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Synchronization and intermittency in three-coupled chaotic oscillators
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Synchronization of three-coupled chaotic oscillators was studied with the use of a coupled map system
derived for interacting kicked relaxators. Partial synchronizati®®, in which two of the three were synchro-
nized, was observed in addition to complete synchronization. An intermittency associated with the breakdown
of the PS, seemingly different from the conventional on-off intermittency, was found. We elucidated the
statistics, observing the burst-size distribution, the laminar duration distribution, etc. It was found that the
breakdown of the PS generated an anomalous diffusion different from that associated with on-off intermittency.
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[. INTRODUCTION simple a model as possible. In order to do this, in Sec. I, we
construct a coupled map system using interacting kicked re-
Synchronization and desynchronization are quite ubiquilaxators for a general network system. In Sec. lll, we exam-
tous problems in coupled dynamical systems composed dhe the complete and partial synchronization of an equiva-
limit cycles or even chaotic oscillatof$,2]. Synchronization lently coupled three-chaotic map system, calculating the
among coupled periodic oscillators was first recognized bystability parameters. The statistical dynamics associated with
Huygens. On the other hand, even in coupled chaotic oscithe breakdown of the partial synchronization are studied by
lators, synchronization is observed when the trajectory instaPaying particular attention to comparison with the statistics
bility present in a chaos oscillator element is suppressed bgf on-off intermittency. In Sec. 1V, we discuss two kinds of
the coupling between oscillators. The synchronization bediffusion caused by the breakdown of partial synchroniza-
tween coupled chaotic oscillators was reported in R&. tion. Based on the continuous-time random waIkTRW)
When chaos synchronization is interrupted due to gheory, we analytically derive mean square displacements
change in coupling strength, an intermittency occurs, whicHMSDs) to find anomalous subdiffusion and ballistic motion
is different from those associated with either the destructioiollowed by normal diffusion. The statistical properties in
or the instability of limit cycle oscillation, known as the Vvarious scaling forms are also derived. We compare the
Pomeau-Manneville intermittencf4]. This is called the theory with numerical results in this section. Section V is
modulational intermittency or the on-off intermittency. devoted to concluding remarks. The general framework of
Chaos synchronization and the on-off intermittency are obthe CTRW and its implementation in our model are de-
served not only in mathematical modé&-16], but also in ~ scribed in the Appendix.
condensed matter physics and engineefiti¢g-25, and are
typi_cal nonlinear phenomena associated with coupled chaotic|; \iopEL OF THE COUPLED OSCILLATOR SYSTEM
oscillator systems.
The chaos synchronization attracts attention not only from Let us consider theéN-coupled kicked relaxator system
the viewpoint of ubiquity in nonlinear dynamics but also given by
from the applicability to engineering. In fact, after Pecora
and Caroll[26] showed that the chaos synchronization is dx)(t)
applicable to secret communication, numerous attempts have
been proposed to apply chaos synchronization to engineer-
ing. Furthermore, in addition to complete synchronization,
several kinds of synchronization such as partial synchroniza- dp{)(t) 0 0 ” 0
tion and phase synchronization have recently been proposedé — ;= —pV+FXY (t))n;_w S(t—t,)+Dx(1),
in many different contexts of coupled oscillator systdgrhls 7
The present study examined the synchronization and the

desynchronization problems in a coupled three chaotic oscil- i) ) , . .
lator system to clarify their differences from those in aWherex"’ andp®’ are, respectively, the physical quantity

coupled two-oscillator system. We discuss the@nd the corresponding momentum of tfth relaxator,t,

synchronization-desynchronization phenomenon with ag nT (n=0,1,2,3...,) T being the period of kicks, are the
times when the kicks are given ar>0) is a smallness

parameter. We impose the cyclic boundary conditi@h )
=x® and p(N*Y=p@) The termDx() denotes a linear
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for the spring-type coupling for an array of oscillators. For a

. A X)L = (x4 I F(xU D) — 26 (xD) + F(xU )]
moment, however, we do not require an explicit form of

coupling.
By putting

_( 0 1 )
M= e'D —et) @

the integration of Eq9(l) and(2) for t,,— d<t<t, ,—
being a positive infinitesimal quantity, gives

o £ o) o
P2, o0+ e P00

6, 6

N
) > bie
=1

where we putx{)=x0)(t,—8)=x9)(t,) and p{’=pU(t,
— 6). Here, ¢, is the matrix defined by

g(l) N g(f’)
e’ ( 21 ¢j€( n(e))- (6)

()]
We have used the fact that)(t) is continuous at=t,,
while pU)(t) is discontinuous at=t,, .

Let us take the limit— 0. After a short manipulation, the

evaluation of Eq(5) for e—0 leads to

N

E 3 f(x{), 7

andp,,;=Dx{),, where
f(X)=x+F(x) (8)

is the local map. The coupling kerng|, is defined by

N
Tng:{Zl Jje9e, 9)

whereg; is an arbitrary function of the lattice pointEqua-

tion (7) is an extension of the derivation of the mapping
system for a single relaxator with kicks and is the fundamen-
tal mapping system studied later in this paper. It is worth-—

while to note that for the present type of couphEng(“
=0, one gets

N N

2, 3= 2 = (10

j=1 =
This is the crucial condition for the existence of complete
synchronlzed oscillatiok(M=x@= ... =xM=x2, which
obeysx), ;= f(x0).

As simple models, let us consider the cases whth
=2, 3, and 4 with the coupling typ@). ForN=2, one finds

x0) = £ (x D) + I F (D) — F (X)), (11)

J=%(l—e’2°T), (12

where (,€)=(1,2),(2,1). FoN=3, one easily obtains

(j=1,2,3), (13

ng(l—e’?’CT), (14

wherex(V=x{"=x{  Furthermore, foN=4, the coupled
map system is given by
X = )+ 2O =20 ) + £ (xf )]

+ 3L F(x{ 72— 2F (xI) + F(xI T2, (15)

1
Jp=g(1-2e"*T+e 4°T),

(16)

1
Jy=7(1—e7T),

wherex{"Y=x®, xO=x{", x®=x1, andx®=x2. In

the present paper, using the the three-coupled map system
(13), we will study the synchronization-desynchronization
phenomenon, paying particular attention to statistics near the
breakdown of partial synchronization.

IIl. SYNCHRONIZATION AND ITS BREAKDOWN IN
THE COUPLED THREE-CHAOTIC MAP SYSTEM

A. Two types of synchronization and their linear stability

The three-coupled map model used in this paper is the
symmetrically coupled system,

X8 =f(x(P) + ILF (@) — 2F (x() + £ (x )],
X2 =1 (x@)+ I (xP) - 28 (x@) + £ (x(M)],

X=X +IF () =20 (XD + 1] (1D
Total and partial synchronization, bifurcations, and riddling
of the basin structure of a similar system are also analyzed in
Refs.[2,27]. Hereafter, we will use the logistic maf(x)
=ax(1—x) with a=3.8 whose local dynam|c9<n+l
=f(x,) has the Lyapunov exponeit=0.4322 ... . The
coupling constant is given asl=(1—e" D)/3 Where
D(>0) is chosen as the control parameter.

It is easily shown that Eq17) has two types of particular
motions. One is the completely synchronized moti@$),

NOENOENORVON 18)
and the other is the partial synchronized moti&9,
XD =)D =xD)
XP=xP£X®H  (i#]+#k). (19)

In the CS, the coupled oscillator system looks like a single
oscillator obeyingX(?), = f(X(?)). On the other hand, in the
PS the time evolution is determined by two degrees of free-
domX( andX(®). Although these particular motions exist,
their observability depends on their stability.
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The linear Stablllty of these solutions is determined by thegn~goe>‘\\”. Name|yy§n grows exponentia”y in time. This is

transverse Lyapunov exponent corresponding to each pag result of the chaotic local dynamics. This fact is irrelevant
ticular motion. First, we will discuss the stability of the com- g the stability of the CS. The linear stability of the CS is, on

pletely synchronized solutiok{”. In the CS, we find the other hand, determined by the temporal avere§e of
0 i i
XﬁfQﬁf(XE,O)). (20) A_L , which is called the transverse Lyapunov exponent,
given by

Three oscillators evolve in time just like one oscillator. By

adding infinitesimal perturbations{” around the particular NP=(A)=x-D. (25
motion (18), ) ] o
If (<0, the completely synchronized motioff® is lin-
xW=XxO+ 50 (i=1,23), (21)  early stable against a small deviation from the complete syn-
_ . chronization. Therefore, wheid>\=0.4322 .. .=D¢,
we get the perturbation equation the completely synchronized motion is stable. On the other
Py o217 3 ] pes hand, fora (90, i.g.,D<D8, the CS is linearly unstable.
This means that ad is gradually decreased from aboD(S,
S =t x| 3 1-23 87|,  the CS breaks down @°.
551321 J J 1—2J 5513) Next, we consider the linear stability of the partially syn-

(229 chronized motion. By putting"=x{>=X{", and substi-
tuting Eq. (19 into Eq. (17), the state variables in the PS

wheref’ (X)=df(X)/dX. The magnitude of the perturbation obey the equations of motion,

Sy=[oP+ 5P+ 6|13 obeys  8,.1=[f' (X)),

— el 'M5  On the other hand, the magnitude of the rela-

tive differencer,=|5("— 5()|/2 (i#]) obeys

X=X+ I (XD~ F(XM)],

X@ = t(XP)+2[f (XM —F(XP)]. (26)
rn+1:|f,(xgo))|e7Drn:eA(”0)rnv (23 . . L
This set of equations of motion is composed of two types of
whereA O =In|f'(X9)|-D is called the local transverse ex- oscillators similar to Eq(11). The crucial difference is how-
pansion rate. There are three identical equations for thre@ver that the coupling is symmetric in E4J) but it is asym-

choices of the oscillator numbeisandj. In terms of the metric in the present case. The linear stability of the PS can
guantity be examined by adding a small perturbation from the PS as

N

1 xV=xP+60  (1=1,3),
N=(nlE A= lim 5 2 n[f (X)L (24 ne o
=1

N—ox

XD =X 52 27
which is identical to the Lyapunov exponent of the local
dynamicsx,=f(xp), i.e., \j=A=0.432R2..., we find The perturbed equations are given by
|
DS frxPa-23  f1(xP) f(X{M)J D
8@, | = fr(X(M)J /(X)) (1-23) fr(X{M)J 82 (29
o), f/(XM)J /(X2 f/(xMy(1-23)/) \ &2

The magnitude of the deviation from the PS is measured byhere

ra=[6— %), From Eq.(28), we get .

1
A= ([ (X)) = fim = 3 Inff (X)) 3D
rn+1:|f’(X§11))|e*DrnEeA(nl)rn, (29) " NHOON = J

This formula looks the same as the transverse Lyapunov ex-
ponent(25) for the completely synchronized solution. How-
ever, in contrast to thaty is independent of the coupling
constant and has the meaning of the largest Lyapunov expo-
DO nent of the CSA™ depends on the coupling constdnhiand
AV=(AR)=A=D, (30 s different from the largest Lyapunov exponent of the PS.

where we defined the transverse Lyapunov expomﬁﬁtfor
the PS byA (M=In| ' (XxY)| —D. The linear stability of the PS
is determined by its time average
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FIG. 1. Coupling constant) dependence on
the transverse Lyapunov exponetys\ {9 [11] or
A [1] relevant to the stability of the completely
synchronized motion and the partially synchro-
nized motion, respectively. The inset is a blowup
(0.284<D=<0.285 and—0.06<y=<0.03).

0 0.05 0.1 0.15 02 D 025 0.3 0.35 04 0.45

Figure 1 shows the numerical results of the two kinds ofhavior are observed; the bifurcation diagrams thus show
the transverse Lyapunov exponents plotted as function of thkysteresis, which implies the coexistence of several attractors
coupling constanD. A{? is just the formula(25). On the in this range ofD.
other hand\ (") in Fig. 1 was calculated as follows. For an
initial condition XV, X{2(+X{M), we solved Eq(26) for a B. Statistics nearD?
given D. If the state variables eventually approaxiy” . . 1 )=y 1)
=X(?) for almost arbitrary initial conditions, the CS is stable First, consideD <D ,.wh_ere)\.l >0A[ <0, gnd there- .
for that value ofD. When the state variables do not approach]core Complet? synchronlzgtlon IS upstable, while }he partial
the CS motion, the dynamics are identical to the PS, and thefy"chronization is stablérig. 3). Slightly below D¢, the
we calculated\(f), carrying out the time averag@l). Fig- system eventually falls into the partial synchronization state

ure 1 shows thak (V) sensitively depends ob because of in which two of three oscillators are synchronized for almost

the existence of the window structure. There are three chaF’;}II initial conditions, showing a chaotic motion. Once the

o (1) o . system falls in this partial synchronization state, the two syn-
acteristic values oD, wherex} changels Its sign ab s chronized oscillators are never separated. Since the pair of
cr12anged. They arEDOOZ 0.4322..., D;~0.28455, and  ,ggillators which become synchronized depends on the initial
D:~0.20145. AtD=D¢, the stability of the CS changes. conditions, it is evident that there exist three equivalent par-
On the other hand, fob slightly aboveD; and slightly  tial synchronization states. This chaos shows no strong tem-
belowD?, the partial synchronization breaks down, and theporal correlation. The probability density for the state vari-
three oscillators evolve in time in a desynchronized wayable difference between desynchronized oscillators is shown
NearDﬁ the dynamics sensitively depend énbecause of in Fig. 4. Apparently it is different from the power law sta-
the window structure of the system. Hereafter, we will studytistics of the on-off intermittency 1~ 7,7~1). As ex-
the statistical characteristics ndar Dé. plained above, when the partial synchronization is stable,

In order to observe the synchronization, we define two oscillators eventually become synchronized. Namely,
one of the partial synchronization attractors is completely
. ‘ _ determined by the initial condition. It has been shown that an
Ali=x®— X0, (32) attractor is sensitive to the initial conditions and this is pos-
sibly another example of the riddled basin recently exten-
. . ) . ) sively studied in connection with the generation of on-off
If A}) vanishes, then thigh andjth oscillators are synchro- intermittency[2,27).
nized. The bifurcation diagrams of the system for a change Next, consider the dynamics in the parameter regio of
of D are displayed in Fig. 2. Figure(@ shows the bifurca-  slightly aboveD>D2, wherex!{Y>0 and the partial syn-
tion diagram obtained by gradually increasibgstarting at  chronized solution is weakly unstable. Figure 5 displays a
D=0, and Fig. 2b) is the result by gradually decreasiBy  typical time series of differences of the state variables. Since
starting atD =0.45(>D¢). Comparing Figs. 1 and 2, we find the partial synchronized state is weakly unstable, the state
that complete synchronization fwﬁ°)<0 and partial syn- points remain for a long time near the three former partial
chronization forD with \{¥>0\{"<0 are observed. Fur- synchronization attractors fdb<D?, chaotically jumping
thermore, forD§<D<0.2445, two kinds of dynamical be- among them. In this way, the present chaotic time series are
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08

FIG. 2. Bifurcation diagrams for the three-
coupled oscillator system as the coupling con-
stantD is changed, wherel;=A};! =x{)—x{ .
Figures(a) and (b) are the bifurcation diagrams
obtained by, respectively, increasing and decreas-
ing D. One observes hysteresis in the intermedi-
ate range of the coupling constant.

characterized as intermittent switching among the formeof oscillators, the probability density is independent of the
partial synchronization attractors. This situation is quitechoice of the oscillator numbeisand j(#i). In the small
analogous to the case in which the complete synchronizatioamplitude regionl <10 °, the probability density has the

is weakly broken as the control parameter is changed and ofgbwer law formp(l)~I~2 (a~1). This exponent is the
observes on-off intermittency. In order to study the statisticSsame as that observed in the on-off intermittency just after its
we observed the laminar length distributip(r), where the  gnset. On the other hand, in the region10~3, the prob-
laminar lengthr stands for the duration of one of the quasi- gpility density deviates from the power law and looks iden-

partial synchronized mot_ions near_the form_er attractors. Figtical to that in the asymmetrically coupled chaos showing
ure 6 depicts the numerically obtained laminar length distri-

. o , partial synchronizatioriFig. 3).
bUtIOEpS;'/)Z. It seems t_hat the probablllty dens_lty_ shows the Figure 8 shows the power spectrum Af;'z, which is
p(7r)~r law, which is an eminent characteristic of on-off g . i )
! . . : . : again independent of the choice of the oscillator numbers
intermittency[18], particularly in a long duration regionr( . . . . .
>10%). In contrast to the on-off intermittency case, a Char_and]. By noting that th_er_e are three characteristic regimes in
acteristic swelling is present near- 107, which may be due the frequency space, it is expected that there may exist two

to a certain correlation of the present system which is abserpharacteristic time scales in the time series. The characteris-
in on-off intermittency. tics are similar to those observed in on-off intermittency ex-

Figure 7 shows the probability density of the amplitudeCePt for the large frequency region. _ ,
I(=|A"|). Because of the symmetry of dynamical behaviors We then studied the time series of the quantity defined by

016212-5



TSUKAMOTO, MIYAZAKI, AND FUJISAKA

0.5

-0.5

0.5

5000

-0.5

5000

n 5000
107 T T T
10—10 _
=
10 F |
+
i
1 1 1 $
107 107 0.0001 0.01 1
|
0.5
g o
05
n 50000
0.5
g
0.5
n 50000
0.5
g
0.5

50000

016212-6

PHYSICAL REVIEW E 67, 016212 (2003

FIG. 3. Temporal evolutions of the differ-
encesA,! of state variables for an initial condi-
tion arbitrarily chosen for the coupling constant
D=0.284 (<Dg). One observes a partial syn-
chronization.

FIG. 4. Probability density of the magnitude
l,=|A}34=|A3Y in the partial synchronization
state. It is evident that the characteristic is differ-
ent from that of on-off intermittency.

FIG. 5. Typical time series of differences of
state variables in the region where the partial syn-
chronization is weakly unstable[D=0.2846
(>D2)]. One observes an intermittent switching
among the three former partial synchronization
attractors.
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0.1 T T T T
D=0.28456  +
D=0.2846 x
D=0.2848 %
. B/2 s
0.001 | ***
= 107 - FIG. 6. Probability density of the duration
= time of the quasipartial synchronization f@r
=0.28456, 0.2846, 0.2848. 101C¢° ensemble
members are used for the calculation.
107 |+
107 |
1 10 100 1000 10000
T
107° E
—_ 1078 . FIG. 7. Probability density of the amplitude
= I=|A})| for D=0.2846, 0.2848 withD=D.
The asymptotic lawP(l)<I~! appears in the
small amplitude region.
1070 g
10712 1 1 1 S
107% 10°¢ 0.0001 0.01 1
|
10 T T T T
D=0.28456  +
D=0.2846 x
D=0.2848 %
1k
- FIG. 8. Power spectra of the time series of the
\_?& dif‘ferenceA,lf2 for D=0.28456, 0.2846, 0.2848.
Except for a large frequency region, the charac-
teristic is similar to that of on-off intermittency.
01k
0.01
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X 150 - i FIG. 9. Time series oK, .
100 4
50 -
0 g
©0 0 50IOO 10(I)00 15(I)00 20(I)00 25EI)00 30&00 35EI)00 40(I)00 45(I)00 50000
n
2= \/m (33  the(stablg partial synchronized state observed in the asym-

metrically coupled equations of motion. In conclusion, the
observing its laminar duration distribution. This quantity time series of the broken partial synchronization has a struc-
measures how the state point is close to the former partighre which puts the laminar phase or the partial synchroniza-

synchronization attractors. Namely, if any of the thfﬁéjl tion chaos at the laminar phase of on-off intermittency.
is small, i.e., if any of the oscillator pairs is close to synchro-
nization, £, takes a small value. The time series®f, is IV. TWO KINDS OF DIFFUSION CAUSED BY

similar to that of on-off intermittency, to yield the probability BREAKDOWN OF PARTIAL SYNCHRONIZATION

density of the laminar duration & , following the 7~ 2 law o .

in a larger region. Now, we focus on the statistical properties of breakdown
From the above observation, we find that when the partiaPf partial synchronization. As shown in Fig. 5, the phase

synchronization is weakly broken the statistics of the dynamdifferenceAf consists of the following four states:

ics on long-time laminar duration and small amplitude of (V1) A}*~0 for x®~x(2),

state variable difference have the same statistics as those of (V2) irregularA L% with positive averagéA? =v>0 for

on-off intermittency. One finds from Fig. 5 that in the time x(®2)~x(®),

region whereA!J is not sufficiently small, i.e., théth and (V3) irregular A*? with negative averagéA?=—yv
jth oscillators are not close to synchronization, the other dif<0 for x(®)~x®),
ferenceAlX(k+i) takes a small value, i.e., thi¢h and the (V4) irregularA*?, A%3, andA3* at the same time for no

k(#j)th oscillators are approximately synchronized. Thepartial synchronization.
chaotic evolution in these time regions is almost the same as The above mentione@/2) and (V3) are the results from

D-0.28459 +
D-0.2846 X
D=02849 %

2

10° L

107

)

FIG. 10. Mean square displaceme() for
D=0.28459, 0.2846, 0.2849. Two kinds of the
power laws Eq(43) are given by lines.

2
n

10°

(X

1000

100 10000 10° 10°
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I

0 10000 30000 40000 50000
FIG. 11. Time series of, and 6, .

0 10000 20000 30000 40000 50000

the symmetry of the equation of motion. Let us regAr,in2 . 3
as the velocity of a particle, and we define its position at time sing' = E(X(l)_X(Z))_ (37)
nl

- The partial synchronizatior®=x(?) corresponds t@’ =0
X = E AL2 34 and 0’ =. In order to obtain one-to-one correspondence,
nT&y TN (34 we further define the new angle

As the first characterization of statistical properties of the 9=2¢" mod 2, (38)

breakdown of partial synchronization, we observe hdw
diffuses. The time series of,, is shown in Fig. 9. Corre-
sponding to the above mentionédl), (V2), and(V3), qui-
escent state, almost uniform motion with positive and nega
tive velocity are observed. The elemeri¥4) hardly
influences the diffusion at all. The duration time of each of
(V1)—(V3) equally distributes according to the power law
with the exponent—3/2 as we mentioned before. MSDs zation

2 H H —
{Xy) are shown in F|g 10. Note t.hi@(“>_p dlzje t02 the The elements(J1-J4 correspond, respectively, to the
symmetry. The transition from ballistic motif;,)=n" 10 4¢rementionedv1-Va4). The duration time of each ¢81)-
normal diffusion(X7)=n can be observed. We will compare (33 equally distributes according to the power law with the
these numerical results with those from the theory by use o xponent—3/2 as shown in Fig. 6. The time seriesrgfand
CTRW velocity model. , 6, are shown in Fig. 11. The former is totally chaotic. The
We now look at the switching of the pair of quasipartial element(J4) appears as a burst phaseép.
synchronizations. In the three-dimensional phase space gyjtching of the pair of quasipartial synchronizations is

.(X(l),{((z),x(s)), perfect slynchgoniz%tion is described by tra- yescribed by rotation in the plare. We define the total
jectories on the line, xX™=x(?=x(), and partial synchro- qtation angle as

nization is described by trajectories on either of the planes

Py xB=x@: p, xP=x®): and Pz, x=x1). We project n-1

the phase points onto the plafgerpendicular to the ling. 0,= 2 (61— 6y). (39
This line is degenerated to a point, three pla@s (i t=0
=1,2,3) are also degenerated to three lines on the fRane
We define the polar coordinate,@’) on the planeP as

so that three planeB; (i=1,2,3) correspond, respectively, to
0=0, —2=/3, and 27/3. Just after the breakdown of partial
synchronization, the anglé behaves as
© (31 6~0 for xH~x(?),

(J2) 0~ — 2713 for xP)~xB),

(33 0~2m/3 for xP~xD),

(J9 6 distributes on the plan® for no partial synchroni-

Note that® is defined not on { 7, 7] but on (—©,). The
time series o®,, and the MSDs of are shown in Figs. 12
KIXD)75 P75 (X=X} and 13. Transition fgom anomalous supdiffus(d(ﬁ)uﬁto
r= , normal diffusion(X7)=n appears. This behavior was ob-
2 served in the on-off diffusiofi28,29. We will compare these
(39 numerical results with those from the theory by use of the
1) () CTRW jump model. The general framework of the CTRW
,Lx=x (3 model and its implementation to our model are, respectively,
cosf' = —| —————xB (36 . . .
r ’ given in Appendices A and B.
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n
A. Statistical properties and scaling forms and 7 denotes the characteristic time given explicitly by Eq.
. B11), which separates the two kinds of diffusion. Note that
1. Velocity model forX ( ’
v _ o _ dy(z)~1 for z=1 andepy(z) o<z for z<1. Thus, the follow-
From the results of Appendix B, the MSD is given in the ing transition from the ballistic motion to the normal diffu-
scaling form as sion is obtained
(Xt) t
=yl —/, (40) 5 n (n>17)
X 43
2th 4'7' < n>oc n2 (t*<n<7), ( )
where
wheret* = o?7 is the characteristic time given by E@®@11)
2v%r 20D, at which the ballistic motion starts.
Dy= 3 = m (41
1 2. Jump model for®
and the scaling function is given by From the results of Appendix B, the MSD is given in the
scaling form as
(2)=a1-erfi\2)]+ ——(3-2 >+(1 3) ft\2)
z)=27[1—erf({z) ]+ ——=(3—2z - —lerf(\z), 2
v 2z iz ©H_ [t )
(42) 2Dt "N4r)
10° T T T T T T
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D-0.2049 X .. 7
105 L 1 o /'//
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1000 FIG. 13. Mean square displacement,
> =(032) for D=0.28456, 0.2846, 0.2849. Two

kinds of the power laws Eq47) are given by
lines.
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FIG. 14. Dependence on the transverse
Lyapunov exponenk (! of the diffusion constant
Dy, wherex=[A{"]72. Theoretical estimation
Eqg. (42) is given by the dashed line.

FIG. 15. Dependence on the transverse
Lyapunov exponerx=\ (Y of the diffusion con-
stantD ;. Theoretical estimation E@¢45) is given
by the dashed line.

FIG. 16. Scaling relationéX?)/2Dt vs t/4r
for D=0.28459, 0.2846, 0.2849. Theoretical es-
timation Eq.(42) is given by the dotted line.
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i FIG. 17. Scaling relationé®?)/2D t vs t/4r
= for D=0.28459, 0.2846, 0.2849. Theoretical es-
timation Eq.(46) is given by the dotted line.
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where retical curvesgy and ¢;, respectively. Good agreement is
also found here.
32 32
Do=sr= oM “9 V. SUMMARY

and We studied the synchronization and the desynchronization

problems in a coupled three-chaotic oscillator system to
clarify their differences from those in a coupled two-
by(2)= L+erf(2) + ! (e—z Vm erf( \/Z)) oscillator system. We discussed the synchronization-
2 2\nz desynchronization phenomenon with a simple model. For
(46)  this purpose, we constructed a coupled map system using
_ interacting kicked relaxators. First, we examined the com-
andt andX? denote the average laminar duration given byplete and partial synchronization of the equivalently coupled
Eq. (B9) and the second moment of the jump width given bythree-chaotic map system, calculating their stability param-
Eq. (B1), respectively. The first and the second terms apeters. Furthermore, the statistical dynamics associated with
proach 1 and 0, respectively, far>c, and 1/2 and Y7z,  the breakdown of the partial synchronization were studied by
respectively, forz—0, so that the following transition from paying particular attention to the comparison of the statistics
anomalous subdiffusion to normal diffusion is observed of on-off intermittency. Finally, we discussed two kinds of
diffusion caused by breakdown of partial synchronization.
n (n>7) Based on the CTRW theory, we analytically derived MSDs
Jn (t*<n<r7). (47 to find anomalous subdiffusion and ballistic motion followed
by eventual normal diffusion. The statistical properties in
This behavior was observed and analyf28,29 in the phe-  Vvarious scaling forms were also derived. Good agreement
nomenon called on-off diffusiof30]. between the theory and numerical results was also con-
firmed. We hope that the breakdown of partial synchroniza-
tion and its statistical properties discussed in the present pa-
per will be confirmed by experiment.

2z

ChE

B. Comparison between the CTRW theory
and numerical results

We performed numerical simulations for the coupled lo-
gistic map to obtain the MSDEX?) and(®2). Each of the ACKNOWLEDGMENTS
diffusion constantsD,, and D, is estimated by the least e would like to thank Hiroki Hata for illuminating dis-
squares method fde> r, wherer denotes the characteristic ¢yssions.
time given explicitly by Eq.(B11) which separates the two
kinds of diffusion.

Their dependences on the transverse Lyapunov exponent
AV are shown in Figs. 14 and 15. Our theofy
«(\") "2 shown in Eq.(41) andD ;=\ ") shown in Eq.(45) Following the description of Zumofen and Klaftg31],
are quantitatively in good agreement with numerical resultswe review the general framework of the CTRW theory. In
In Figs. 16 and 17, scaling relatiogX?)/2Dt vs t/4r and  the CTRW framework the random-walk process is entirely
<®t2>/2D st vs t/4r are plotted and compared with our theo- specified by (r,t), the probability density to move a dis-

APPENDIX A: GENERAL FRAMEWORK OF
CONTINUOUS-TIME RANDOM WALK
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tancer in timet in a single motiony(r,t) can be either the space the function is defined, e.@(k,s) is the Fourier-

decoupled case Laplace transform oP(r,t). The corresponding MSDs are
given in the Laplace space by
P(r,t)=(H)N(r), (A1)
2
or the coupled case (r3y;u(s)=— dPJ—V(ZkS) (A10)
' dk
k=0

P(r,t)=p(r[t)g(t), (A2)
where p(r|t) is the conditional probability to move a dis- APPENDIX B: IMPLEMENTATION OF CTRW THEORY
tancer in time t. The probability densityP(r,t) to be at TO OUR MODEL

locationr at timet will be calculated in terms od(r,t) for
the jump model and the velocity model. In order to obtain
P(r,t), we define the probabilitie¥ (t) and ¥ (r,t). W(t),
needed for the jump model, is the probability for not leaving
a position up to timed. This is related taj(r,t) by

For implementation of the CTRW model in our system,
we must specify the waiting time distributiof(t) and re-
lated function forms\(r) for the jump model ang(r|t) for
the velocity model.

As far as MSDs are concerned, a total specification of
\(r) is not needed. We need only to specify its nonzero and

V(t)= fwdt’f dry(r,t’). (A3) finite second moment
t
Similarly, for the velocity¥ (r,t) denotes the probability to EZEJ r2(r)dr, (B1)
pass at location at timet in a single motion event; thus, we -

may write and the symmetry(r)=\(—r). The latter implies that no

@ m drift motion is considered in the jump model.
\If(r,t)zp(r|t)f dt’J' dr’ (r't"). (A4) The coupled memonp(r|t) for the velocity model is
t Irl constructed along the elemerfisl-V3) as

In order to derive recursive expressions fofr,t), we 1
considerQ(r,t), the probability to arrive at exactly at time p(rit)= §{5(r)+ S(r—vt)+8(r+ot)}, (B2)
t and to stop before randomly choosing a new direction. Ir-

respective of which model we choose, the following reCUr\vhere the first, the second, and the third term describe the
sive relation holds:

quiescent statév1), the uniform motion with positive con-
t stant velocityv (V2), and with negative constant velocity
Q(r,t)zf dr’f dt’ Q(r—r',t—t")(r',t")+ 5(r)58(t). —v (V3), respectively.
0 Thus, the key functiongs(r,t), ¥(k,s), and¥(k,s) re-

(AS) quired in Appendix A are explicitly given by
The probability densityP,(r,t) for the jump model is then 1
related toQ(r,t) in the following way: P(r t)= §{5(r)+ S(r—vt)+8(r+ot)}y(t), (B3)
t
PJ(r,t)zf dt’ Q(r,t—t")Ww(t’). (AB)
0

1
Y(k,s)= §{¢(s)+ J(s—ikv)+g(s+ikv)}, (B4

Analogously, for the velocity model we assume that the
probability densityPy(r,t) is the probability to stop or pass 1(1—¢(s) 1—y(s—ikv) 1—u¢(stikv)
at locationr at timet and, thus, we have Yk =31 5Tk sTiko

(B5)

In order to specify the waiting time distributiop(t), we
aim to develop a picture in which, when the velocity is in its
In the Fourier (—k) and Laplace {—s) spaces, we have |aminar phase ofA%? or 6, the test particle stays in the
vicinity of one of the invariant manifoldéstays at a site of

t
Pv(r,t)=f dr’fodt’ Qr—r' t—t"HW¥(r',t"). (A7)

Py(r,t)= W(s) , (A8) the random walk gntil_a burst veI(_)c_it)_/ appears, whigh
1-4(k,s) makes the test particle jump to the vicinity of a neighboring
invariant manifold(jump to neighboring sites of the random
V(k,s) walk) for the jump model. For the velocity model a burst
Py(r,t)= 1—y(k,s)’ (A9) velocity causes switching between the statés—V3).

As observed numerically, the laminar time probability
where we introduce for the Fourier and/or Laplace transdensity satisfies a power law in a certain interval of time
forms the convention that the arguments indicate in whichmuch smaller than the characteristic time of the system. In
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this section, the laminar time probability density is derivedwhich guarantees the existence of the first moment. The av-
analytically by introducing a simple picture of dynamics in erage laminar duration is given by
the laminar phasg28].
As shown for the on-off intermittency, the motion in the — (= c
vicinity of the invariant manifolds on a logarithmic scale can t= fo ty(t) dt:m- (B9)
be regarded as classical Brownian moti@2—-34. As the L
distance from the invariant manifolds becomes larger, non- 1 Laplace transform af(t) is given by
linearity causes reinjection to the manifolds, which appears
as a burst phase in the time seriesAdf? or 6. w(s)=exd a(l—1+47s)], (B10)
Rewriting Eq.(29) in the continuous-time form, we have
the linearized equation governing the dynamics(@j inthe  wherer and « are defined as
laminar regime

dr(t) D, At (B11)
r T= s o= =—,
d(t =ADWr (), (B6) ()2 2D, 27

where A)(t) is the local Lyapunov exponent. On the loga- where the latter is the ratio of two characteristic time scales.
y The three independent paramethﬁ@, D, , andc are con-

rithmic scale, the dynamics in the laminar phase then obey '’ ) ) .
tained in ¢ (t). However,(s) contains only two indepen-

di(t) " dent parameters. This originates from the scaling invariance
50 AW, (B7)  of y(t) and y(s) under the transformatiom—uc, \{Y
—unY andD, —u?D, for an arbitrary real number, so
with | (t)=logr(t) [35]. These dynamics exist until the non- that the two parametersand « are relevant to on-off inter-
linearity becomes effective. We assume that the nonlinearitynittency.

is no longer negligible at=1. For rs<1 or 1<rs<1/a?, we can approximate(s) as
Let 74,75, ... be the durations of the laminar phase,
which can be approximated by the first passage time of the Y(s)=~1+a[l—J1+47s]. (B12)

Wiener process Eq(B7), in which the test particle starts o

from =1, and arrives at=1,. We can also approximate the As long asa=1/(27)<1, the above expression also holds

starting point as.=log(r(t)) by use of the average distance for rs~1, as asserted by the theorem of Tpi@l in the

from the invariant manifoldr (t)). limit &—0. In many cases;xe 2 andtece™ ! are satisfied,
Thus, it becomes obvious that the mean drift velocity ofwheree denotes the parameter distance from the bifurcation

the random variable logt) is given by the transverse point, so that the relation<1 is satisfied in the vicinity of

Lyapunov exponerit!" in Eq. (30), whose variance is given the bifurcation point.

by 2D, . The probability density of the first passage time of \We estimate the MSD$Xt2> and(@f) by using the in-

the Wiener process E¢B7) with starting pointl =1, goal  verse Laplace transforms @f?2),(s) and (r?),(s) in Eq.

| =1p>I., positive drift velocityh!"), and variance R, is  (A10), respectively. Using the waiting time distribution Eq.

given by[36] (B12), we have
c (\Pt—c)? w2 [ 1
t):—t‘3’2exp[——, (B8) a_ 7 - - —
VTN 4Dt U P N | B
wherec=1,—1.>0. We identify the above first passage time 2 —
with the laminar phase duration as well as the waiting time (02)= 2_5—1 1, yitars (B14)
of the CTRW theory below. Y dar s s |

It is clear now that the power law of the laminar time
distribution function is multiplied by an exponential function whereX?= [_r2\(r)dr=[d?\ (k)/d(ik)?]|x=o-
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