying
motion of the contact lines there will also be modifications
the equilibrium droplet shape, given to leading order by
solution of Eq.~4.5! for h1(x,t). Many authors have pointe
out serious fundamental problems regarding the motion
contact lines in lubrication models that neglect the influen
of the disjoining pressure@30,36,51,52#. The inclusion of the
effect of intermolecular forces in the mathematical mo
~1.11! overcomes these problems@36#. As we will show in
the following section, for the long-time dynamics of dewe
ting films, the relevant scale for the fluxes imposed on
droplets is small,J5O(e3/L). Therefore, in the absence o
other external forces, the droplets will remain very close
equilibrium, with O(e3) corrections toh̄„x2X(t);P(t)… in
Eq. ~4.4!. The near-equilibrium model of droplet dynamic
given by Eq.~4.11! can be expected to hold while the ev
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lution of the droplets is slow, with the velocity bein
O(e2/L) or smaller andO(e3)-corrections to the static con
tact angleu5tan21A for advancing and receding conta
lines.

We conclude this section by illustrating the two spec
cases for the evolution laws~4.11! in which the two equa-
tions decouple.

~1! If J15J2 , thendP/dt50, hence there is no chang
in pressure or mass of the droplet; this yields a pure tran
tional mode, see Fig. 6. In fact, sinceCX(P) is fixed, if the
fluxes are held constant, then the solution is a constant
locity traveling pulse,h;h̄(x2ct;P).

~2! If J152J2 , then dX/dt50, hence there is no
change in the position of the droplet; this is a pure chan
of-mass~pressure! mode, see Fig. 7. For large drops~with
small p̄), the scaling relations found earlier suggest that t
mode of evolution can be approximately described by a s
similar solution of the formh(x,t);H„x/P(t)…/P(t). In the
following section we go on to study how the dynamics o
single droplet given by Eq.~4.11! can be used to describe th
coupled dynamics of an array of interacting droplets.

V. DYNAMICS OF ARRAYS OF INTERACTING DROPLETS

We now make use of Eq.~4.11! as a building block to
describe the dynamics for problems with multiple drops@53#,

FIG. 6. The slow translational motion of a near-equilibriu

droplet solution of Eq.~1.11! due to equal imposed fluxes,J̃1

5 J̃2 , Eq. ~4.10!.

FIG. 7. The slow mass growth of a near-equilibrium drop

solution of Eq.~1.11! due to opposite imposed fluxes,J̃152 J̃2 ,
Eq. ~4.9!.
2-7
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the generic case of interest for dewetting films, where la
numbers of droplets are typically initially formed.

Suppose that several droplets are present, connecte
each other by an ultrathin fluid layer withh;e. In this case,
the fluxes imposed on each droplet are due to neighbo
drops. Our goal is to derive asymptotically valid expressio
for the fluxesJ6 ~1.13! which then may be used to com
pletely describe the evolution of droplets by using Eq.~4.11!.
This will involve a more careful examination of the structu
of the ultrathin film between the droplets.

Let L be a typical distance between droplets, which
assumed large but not so large as to violate Eq.~4.14!. In the
UTF, rescale space using the new coordinatez5dx where
d5L21 is a small quantity. We also scale the film thickne
by h5eH. For droplets with fixed mass~and hence fixed
pressure!, the fluxes between drops will have the sca
O(e3d), so the time scale~4.3! is set by

t5e3dt. ~5.1!

In terms of the rescaled variables and Eq.~1.8!, Eq. ~1.11!
yields the equation for the ultrathin film outside the drop
cores,

e2d21
]H

]t
5

]

]z S H3
]

]zFU8~H !2e2d2
]2H

]z2 G D . ~5.2!

First we note that fore,d→0, the last term in Eq.~5.2! is
always negligible; this corresponds to the physical expe
tion that the curvature of the UTF is negligible compared
its disjoining pressure. Hence, to leading order Eq.~5.2! be-
comes the second-order nonlinear diffusion equation,

e2d21
]H

]t
5

]2

]z2 @V~H !#, ~5.3!

where the ‘‘chemical potential’’ functionV(H) is defined~up
to an additive constant! by

dV
dH

5H3
d2U
dH2

. ~5.4!

In terms of the unscaled variables, we may define the co
sponding quantity

dV

dh
5h3

d2U

dh2
~5.5!

so thatV(h) is just a rescaling ofV(H),

V~h!5e2V~h/e!. ~5.6!

Notice that the~unscaled! flux between droplets is therefor

J52]xV~h!. ~5.7!

From Eq.~5.3! we note that if our assumption~4.14! on
the thickness of the UTF compared to the separation len
between droplets holds, then the ultrathin film evolves q
sistatically, slaved to the evolution of the droplets. The str
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ture of the ultrathin film is then given by a solution o
]xxV(h)50 subject to the boundary conditions thatV(h) at
a contact line isV(hmin) for that particular drop. Conse
quently, we obtain that the flux2dV/dx between droplets is
constant. In particular, the flux between two neighbori
drops, labeled byk andk11 and characterized by their po
sitionsX and pressuresP, is given by

Jk,k1152
V„hmin~Pk11!…2V„hmin~Pk!…

@Xk112w̄~Pk11!#2@Xk1w̄~Pk!#
. ~5.8!

Since the thickness of the ultrathin film varies by only
small amount, the mobility coefficient in the definition of th
flux ~1.13! is always of the orderh3;e3. We conclude that
since the flux is approximately constant, the pressure in
UTF is approximately piecewise linear. This is born out
the results of numerical simulations of Eq.~1.11!, see Figs. 8,
9.

In summary, we have reduced Eq.~1.11! to a system of
2N ordinary differential equations for the evolution of pos
tions Xk and pressuresPk of an array ofN drops,

FIG. 8. The film thickness at timet58000 ~after initial tran-
sients have vanished! from a numerical solution of Eq.~1.11! for
e50.1 showing four well-defined drops with a connective ultrath
film.

FIG. 9. The corresponding pressure~1.12! at t58000 for the
solution shown in Fig. 8. Note the near-constant pressure plat
corresponding to the cores of the near-equilibrium droplets.
2-8
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dPk

dt
5CP~Pk!~Jk11,k2Jk,k21!,

~5.9!
dXk

dt
52CX~Pk!~Jk11,k1Jk,k21!, k51,2, . . . ,N,

where the fluxes are defined by Eq.~5.8! and the coefficient
functions are given by Eqs.~4.12! and ~4.15!.

These equations were integrated numerically using
fourth-order Runge-Kutta scheme with an adaptive time s
If a droplet shrinks in size, its mass decreases and henc
Eq. ~2.12! its pressure increases. The pressure of the dro
will eventually become larger thanpmax, at which point the
droplet is no longer near an equilibrium state. These ‘‘c
lapsing’’ droplets are very small and rapidly become part
the UTF mean field, so they are simply deleted from
array of finite drops when this occurs. Comparison of t
coarsening model to the dynamics of the PDE for a sm
array of drops is shown in Figs. 10, 11.

The second equation in Eq.~5.9! allows for motion of the
droplets and hence the possibility of collisions betwe
them. For practical computation of Eq.~5.9!, we identify the

FIG. 10. Comparison of predictions for droplet pressuresPk(t)
from the direct numerical solution of the PDE~1.11! ~dots! and the
ODE model of coarsening~5.9! ~solid curves! for the problem
shown in Fig. 8. Note the collapse of two droplets asP2 and P4

exceedpmax in finite time.

FIG. 11. Comparison of predictions for droplet positionsXk(t)
from the direct numerical solution of the PDE~1.11! ~dots! and the
ODE model of coarsening~5.9! ~solid curves! for the problem
shown in Fig. 8. The termination of theX2 andX4 branches occurs
when those droplets collapse.
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onset of a collision when the contact lines of two neighb
ing droplets are within aO(e) distance from each other. Th
dynamics of collisions are far from equilibrium, and hen
occur on short time scales compared to the near-equilibr
coarsening process. Neglecting the time of collision, the t
drops are replaced by a single larger droplet with a press
corresponding to the total mass of the two drops. The p
tion of the resulting droplet was determined by the center
mass of the colliding droplets.

VI. SCALING LAW FOR THE DROPLET COARSENING
PROCESS

Dewetting instabilities of nearly uniform layers in larg
systems can be expected to form large numbers of drop
with comparable masses and similar separation distan
@17,18#. For long times, the arrays of droplets will evolv
slowly according to the coarsening dynamics derived abo
For such problems, the computational costs of direct simu
tions of the PDE~1.11! are prohibitive. Noting the time
scales in Figs. 10 and 11, the solution of Eq.~5.9! for large
arrays for very long times can also become very costly. As
alternative to these numerical approaches, and to gain m
insight into the physical mechanisms of the coarsening p
cess in this problem, we derive a power-rule scaling law
the average number of drops at, as a function of time,N(t).
We now consider the coarsening dynamics for large array
drops, N→`. As an example, we solve Eq.~5.9! starting
from N51000 droplets of nearly equal mass, with large b
nearly uniform spacing between adjacent droplets,L, see Fig.
12. Figure 13 shows theXk(t) world lines for the positions
of a typical subset of droplets in the array. In this examp
there is relatively little drift of the droplets compared to the
average spacing, so there were no collisions; the termina
of Xk(t) lines indicates the collapse of those droplets. A lo
log plot of the number of drops as a function of time for th
simulation shows good agreement with a scaling law of
form

N~ t !5O~ t22/5!, ~6.1!

see Fig. 14. This behavior is reproduced for the long-ti
behavior from broad classes of initial data and appears to

FIG. 12. Profiles of a typical subset of widely spaced, nea
identical droplets considered in the analysis of the scaling pro
ties of the coarsening process.
2-9
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K. B. GLASNER AND T. P. WITELSKI PHYSICAL REVIEW E67, 016302 ~2003!
the generic behavior of the coarsening process. We n
present a heuristic argument for the occurrence of
power-law scaling behavior in the coarsening dynamics
dewetting.

This scaling behavior can be derived by considering
dynamics given by Eq.~5.9! that control the collapse of a
single typical droplet in the array. Let this drop, with indexk,
have somewhat smaller mass~and hence higher pressurePk)
than its neighbors. We will assume that the separation
tween droplets,L is relatively large, so that we can negle
the droplet motion and focus on the equation for the evo
tion of the droplet pressures. By Eq.~4.16!, we haveCP
}P3, and from Eq.~5.9! it is clear that droplets with large
pressures~that is smaller masses! evolve on faster time
scales. In fact, we will show that the collapse of small dro
lets occurs in finite time. Using Eq.~2.6!, to leading order the
chemical potential yieldsV(hmin);e3P. Consequently, the
flux ~5.8! is approximated to leading order by

Jk,k11;2
e3Pk112e3Pk

L
. ~6.2!

Here we have assumed thatL'Xk112Xk is large compared
to the average droplet width and that we can neglect

FIG. 13. World linesXk(t) for a set of drops in a large arra
from a simulation of the coarsening dynamics given by Eq.~5.9!.
Xk(t) lines end when a droplet collapses to negligible mass.

FIG. 14. Log-log plot of the number of drops as a function
time. A line corresponding to the scaling law~6.1! is shown for
comparison.
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influence of droplet motion on the time scale for press
evolution. Therefore, the pressure evolution equation
comes

dPk

dt
}

e3

L
Pk

3~Pk1122Pk1Pk21!. ~6.3!

Since we have assumed thatPk@Pk61, the time scale for the
evolution of Pk is much faster than that of its neighbor
therefore this equation further reduces to the local mode

dPk

dt
}2

1

L
Pk

4 . ~6.4!

The solution of this model shows collapse of the droplet i
finite time, as the pressure diverges ast→Tc ,

Pk~ t !}S Tc2t

L D 21/3

. ~6.5!

If the initial pressure of the collapsing drop isP̄k , then its
collapse time scales like

Tc} P̄k
23L. ~6.6!

The typical droplet pressure relates to the mass byM} P̄22

@see Eq.~2.12!#. Both M and L scale likeN21 by the con-
servation of mass and the definition of the average separa
distance on a finite size system, respectively. Therefore
~6.6! yields the relation for the collapse time scale of theNth
droplet,

Tc}N25/2. ~6.7!

Note that during the collapse of each droplet, we assume
the separation distanceL is approximately fixed. Although
individual droplets will move, it seems evident again fro
the numerical simulations that theaveragedroplet spacing
will be unaffected. Therefore, the scaling~6.7! should be
correct when averaged over a large number of droplets.
also assume thatL varies on a slower time scale in respon
to reduction in the number of droplets due to collapse
individual drops, consistent with our assumption that the m
tion of droplets is slower than the evolution of pressures

As can be seen from Fig. 13, as time progresses, a rou
constant fraction of droplets vanish per unit time. We assu
that the droplet collapses are independent uncorrela
events. Therefore, at a given time a constant fraction of dr
lets will be collapsing, which means that the droplet numb
N(t) satisfies

dN

dt
}2

N

Tc
}2N7/2. ~6.8!

This may be integrated to yield the desired scaling relati

N}t22/5. ~6.9!
2-10
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VII. DISCUSSION AND CONCLUSIONS

We have given an asymptotic description of the late-st
coarsening dynamics of a one-dimensional dewetting
film. A similar description is anticipated for two-dimension
films, where the interdroplet flux will be derived from a two
dimensional elliptic boundary value problem analogous
Eq. ~5.3!. We also expect that a scaling law for the drop
number can be derived for two-dimensional films, whi
would be highly useful for comparison with experiments.

A further challenge is to understand the asymptotics
small e of droplets far from equilibrium. Since the additio
of conjoining forces provides a regularization of problem
for the motion of contact lines, the limiting dynamics fo
small e may provide insight into the connections betwe
intermolecular forces and macroscopic models for con
nd
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Our work has implications for coarsening processes

general. In certain regimes, it seems possible that collisio
droplets, as opposed to their collapse, is the mechanism
sponsible for coarsening. Because the mathematical struc
of our model is similar to those describing coarsening
binary mixtures, interface motion may be important for the
processes as well.
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