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Synchronization and intermittency in three-coupled chaotic oscillators

Nobunari Tsukamoto,* Syuji Miyazaki,† and Hirokazu Fujisaka‡
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Kyoto 606-8501, Japan
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Synchronization of three-coupled chaotic oscillators was studied with the use of a coupled map system
derived for interacting kicked relaxators. Partial synchronization~PS!, in which two of the three were synchro-
nized, was observed in addition to complete synchronization. An intermittency associated with the breakdown
of the PS, seemingly different from the conventional on-off intermittency, was found. We elucidated the
statistics, observing the burst-size distribution, the laminar duration distribution, etc. It was found that the
breakdown of the PS generated an anomalous diffusion different from that associated with on-off intermittency.
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I. INTRODUCTION

Synchronization and desynchronization are quite ubiq
tous problems in coupled dynamical systems compose
limit cycles or even chaotic oscillators@1,2#. Synchronization
among coupled periodic oscillators was first recognized
Huygens. On the other hand, even in coupled chaotic os
lators, synchronization is observed when the trajectory in
bility present in a chaos oscillator element is suppressed
the coupling between oscillators. The synchronization
tween coupled chaotic oscillators was reported in Ref.@3#.

When chaos synchronization is interrupted due to
change in coupling strength, an intermittency occurs, wh
is different from those associated with either the destruc
or the instability of limit cycle oscillation, known as th
Pomeau-Manneville intermittency@4#. This is called the
modulational intermittency or the on-off intermittenc
Chaos synchronization and the on-off intermittency are
served not only in mathematical models@5–16#, but also in
condensed matter physics and engineering@17–25#, and are
typical nonlinear phenomena associated with coupled cha
oscillator systems.

The chaos synchronization attracts attention not only fr
the viewpoint of ubiquity in nonlinear dynamics but als
from the applicability to engineering. In fact, after Peco
and Caroll @26# showed that the chaos synchronization
applicable to secret communication, numerous attempts h
been proposed to apply chaos synchronization to engin
ing. Furthermore, in addition to complete synchronizatio
several kinds of synchronization such as partial synchron
tion and phase synchronization have recently been prop
in many different contexts of coupled oscillator systems@1#.

The present study examined the synchronization and
desynchronization problems in a coupled three chaotic os
lator system to clarify their differences from those in
coupled two-oscillator system. We discuss t
synchronization-desynchronization phenomenon with
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simple a model as possible. In order to do this, in Sec. II,
construct a coupled map system using interacting kicked
laxators for a general network system. In Sec. III, we exa
ine the complete and partial synchronization of an equi
lently coupled three-chaotic map system, calculating
stability parameters. The statistical dynamics associated
the breakdown of the partial synchronization are studied
paying particular attention to comparison with the statist
of on-off intermittency. In Sec. IV, we discuss two kinds
diffusion caused by the breakdown of partial synchroni
tion. Based on the continuous-time random walk~CTRW!
theory, we analytically derive mean square displaceme
~MSDs! to find anomalous subdiffusion and ballistic motio
followed by normal diffusion. The statistical properties
various scaling forms are also derived. We compare
theory with numerical results in this section. Section V
devoted to concluding remarks. The general framework
the CTRW and its implementation in our model are d
scribed in the Appendix.

II. MODEL OF THE COUPLED OSCILLATOR SYSTEM

Let us consider theN-coupled kicked relaxator system
given by

dx( j )~ t !

dt
5p( j )~ t !, ~1!

e
dp( j )~ t !

dt
52p( j )1F„x( j )~ t !… (

n52`

`

d~ t2tn!1Dx( j )~ t !,

~2!

where x( j ) and p( j ) are, respectively, the physical quanti
and the corresponding momentum of thej th relaxator,tn
5nT (n50,1,2,3, . . . ,) T being the period of kicks, are th
times when the kicks are given ande(.0) is a smallness
parameter. We impose the cyclic boundary conditionx(N11)

5x(1) and p(N11)5p(1). The termDx( j ) denotes a linear
coupling term among relaxators, and, e.g., has

Dx( j )5C~x( j 21)22x( j )1x( j 11)! ~3!

-
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for the spring-type coupling for an array of oscillators. Fo
moment, however, we do not require an explicit form
coupling.

By putting

M5S 0 1

e21D 2e21D , ~4!

the integration of Eqs.~1! and~2! for tn2d<t<tn112d, d
being a positive infinitesimal quantity, gives

S xn11
( j )

pn11
( j ) D 5 (

,51

N

f j ,S xn
(,)

pn
(,)1e21F~xn

(,)!
D , ~5!

where we putxn
( j )5x( j )(tn2d)5x( j )(tn) and pn

( j )5p( j )(tn

2d). Here,f j , is the matrix defined by

eTMS j ( j )

h ( j )D 5 (
,51

N

f j ,S j (,)

h (,)D . ~6!

We have used the fact thatx( j )(t) is continuous att5tn ,
while p( j )(t) is discontinuous att5tn .

Let us take the limite→0. After a short manipulation, the
evaluation of Eq.~5! for e→0 leads to

xn11
( j ) 5 (

,51

N

Jj , f ~xn
(,)!, ~7!

andpn115Dxn11
( j ) , where

f ~x!5x1F~x! ~8!

is the local map. The coupling kernelJj , is defined by

eTDgj5 (
,51

N

Jj ,g, , ~9!

wheregj is an arbitrary function of the lattice pointj. Equa-
tion ~7! is an extension of the derivation of the mappi
system for a single relaxator with kicks and is the fundam
tal mapping system studied later in this paper. It is wor
while to note that for the present type of coupling( jDx( j )

50, one gets

(
j 51

N

Jj ,5 (
,51

N

Jj ,51. ~10!

This is the crucial condition for the existence of comple
synchronized oscillationxn

(1)5xn
(2)5•••5xn

(N)[xn
0 , which

obeysxn11
0 5 f (xn

0).
As simple models, let us consider the cases withN

52, 3, and 4 with the coupling type~3!. ForN52, one finds

xn11
( j ) 5 f ~xn

( j )!1J@ f ~xn
(,)!2 f ~xn

( j )!#, ~11!

J5
1

2
~12e22CT!, ~12!

where (j ,,)5(1,2),(2,1). ForN53, one easily obtains
01621
f

-
-

xn11
( j ) 5 f ~xn

( j )!1J@ f ~xn
( j 21)!22 f ~xn

( j )!1 f ~xn
( j 11)!#

~ j 51,2,3!, ~13!

J5
1

3
~12e23CT!, ~14!

wherexn
(0)5xn

(4)[xn
(3) . Furthermore, forN54, the coupled

map system is given by

xn11
( j ) 5 f ~xn

( j )!1J1@ f ~xn
( j 21)!22 f ~xn

( j )!1 f ~xn
( j 11)!#

1J2@ f ~xn
( j 22)!22 f ~xn

( j )!1 f ~xn
( j 12)!#, ~15!

J15
1

4
~12e24CT!, J25

1

8
~122e22CT1e24CT!,

~16!

wherexn
(21)5xn

(3) , xn
(0)5xn

(4) , xn
(5)5xn

(1) , andxn
(6)5xn

(2) . In
the present paper, using the the three-coupled map sy
~13!, we will study the synchronization-desynchronizatio
phenomenon, paying particular attention to statistics near
breakdown of partial synchronization.

III. SYNCHRONIZATION AND ITS BREAKDOWN IN
THE COUPLED THREE-CHAOTIC MAP SYSTEM

A. Two types of synchronization and their linear stability

The three-coupled map model used in this paper is
symmetrically coupled system,

xn11
(1) 5 f ~xn

(1)!1J@ f ~xn
(2)!22 f ~xn

(1)!1 f ~xn
(3)!#,

xn11
(2) 5 f ~xn

(2)!1J@ f ~xn
(3)!22 f ~xn

(2)!1 f ~xn
(1)!#,

xn11
(3) 5 f ~xn

(3)!1J@ f ~xn
(1)!22 f ~xn

(3)!1 f ~xn
(2)!#. ~17!

Total and partial synchronization, bifurcations, and riddli
of the basin structure of a similar system are also analyze
Refs. @2,27#. Hereafter, we will use the logistic mapf (x)
5ax(12x) with a53.8 whose local dynamicsxn11
5 f (xn) has the Lyapunov exponentl50.43212 . . . . The
coupling constant is given asJ5(12e2D)/3, where
D(.0) is chosen as the control parameter.

It is easily shown that Eq.~17! has two types of particula
motions. One is the completely synchronized motion~CS!,

xn
(1)5xn

(2)5xn
(3)[Xn

(0) , ~18!

and the other is the partial synchronized motion~PS!,

xn
( i )5xn

( j )[Xn
(1) ,

Xn
(2)[xn

(k)ÞXn
(1) ~ iÞ j Þk!. ~19!

In the CS, the coupled oscillator system looks like a sin
oscillator obeyingXn11

(0) 5 f (Xn
(0)). On the other hand, in the

PS the time evolution is determined by two degrees of fr
dom Xn

(1) andXn
(2) . Although these particular motions exis

their observability depends on their stability.
2-2
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The linear stability of these solutions is determined by
transverse Lyapunov exponent corresponding to each
ticular motion. First, we will discuss the stability of the com
pletely synchronized solutionXn

(0) . In the CS, we find

Xn11
(0) 5 f ~Xn

(0)!. ~20!

Three oscillators evolve in time just like one oscillator. B
adding infinitesimal perturbationsdn

( i ) around the particular
motion ~18!,

xn
( i )5Xn

(0)1dn
( i ) ~ i 51,2,3!, ~21!

we get the perturbation equation

S dn11
(1)

dn11
(2)

dn11
(3)

D 5 f 8~Xn
(0)!S 122J J J

J 122J J

J J 122J
D S dn

(1)

dn
(2)

dn
(3)
D ,

~22!

wheref 8(X)5d f(X)/dX. The magnitude of the perturbatio
d̄n5udn

(1)1dn
(2)1dn

(3)u/3 obeys d̄n115u f 8(Xn
(0))ud̄n

5elnu f8(Xn
(0))ud̄n . On the other hand, the magnitude of the re

tive differencer n[udn
( i )2dn

( j )u/2 (iÞ j ) obeys

r n115u f 8~Xn
(0)!ue2Dr n5eLn

(0)
r n , ~23!

whereLn
(0)5 lnu f8(Xn

(0))u2D is called the local transverse ex
pansion rate. There are three identical equations for th
choices of the oscillator numbersi and j. In terms of the
quantity

l i5^ lnu f 8~Xn
(0)!u&5 lim

N→`

1

N (
j 51

N

lnu f 8~Xj
(0)!u, ~24!

which is identical to the Lyapunov exponent of the loc
dynamicsxn115 f (xn), i.e., l i5l50.43212 . . . , we find
b
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e
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d̄n;d̄0el in. Namely,d̄n grows exponentially in time. This is
a result of the chaotic local dynamics. This fact is irreleva
to the stability of the CS. The linear stability of the CS is,
the other hand, determined by the temporal averagel'

(0) of
L'

(0) , which is called the transverse Lyapunov expone
given by

l'
(0)5^Ln

(0)&5l i2D. ~25!

If l'
(0),0, the completely synchronized motionXn

(0) is lin-
early stable against a small deviation from the complete s
chronization. Therefore, whenD.l i50.43212 . . .[Dc

0 ,
the completely synchronized motion is stable. On the ot
hand, forl'

(0).0, i.e.,D,Dc
0 , the CS is linearly unstable

This means that asD is gradually decreased from aboveDc
0 ,

the CS breaks down atDc
0 .

Next, we consider the linear stability of the partially sy
chronized motion. By puttingxn

(1)5xn
(3)[Xn

(1) , and substi-
tuting Eq. ~19! into Eq. ~17!, the state variables in the P
obey the equations of motion,

Xn11
(1) 5 f ~Xn

(1)!1J@ f ~Xn
(2)!2 f ~Xn

(1)!#,

Xn11
(2) 5 f ~Xn

(2)!12J@ f ~Xn
(1)!2 f ~Xn

(2)!#. ~26!

This set of equations of motion is composed of two types
oscillators similar to Eq.~11!. The crucial difference is how-
ever that the coupling is symmetric in Eq.~11! but it is asym-
metric in the present case. The linear stability of the PS
be examined by adding a small perturbation from the PS

xn
( i )5Xn

(1)1dn
( i ) ~ i 51,3!,

xn
(2)5Xn

(2)1dn
(2) . ~27!

The perturbed equations are given by
S dn11
(1)

dn11
(2)

dn11
(3)

D 5S f 8~Xn
(1)!~122J! f 8~Xn

(2)!J f8~Xn
(1)!J

f 8~Xn
(1)!J f8~Xn

(2)!~122J! f 8~Xn
(1)!J

f 8~Xn
(1)!J f8~Xn

(2)!J f8~Xn
(1)!~122J!

D S dn
(1)

dn
(2)

dn
(3)
D . ~28!
ex-
-

xpo-

.

The magnitude of the deviation from the PS is measured
r n[udn

(1)2dn
(3)u. From Eq.~28!, we get

r n115u f 8~Xn
(1)!ue2Dr n[eLn

(1)
r n , ~29!

where we defined the transverse Lyapunov exponentLn
(1) for

the PS byLn
(1)5 lnu f8(Xn

(1))u2D. The linear stability of the PS
is determined by its time average

l'
(1)5^Ln

(1)&5l (1)2D, ~30!
ywhere

l (1)5^ lnu f 8~Xn
(1)!u&5 lim

N→`

1

N (
j 51

N

lnu f 8~Xj
(1)!u. ~31!

This formula looks the same as the transverse Lyapunov
ponent~25! for the completely synchronized solution. How
ever, in contrast to that,l i is independent of the coupling
constant and has the meaning of the largest Lyapunov e
nent of the CS,l (1) depends on the coupling constantD and
is different from the largest Lyapunov exponent of the PS
2-3
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FIG. 1. Coupling constant (D) dependence on
the transverse Lyapunov exponents~y! l'

(0) @II # or
l'

(1) @I# relevant to the stability of the completel
synchronized motion and the partially synchr
nized motion, respectively. The inset is a blowu
(0.284<D<0.285 and20.06<y<0.03).
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Figure 1 shows the numerical results of the two kinds
the transverse Lyapunov exponents plotted as function of
coupling constantD. l'

(0) is just the formula~25!. On the
other hand,l'

(1) in Fig. 1 was calculated as follows. For a
initial condition X0

(1) ,X0
(2)(ÞX0

(1)), we solved Eq.~26! for a
given D. If the state variables eventually approachXn

(1)

5Xn
(2) for almost arbitrary initial conditions, the CS is stab

for that value ofD. When the state variables do not approa
the CS motion, the dynamics are identical to the PS, and
we calculatedl'

(1) , carrying out the time average~31!. Fig-
ure 1 shows thatl'

(1) sensitively depends onD because of
the existence of the window structure. There are three c
acteristic values ofD, wherel'

(1) changes its sign asD is
changed. They areD050.43212 . . . , Dc

1;0.28455, and
Dc

2;0.20145. AtD5Dc
0 , the stability of the CS changes

On the other hand, forD slightly aboveDc
1 and slightly

below Dc
2 , the partial synchronization breaks down, and

three oscillators evolve in time in a desynchronized w
Near Dc

2 the dynamics sensitively depend onD because of
the window structure of the system. Hereafter, we will stu
the statistical characteristics nearD5Dc

1 .
In order to observe the synchronization, we define

Dn
i , j[xn

( i )2xn
( j ) . ~32!

If Dn
i , j vanishes, then thei th and j th oscillators are synchro

nized. The bifurcation diagrams of the system for a cha
of D are displayed in Fig. 2. Figure 2~a! shows the bifurca-
tion diagram obtained by gradually increasingD starting at
D50, and Fig. 2~b! is the result by gradually decreasingD
starting atD50.45(.Dc

0). Comparing Figs. 1 and 2, we fin
that complete synchronization forl'

(0),0 and partial syn-
chronization forD with l'

(0).0,l'
(1),0 are observed. Fur

thermore, forDc
2,D,0.2445, two kinds of dynamical be
01621
f
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h
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e
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havior are observed; the bifurcation diagrams thus sh
hysteresis, which implies the coexistence of several attrac
in this range ofD.

B. Statistics nearDc
1

First, considerD,Dc
1 , wherel'

(0).0,l'
(1),0, and there-

fore complete synchronization is unstable, while the par
synchronization is stable~Fig. 3!. Slightly below Dc

1 , the
system eventually falls into the partial synchronization st
in which two of three oscillators are synchronized for almo
all initial conditions, showing a chaotic motion. Once th
system falls in this partial synchronization state, the two s
chronized oscillators are never separated. Since the pa
oscillators which become synchronized depends on the in
conditions, it is evident that there exist three equivalent p
tial synchronization states. This chaos shows no strong t
poral correlation. The probability density for the state va
able difference between desynchronized oscillators is sh
in Fig. 4. Apparently it is different from the power law sta
tistics of the on-off intermittency (; l 2h,h'1). As ex-
plained above, when the partial synchronization is sta
two oscillators eventually become synchronized. Name
one of the partial synchronization attractors is complet
determined by the initial condition. It has been shown that
attractor is sensitive to the initial conditions and this is po
sibly another example of the riddled basin recently ext
sively studied in connection with the generation of on-o
intermittency@2,27#.

Next, consider the dynamics in the parameter region oD
slightly aboveD.Dc

1 , wherel'
(1).0 and the partial syn-

chronized solution is weakly unstable. Figure 5 displays
typical time series of differences of the state variables. Si
the partial synchronized state is weakly unstable, the s
points remain for a long time near the three former par
synchronization attractors forD,Dc

1 , chaotically jumping
among them. In this way, the present chaotic time series
2-4
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FIG. 2. Bifurcation diagrams for the three
coupled oscillator system as the coupling co
stantD is changed, wheredi j 5Dn

i , j5xn
( i )2xn

( j ) .
Figures~a! and ~b! are the bifurcation diagrams
obtained by, respectively, increasing and decre
ing D. One observes hysteresis in the interme
ate range of the coupling constant.
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characterized as intermittent switching among the form
partial synchronization attractors. This situation is qu
analogous to the case in which the complete synchroniza
is weakly broken as the control parameter is changed and
observes on-off intermittency. In order to study the statist
we observed the laminar length distributionr(t), where the
laminar lengtht stands for the duration of one of the qua
partial synchronized motions near the former attractors. F
ure 6 depicts the numerically obtained laminar length dis
bution r(t). It seems that the probability density shows t
r(t);t23/2 law, which is an eminent characteristic of on-o
intermittency@18#, particularly in a long duration region (t
.103). In contrast to the on-off intermittency case, a ch
acteristic swelling is present neart;102, which may be due
to a certain correlation of the present system which is ab
in on-off intermittency.

Figure 7 shows the probability density of the amplitu
l (5uD i , j u). Because of the symmetry of dynamical behavio
01621
r
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,

-
i-

-

nt

s

of oscillators, the probability density is independent of t
choice of the oscillator numbersi and j (Þ i ). In the small
amplitude regionl ,1025, the probability density has the
power law form p( l ); l 2a (a'1). This exponent is the
same as that observed in the on-off intermittency just afte
onset. On the other hand, in the regionl .1023, the prob-
ability density deviates from the power law and looks ide
tical to that in the asymmetrically coupled chaos show
partial synchronization~Fig. 3!.

Figure 8 shows the power spectrum ofDn
1,2, which is

again independent of the choice of the oscillator numbei
andj. By noting that there are three characteristic regimes
the frequency space, it is expected that there may exist
characteristic time scales in the time series. The charact
tics are similar to those observed in on-off intermittency e
cept for the large frequency region.

We then studied the time series of the quantity defined
2-5
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FIG. 3. Temporal evolutions of the differ
encesDn

i , j of state variables for an initial condi
tion arbitrarily chosen for the coupling consta
D50.284 (,Dc

1). One observes a partial syn
chronization.

FIG. 4. Probability density of the magnitud
l n5uDn

1,2u5uDn
3,1u in the partial synchronization

state. It is evident that the characteristic is diffe
ent from that of on-off intermittency.

FIG. 5. Typical time series of differences o
state variables in the region where the partial sy
chronization is weakly unstable,@D50.2846
(.Dc

1)#. One observes an intermittent switchin
among the three former partial synchronizatio
attractors.
016212-6
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FIG. 6. Probability density of the duration
time of the quasipartial synchronization forD
50.28456, 0.2846, 0.2848. 105–106 ensemble
members are used for the calculation.

FIG. 7. Probability density of the amplitud
l 5uDn

i , j u for D50.2846, 0.2848 withD*Dc
1 .

The asymptotic lawP( l )} l 21 appears in the
small amplitude region.

FIG. 8. Power spectra of the time series of t
differenceDn

1,2 for D50.28456, 0.2846, 0.2848
Except for a large frequency region, the chara
teristic is similar to that of on-off intermittency.
016212-7
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FIG. 9. Time series ofXn .
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Jn[A3 uDn
1,2Dn

2,3Dn
3,1u ~33!

observing its laminar duration distribution. This quant
measures how the state point is close to the former pa
synchronization attractors. Namely, if any of the threeuDn

i , j u
is small, i.e., if any of the oscillator pairs is close to synch
nization, Jn takes a small value. The time series ofJn is
similar to that of on-off intermittency, to yield the probabilit
density of the laminar duration ofJn following thet23/2 law
in a larget region.

From the above observation, we find that when the par
synchronization is weakly broken the statistics of the dyna
ics on long-time laminar duration and small amplitude
state variable difference have the same statistics as tho
on-off intermittency. One finds from Fig. 5 that in the tim
region whereDn

i , j is not sufficiently small, i.e., thei th and
j th oscillators are not close to synchronization, the other
ferenceDn

j ,k(kÞ i ) takes a small value, i.e., thei th and the
k(Þ j )th oscillators are approximately synchronized. T
chaotic evolution in these time regions is almost the sam
01621
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f
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the ~stable! partial synchronized state observed in the asy
metrically coupled equations of motion. In conclusion, t
time series of the broken partial synchronization has a st
ture which puts the laminar phase or the partial synchron
tion chaos at the laminar phase of on-off intermittency.

IV. TWO KINDS OF DIFFUSION CAUSED BY
BREAKDOWN OF PARTIAL SYNCHRONIZATION

Now, we focus on the statistical properties of breakdo
of partial synchronization. As shown in Fig. 5, the pha
differenceDn

1,2 consists of the following four states:
~V1! Dn

1,2;0 for x(1);x(2),
~V2! irregularDn

1,2 with positive averagêD1,2&5v.0 for
x(2);x(3),

~V3! irregular Dn
1,2 with negative averagêD1,2&52v

,0 for x(3);x(1),
~V4! irregularDn

1,2, Dn
2,3, andDn

3,1 at the same time for no
partial synchronization.

The above mentioned~V2! and ~V3! are the results from
e

FIG. 10. Mean square displacements^Xn

2& for
D50.28459, 0.2846, 0.2849. Two kinds of th
power laws Eq.~43! are given by lines.
2-8
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FIG. 11. Time series ofr n andun .
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the symmetry of the equation of motion. Let us regardDn
1,2

as the velocity of a particle, and we define its position at ti
n,

Xn5 (
t50

n21

Dn
1,2. ~34!

As the first characterization of statistical properties of
breakdown of partial synchronization, we observe howXn
diffuses. The time series ofXn is shown in Fig. 9. Corre-
sponding to the above mentioned~V1!, ~V2!, and~V3!, qui-
escent state, almost uniform motion with positive and ne
tive velocity are observed. The element~V4! hardly
influences the diffusion at all. The duration time of each
~V1!–~V3! equally distributes according to the power la
with the exponent23/2 as we mentioned before. MSD
^Xn

2& are shown in Fig. 10. Note that^Xn&50 due to the
symmetry. The transition from ballistic motion̂Xn

2&}n2 to
normal diffusion^Xn

2&}n can be observed. We will compar
these numerical results with those from the theory by use
CTRW velocity model.

We now look at the switching of the pair of quasipart
synchronizations. In the three-dimensional phase sp
(x(1),x(2),x(3)), perfect synchronization is described by tr
jectories on the lineL, x(1)5x(2)5x(3), and partial synchro-
nization is described by trajectories on either of the pla
P1 ,x(1)5x(2); P2 ,x(2)5x(3); andP3 ,x(3)5x(1). We project
the phase points onto the planeP perpendicular to the lineL.
This line is degenerated to a point, three planesPi ( i
51,2,3) are also degenerated to three lines on the planP.
We define the polar coordinate (r ,u8) on the planeP as

r 5A~x(1)2x(2)!21~x(2)2x(3)!21~x(3)2x(1)!2

2
,

~35!

cosu85
1

r S x(1)2x(2)

2
2x(3)D , ~36!
01621
e

e

-

f

of
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s

sinu85
A3

2r
~x(1)2x(2)!. ~37!

The partial synchronizationx(1)5x(2) corresponds tou850
and u85p. In order to obtain one-to-one corresponden
we further define the new angle

u[2u8 mod 2p, ~38!

so that three planesPi ( i 51,2,3) correspond, respectively, t
u50, 22p/3, and 2p/3. Just after the breakdown of partia
synchronization, the angleu behaves as

~J1! u;0 for x(1);x(2),
~J2! u;22p/3 for x(2);x(3),
~J3! u;2p/3 for x(3);x(1),
~J4! u distributes on the planeP for no partial synchroni-

zation.
The elements~J1–J4! correspond, respectively, to th

aforementioned~V1–V4!. The duration time of each of~J1!–
~J3! equally distributes according to the power law with t
exponent23/2 as shown in Fig. 6. The time series ofr n and
un are shown in Fig. 11. The former is totally chaotic. Th
element~J4! appears as a burst phase inun .

Switching of the pair of quasipartial synchronizations
described by rotation in the planeP. We define the total
rotation angle as

Qn[ (
t50

n21

~u t112u t!. ~39!

Note thatQ is defined not on (2p,p# but on (2`,`). The
time series ofQn and the MSDs ofQ are shown in Figs. 12
and 13. Transition from anomalous subdiffusion^Xn

2&}An to
normal diffusion ^Xn

2&}n appears. This behavior was ob
served in the on-off diffusion@28,29#. We will compare these
numerical results with those from the theory by use of
CTRW jump model. The general framework of the CTR
model and its implementation to our model are, respectiv
given in Appendices A and B.
2-9
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FIG. 12. Time series ofQn .
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A. Statistical properties and scaling forms

1. Velocity model forX

From the results of Appendix B, the MSD is given in th
scaling form as

^Xt
2&

2DVt
5fVS t

4t D , ~40!

where

DV5
2v2t

3
5

2v2D'

3~l'
(1)!2

, ~41!

and the scaling function is given by

fV~z!5z@12erf~Az!#1
e2z

2Apz
~322z!1S 12

3

4zDerf~Az!,

~42!
01621
andt denotes the characteristic time given explicitly by E
~B11!, which separates the two kinds of diffusion. Note th
fV(z);1 for z@1 andfV(z)}z for z!1. Thus, the follow-
ing transition from the ballistic motion to the normal diffu
sion is obtained

^Xn
2&}H n ~n@t!

n2 ~ t* !n!t!,
~43!

wheret* 5a2t is the characteristic time given by Eq.~B11!
at which the ballistic motion starts.

2. Jump model forQ

From the results of Appendix B, the MSD is given in th
scaling form as

^Q t
2&

2DJt
5fJS t

4t D , ~44!
FIG. 13. Mean square displacementsYn

5^Qn
2& for D50.28456, 0.2846, 0.2849. Two

kinds of the power laws Eq.~47! are given by
lines.
2-10
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FIG. 14. Dependence on the transver
Lyapunov exponentl'

(1) of the diffusion constant
DV , where x5@l'

(1)#22. Theoretical estimation
Eq. ~41! is given by the dashed line.

FIG. 15. Dependence on the transver
Lyapunov exponentx5l'

(1) of the diffusion con-
stantDJ . Theoretical estimation Eq.~45! is given
by the dashed line.

FIG. 16. Scaling relationŝXt
2&/2DVt vs t/4t

for D50.28459, 0.2846, 0.2849. Theoretical e
timation Eq.~42! is given by the dotted line.
016212-11
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FIG. 17. Scaling relationŝQ t
2&/2DJt vs t/4t

for D50.28459, 0.2846, 0.2849. Theoretical e
timation Eq.~46! is given by the dotted line.
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where

DJ5
S2

2 t̄
5

S2

c
l'

(1) , ~45!

and

fJ~z!5
11erf~Az!

2
1

1

2Apz
S e2z1

Ap

2

erf~Az!

Az
D ,

~46!

and t̄ andS2 denote the average laminar duration given
Eq. ~B9! and the second moment of the jump width given
Eq. ~B1!, respectively. The first and the second terms
proach 1 and 0, respectively, forz→`, and 1/2 and 1/Apz ,
respectively, forz→0, so that the following transition from
anomalous subdiffusion to normal diffusion is observed

^Qn
2&}H n ~n@t!

An ~ t* !n!t!.
~47!

This behavior was observed and analyzed@28,29# in the phe-
nomenon called on-off diffusion@30#.

B. Comparison between the CTRW theory
and numerical results

We performed numerical simulations for the coupled
gistic map to obtain the MSDŝXn

2& and ^Qn
2&. Each of the

diffusion constantsDV and DJ is estimated by the leas
squares method fort@t, wheret denotes the characterist
time given explicitly by Eq.~B11! which separates the tw
kinds of diffusion.

Their dependences on the transverse Lyapunov expo
l'

(1) are shown in Figs. 14 and 15. Our theoryDV

}(l'
(1))22 shown in Eq.~41! andDJ}l'

(1) shown in Eq.~45!
are quantitatively in good agreement with numerical resu
In Figs. 16 and 17, scaling relations^Xt

2&/2DVt vs t/4t and
^Q t

2&/2DJt vs t/4t are plotted and compared with our the
01621
-

-

nt

s.

retical curvesfV and fJ , respectively. Good agreement
also found here.

V. SUMMARY

We studied the synchronization and the desynchroniza
problems in a coupled three-chaotic oscillator system
clarify their differences from those in a coupled tw
oscillator system. We discussed the synchronizati
desynchronization phenomenon with a simple model.
this purpose, we constructed a coupled map system u
interacting kicked relaxators. First, we examined the co
plete and partial synchronization of the equivalently coup
three-chaotic map system, calculating their stability para
eters. Furthermore, the statistical dynamics associated
the breakdown of the partial synchronization were studied
paying particular attention to the comparison of the statis
of on-off intermittency. Finally, we discussed two kinds
diffusion caused by breakdown of partial synchronizatio
Based on the CTRW theory, we analytically derived MS
to find anomalous subdiffusion and ballistic motion followe
by eventual normal diffusion. The statistical properties
various scaling forms were also derived. Good agreem
between the theory and numerical results was also c
firmed. We hope that the breakdown of partial synchroni
tion and its statistical properties discussed in the present
per will be confirmed by experiment.
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APPENDIX A: GENERAL FRAMEWORK OF
CONTINUOUS-TIME RANDOM WALK

Following the description of Zumofen and Klafter@31#,
we review the general framework of the CTRW theory.
the CTRW framework the random-walk process is entir
specified byc(r ,t), the probability density to move a dis
2-12
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tancer in time t in a single motion.c(r ,t) can be either the
decoupled case

c~r ,t !5c~ t !l~r !, ~A1!

or the coupled case

c~r ,t !5p~r ut !c~ t !, ~A2!

where p(r ut) is the conditional probability to move a dis
tance r in time t. The probability densityP(r ,t) to be at
location r at time t will be calculated in terms ofc(r ,t) for
the jump model and the velocity model. In order to obta
P(r ,t), we define the probabilitiesC(t) andC(r ,t). C(t),
needed for the jump model, is the probability for not leavi
a position up to timet. This is related toc(r ,t) by

C~ t !5E
t

`

dt8E dr c~r ,t8!. ~A3!

Similarly, for the velocityC(r ,t) denotes the probability to
pass at locationr at timet in a single motion event; thus, w
may write

C~r ,t !5p~r ut !E
t

`

dt8E
ur u

`

dr8 c~r 8,t8!. ~A4!

In order to derive recursive expressions forP(r ,t), we
considerQ(r ,t), the probability to arrive atr exactly at time
t and to stop before randomly choosing a new direction.
respective of which model we choose, the following rec
sive relation holds:

Q~r ,t !5E dr8E
0

t

dt8 Q~r 2r 8,t2t8!c~r 8,t8!1d~r !d~ t !.

~A5!

The probability densityPJ(r ,t) for the jump model is then
related toQ(r ,t) in the following way:

PJ~r ,t !5E
0

t

dt8 Q~r ,t2t8!C~ t8!. ~A6!

Analogously, for the velocity model we assume that t
probability densityPV(r ,t) is the probability to stop or pas
at locationr at time t and, thus, we have

PV~r ,t !5E dr8E
0

t

dt8 Q~r 2r 8,t2t8!C~r 8,t8!. ~A7!

In the Fourier (r→k) and Laplace (t→s) spaces, we have

PJ~r ,t !5
C~s!

12c~k,s!
, ~A8!

PV~r ,t !5
C~k,s!

12c~k,s!
, ~A9!

where we introduce for the Fourier and/or Laplace tra
forms the convention that the arguments indicate in wh
01621
-
-

e

-
h

space the function is defined, e.g.,P(k,s) is the Fourier-
Laplace transform ofP(r ,t). The corresponding MSDs ar
given in the Laplace space by

^r 2&J,V~s!52
d2PJ,V~k,s!

dk2 U
k50

. ~A10!

APPENDIX B: IMPLEMENTATION OF CTRW THEORY
TO OUR MODEL

For implementation of the CTRW model in our system
we must specify the waiting time distributionc(t) and re-
lated function formsl(r ) for the jump model andp(r ut) for
the velocity model.

As far as MSDs are concerned, a total specification
l(r ) is not needed. We need only to specify its nonzero a
finite second moment

S2[E
2`

`

r 2l~r ! dr, ~B1!

and the symmetryl(r )5l(2r ). The latter implies that no
drift motion is considered in the jump model.

The coupled memoryp(r ut) for the velocity model is
constructed along the elements~V1–V3! as

p~r ut !5
1

3
$d~r !1d~r 2vt !1d~r 1vt !%, ~B2!

where the first, the second, and the third term describe
quiescent state~V1!, the uniform motion with positive con-
stant velocityv ~V2!, and with negative constant velocit
2v ~V3!, respectively.

Thus, the key functionsc(r ,t), c(k,s), andC(k,s) re-
quired in Appendix A are explicitly given by

c~r ,t !5
1

3
$d~r !1d~r 2vt !1d~r 1vt !%c~ t !, ~B3!

c~k,s!5
1

3
$c~s!1c~s2 ikv !1c~s1 ikv !%, ~B4!

C~k,s!5
1

3 H 12c~s!

s
1

12c~s2 ikv !

s2 ikv
1

12c~s1 ikv !

s1 ikv J .

~B5!

In order to specify the waiting time distributionc(t), we
aim to develop a picture in which, when the velocity is in
laminar phase ofD1,2 or u, the test particle stays in th
vicinity of one of the invariant manifolds~stays at a site of
the random walk!, until a burst velocity appears, whic
makes the test particle jump to the vicinity of a neighbori
invariant manifold~jump to neighboring sites of the random
walk! for the jump model. For the velocity model a bur
velocity causes switching between the states~V1–V3!.

As observed numerically, the laminar time probabili
density satisfies a power law in a certain interval of tim
much smaller than the characteristic time of the system
2-13
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this section, the laminar time probability density is deriv
analytically by introducing a simple picture of dynamics
the laminar phase@28#.

As shown for the on-off intermittency, the motion in th
vicinity of the invariant manifolds on a logarithmic scale c
be regarded as classical Brownian motion@32–34#. As the
distance from the invariant manifolds becomes larger, n
linearity causes reinjection to the manifolds, which appe
as a burst phase in the time series ofD1,2 or u.

Rewriting Eq.~29! in the continuous-time form, we hav
the linearized equation governing the dynamics ofr (t) in the
laminar regime

dr~ t !

dt
5L (1)~ t !r ~ t !, ~B6!

whereL (1)(t) is the local Lyapunov exponent. On the log
rithmic scale, the dynamics in the laminar phase then ob

dl~ t !

dt
5L (1)~ t !, ~B7!

with l (t)[ log r(t) @35#. These dynamics exist until the non
linearity becomes effective. We assume that the nonlinea
is no longer negligible atl 5 l 0.

Let t1 ,t2 , . . . be the durations of the laminar phas
which can be approximated by the first passage time of
Wiener process Eq.~B7!, in which the test particle start
from l 5 l c and arrives atl 5 l 0. We can also approximate th
starting point asl c5 log^r(t)& by use of the average distanc
from the invariant manifold̂ r (t)&.

Thus, it becomes obvious that the mean drift velocity
the random variable logr(t) is given by the transvers
Lyapunov exponentl'

(1) in Eq. ~30!, whose variance is given
by 2D' . The probability density of the first passage time
the Wiener process Eq.~B7! with starting pointl 5 l c , goal
l 5 l 0. l c , positive drift velocityl'

(1) , and variance 2D' is
given by @36#

c~ t !5
c

A4pD'

t23/2expF2
~l'

(1)t2c!2

4D't G , ~B8!

wherec5 l 02 l c.0. We identify the above first passage tim
with the laminar phase duration as well as the waiting ti
of the CTRW theory below.

It is clear now that the power law of the laminar tim
distribution function is multiplied by an exponential functio
01621
-
rs

y

ty

,
e

f

f

e

which guarantees the existence of the first moment. The
erage laminar duration is given by

t̄ 5E
0

`

t c~ t ! dt5
c

l'
(1)

. ~B9!

The Laplace transform ofc(t) is given by

c~s!5exp@a~12A114ts!#, ~B10!

wheret anda are defined as

t5
D'

~l'
(1)!2

, a5
l'

(1)c

2D'

5
t̄

2t
, ~B11!

where the latter is the ratio of two characteristic time sca
The three independent parametersl'

(1) , D' , andc are con-
tained inc(t). However,c(s) contains only two indepen
dent parameters. This originates from the scaling invaria
of c(t) and c(s) under the transformationc→uc, l'

(1)

→ul'
(1) , andD'→u2 D' for an arbitrary real numberu, so

that the two parameterst anda are relevant to on-off inter-
mittency.

For ts!1 or 1!ts!1/a2, we can approximatec(s) as

c~s!'11a@12A114ts#. ~B12!

As long asa5 t̄ /(2t)!1, the above expression also hold
for ts;1, as asserted by the theorem of l’Hoˆpital in the
limit a→0. In many cases,t}e22 and t̄}e21 are satisfied,
wheree denotes the parameter distance from the bifurcat
point, so that the relationa!1 is satisfied in the vicinity of
the bifurcation point.

We estimate the MSDŝXt
2& and ^Q t

2& by using the in-
verse Laplace transforms of^r 2&V(s) and ^r 2&J(s) in Eq.
~A10!, respectively. Using the waiting time distribution E
~B12!, we have

^Xt
2&5

4v2

3
L 21F 1

2s3
2

1

2s3A114ts
G , ~B13!

^Q t
2&5

S2

4at
L 21F 1

s2
1

A114ts

s2 G , ~B14!

whereS25*2`
` r 2l(r )dr5@d2l(k)/d( ik)2#uk50.
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