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Cooperative dynamics in a class of coupled two-dimensional oscillators
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We study a system of globally coupled two-dimensional nonlinear oscillatsisg the two-junction super-
conducting quantum interference devic®QUID) as a prototype for a single elemé¢mach of which can
undergo a saddle-node bifurcation characterized by the disappearance of the stable minima in its potential
energy function. This transition from fixed point solutions to spontaneous oscillations is controlled by external
bias parameters, including the coupling coefficient. For the deterministic case, an extension of a center-
manifold reduction, carried out earlier for the single oscillator, yields an oscillation frequency that depends on
the coupling; the frequency decreases with coupling strength and/or the number of oscillators. In the presence
of noise, a mean-field description leads to a nonlinear Fokker-Planck equation for the system which is inves-
tigated for experimentally realistic noise levels. Furthermore, we apply a weak external time-sinusoidal probe
signal to each oscillator and use the resulficlgssical resonance to determine the underlying frequency of the
noisy system. This leads to an explanation of earlier experimental results as well as the possibility of designing
a more sensitive SQUID-based detection system.
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I. INTRODUCTION accompanying lowering of the response signal-to-noise ratio
(SNR) [6]. Among the nonlinear systems that have been
A large class of two-dimension&2D) nonlinear systems, studied in recent years, the dc SQUID has recently received
exemplified in this work by the two-junction or dc supercon- considerable attention, since it is a device that is severely
ducting quantum interference devi¢8QUID), is known to  constrained by noise-floor issues and one in which a detailed
display spontaneousi.e., in the absence of external driving study of the(noise-mediatedcooperative behavior in vari-
signals oscillations when the dynamical system crosses a@us regimes of operation can yield clever technigues for con-
threshold through a bifurcatioi]. The oscillations are pe- fronting noise-related performance issues that constrain cur-
riodic but nonsinusoidal, approaching sinusoidal behavior agent devices.
one goes farther past the bifurcation threshold. The oscilla- The dc SQUID[7] consists of two Josephson junctions
tion frequency is a function of the “distance” past the onsetsymmetrically inserted into a superconducting loop. It is the
of the bifurcation, and displays a characteristic scaling bemost sensitive magnetic field detector in existence and is
havior with respect to the bias parameter that controls thevidely used in a variety of fields including biomagnetics,
bifurcation[1]. In specific dynamical systems, the spontane-geophysics, communications, and explosives detection. If no
ous oscillation frequency may be computed, usually via axternal signal is present, the system can be in either of two
center-manifold reduction of the dynamics to a 1D normaldynamical states depending on the biadingually achieved
form. Applying an external sinusoidal signal to the system inby a combination of externally applied magnetic flux and
this state of spontaneous oscillation yields a very rich andias current to the SQUID logpa static or superconducting
complex dynamical behavi¢g] including a lowering of the  state wherein the potential function has stable minima corre-
noise-floor (when fluctuations are presgntis well as sponding to a conservation of total loop curréifie applied
frequency-mixing behavior characterized by the generatiomias current is balanced by the sum of the Josephson currents
of combination harmonick3] whose spectral amplitudes de- in the junction$ and a spontaneously oscillating or “run-
pend on the background noise. ning” regime wherein the potential minima disappear. The
When tuned near the onset of bifurcations, dynamical sysescillation (or running frequency has been computgsl; it
tems can display an enhanced sensitivity to external pertushows the scaling behavior referred to above.
bations with the response characterized by signal amplifica- Past research has focused primarily on designing and de-
tion [4], often with a concomitant lowering of an veloping sophisticated shielding and noise-cancellation tech-
environmental noise floofsee, e.g., Refd2,5]), but also niques to render SQUIDs more noise tolerant and has, almost
(depending on the parametensotentially adverse effects, exclusively, dealt with single SQUIDs. Recently, a new strat-
e.g., the amplification of environmental fluctuations with anegy has emerged: instead of trying to minimize noise, this
strategy searches for the area in parameter space where the
SQUID is optimally sensitive. Specifically, thgtochastic
* Author to whom correspondence should be addressed. Email adesonancegSR) effect[9] and its variations, have been stud-
dress: acebron@physics.ucsd.edu ied theoreticallyf10,11] and experimentally12], particularly
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near the onset of the saddle-node bifurcation from static tohe fact that due to the nonlinear nature of our derived FPE

running dynamics. While the spectral response and the awlassical results regarding linear FPEs including linear re-

companying SNR at the frequency of a weak sinusoidal tarsponse theory18,19 cannot be applied in general and alter-

get signal have been observed in experimgh# and simu-  native approaches are needed.

lations[10,11] to display a SR-like amplification, there are  (4) Coupling a time-sinusoidal target or probe signal to

indications that this is not completely in line with the “clas- €ach SQUID leads to a resonance in the averaged screening

sic” SR behavior. Specifically, we have observed a maxi-current when the signal frequency approaches the running

mum in the SNR in the space of thdeterministiccontrol fr_equency. This affords the p053|b|llty _of using a single de-

parametergéloop bias current and magnetic fluThe theory ~ VICE Or an array as a frequency-sensitive detector. _

in this paper and in earlier wofll3] provides an explanation ' N€ paper is organized as follows: After a rapid overview

for these experimental observations. of the d(_: SQUID dynamics in Sec. Il, we obtdigec. llI A)
Often, a dramatic enhancement in the system reSpongge_stat_lonary states and study the onset of the oscillatory

can be achieved by coupling elements in an af@. Mo- ~ '€gime in terms of' the two natural Iaboratgry control param-

tivated by this phenomenon, we study here the dynamicefters. the magnetic flub,,, and the dc bias currertfor

behavior in a globally coupled ensemble of dc SQUIDs with@rbitrary values of the coupling and numidéof SQUIDs. In

and without background noigassumed to arise mainly from Sec. Il B, we present an analytical calculation of the fre-

thermal fluctuations in the junctionsThe SQUIDs and their duency of the running state and its scaling in terms of the

bias conditions(including the coupling strengthsieed not distance fro.m the_ blf.urca'tlon point. This is foIIqwe{Sec.

be identical in practice, although some restrictions may bdV) by an investigation into the effects of noise on the

imposed by our desire to obtain analytical results. We studfoupled system dynamics. Finally, we discuss the inclusion

our globally coupled system both analytically and numeri-Of a smusmdal_ probe S|gnal in Sec. V. Our results are sum-

cally, finding that the system exhibits static and oscillatorymarized and discussed in Sec. VI.

regimes of operation, completely analogous to the single

SQU'D Case[Z,_8]. Our E::lnaIySiS stems from the Cen;[er- Il. BACKGROUND AND MODEL EQUATIONS

manifold reduction technique that was applied to the single

SQUID problem, and recently described semianalytic tech- In its simplest form, a dc SQUID consists of two Joseph-

niques for solving the 2D Fokker-Planck equati®PE) as-  Son junctions inserted symmetricallgsymmetric configura-

sociated with the Langevin dynami¢45]. This previous tions are also possible, in practice, but we do not treat this

work is conveniently generalized to treat tNeSQUID (N herg into a superconducting loop. The dynamics of this de-

may be arbitrary case with global coupling. vice are well knowr{7] and we offer only a rapid overview
Particular attention is paid to the underlyifige., running ~ without derivation. In terms of the Schdimger phase angles

frequency of the system. For the deterministic case, we find,» of the two (assumed identicajunctions we can write

an exact solution for the frequency of the running state. Foflown the measurable screening curreirt the loop,

the noisy case, however, a general technique to determine the

frequency is not available. With small noise levels, a center- .

manifold reduction of the dynamics to a 1D normal form, as Bl— =0,— 52—27T3 —2mn, (1)

was performed in Ref8] is, in principle, possiblésee also 0 0

Ref. [16]). However, for experimentally realistic values of

noise an alternative method needs to be applied. We hawsheref=2mL1,/®, is the nonlinearity parametel is the

recently shown[13] that the introduction of a sinusoidal junction critical currentlL is the loop inductancep, is an

“probe” signal leads to a classical resonance phenomenogxternal applied magnetic flux, andi;=h/2e is the flux

(also observed in Ref17] for a system undergoing a Hopf quantum. The quantum mechanical wave function along the

bifurcation which can be exploited to determine the under-superconducting loop must be single valued at any point in

lying frequency of the running state. space. This can be accomplished if the magnetic flux is quan-
Our main results are the following. tized which is ensured via the term containing the integer
(1) Increasing the number of SQUIDs renders the time-In the absence of noise and a target magnetic flux, we can

independentsuperconductingstationary state more stable, use the resistively shunted junction model to write down

restricting the accessible values of the parameter where weguations for the currents in the two arms of the SQUID via

can find an oscillatory solution. a lumped circuit representation; when transformed via the
(2) The frequency of the oscillatory solutions depends onJosephson relations=2eV, /%, linking the voltage and the

the coupling, with large coupling and/or lartyereducing the  quantum phase difference across the junctioihese equa-

frequency and extending the parameter regime for the exigions take the form

tence of stationary state; coupling can destroy the running

solutions. |
(3) A nonlinear FPE may be derived and solved in the 18 =2 —1—lysing,, 78,=

stationary state for the averaged screening current, the rele- 2

vant experimental observable. Notice that the Fokker-Planck

equation obtained for a single element is always a lineawhere r=#%/2eR R being the normal state resistance of the

partial differential equatiorisee, e.g., Refl18]). We stress junctions. The dc bias curreh is applied symmetrically to

lp
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the loop. Rescaling the time 1, one can write the above by a multistable potential and the long-time static solutions

in the form 8=—dU(4,,8,)/5 with the 2D potential ~discussed in the preceding paragraph, to one wherein pairs of

function defined as minima and saddles have coalesced to yield a potential with
points of inflection, followed byupon further adjustment of
the bias parameters potential with no minima. In this re-

U(61,6,)=—0C086,—C086,—J(61+ &) + ﬁ(‘sl_ 5 gime, the conservation relations are no longer obeyed unless
one includes an ohmic correction term and the SQUID is
=27 D)2, (3)  said to be in the “running regimefsometimes referred to as

] ] ) ] the “voltage regime’), characterized by spontaneous oscilla-
where we have mtrpduced the dimensionless bias cudrent tjons in the observablén this case, the screening curréjt
=1,/2lo and normalized applied flupe,=Pe/Po. A “saddle-node” bifurcation has occurred with the critical

In the static regime, one may set the time derivatives inyoint corresponding to a point of inflection in the potential.
Eq. (2) equal to zero, in the absence of any external timeThe spontaneous oscillations have zero frequency at the criti-
dependent signals; in practice, this could be done with timeca| point; past this point, the frequency increases with a char-
dependent signals if the signal frequency as well as the bangteristic scaling behavidi,8] with the distance from the
width of any underlying noise are well contained within the pifyrcation.
device bandwidth—*, ensuring that the device behaves like  Following this preamble, we start with an extension of the
a static nonlinearity. The resultant steady-state phase equgrgdel equationg2) to describe a system of globally linearly
tions are constrained by the continuity relation coupled dc SQUIDs, a network that can be experimentally

Dot L realized in a variety of ways. One possible experimental sce-
e _ (4) nario could be the following: a network of pickup coils is
®y connected in parallel to sense and sum the fluxes of all the
) , SQUIDs. Some of the resulting fluxiepending on the cou-
Notice from Eqs(2) and(1) that the screening currehis @ jing strength is applied to each SQUID by feeding back the
periodic function in the applied magnetic fluke,, 90iNg  total output current through a feedback coil. Since every
through one complete pyqlg for every flux qu_ant% ap-  sQUID can interact magnetically with the next neighbor,
plied. The inherent periodicity of the SQUID implies that it |g44ing to a local-type coupling, it is advisable to place each
cannot distinguish between zero applied field and any othegQU“:) in a shielded environment. This form of coupling
field that generates an integral number of flux quanta. Theregives rise to a near-global coupling similar to the one we
fore, in the numerical simulations of our system of differen-,5e proposed here, with each SQUID subject to a flux due
tial equations we have set=0 for simplicity. . to all the other SQUIDs in the same way. Global coupling is

Adding and subtracting the steady-state phase equationgiso most amenabl@f all the possible coupling schemee
we are led immediately to the current conservation relationgneoretical treatment.
for the loop, The theoretical(gariables of interest are the Sdinger

29=sing,tsind,, 21=l(sind,sinay). (5 Dhase dferencesy (j=1.2) across each Josephson junc-

52_ 51:2’77'”_277

Further, thel equation can be manipulated to yield a tran-
i i Tk "k ; Ik . K .
scendental equation for the screening current, |_51( ):Jk+(_1)1|__sm 51( ) j=12, k=1,... N,
k 0k

7
003{ sin~t @

wherel represents the screening currelitthe normalized

(to o) externally applied bias currenitg, the critical cur-
Equation(6) may be solved numerically for the screening rent of thekth junctions, andr,=7/(2eR,) is a characteris-
current; the ensuing transfer characteristi€) is periodic in ~ tic time constant R, being the normal state resistance of the
the applied flux®,, with period 1, and possibly hysteretic, junctions. The screening currerf (the experimental ob-
with the hysteresis loop width controlled by the bias currentservable of interegtat thekth SQUID is induced in the loop
J. ForJ=0 one obtains hysteresis for any non"neaﬁtyfor by an external magnetic ﬂ@e which is assumed identical
O<J$1' hysteresis OCcurs over some rang$oﬂinked to for all SQUIDS Each SQUID is inductively Coupled to the
a multistable potential functio. When the current conser- 0op currents of the remaining SQUIDs with equal mutual
vation equationg5) are satisfied, the SQUID s in its super- inductance coupling of strengM. The screening current can
conducting state with the state point resting in a potentiaPe written in the form
minimum, corresponding to a saturation state on the TC; in
this configuration, the bias current is balanced by the Joseph- B '_k S (S 2_77
son supercurrents in the junctions. Klow % 2 0

A close examination of potential functiai3) shows that

the externally adjustablévias parameterd., andJ control ~ whereB=2xLl /P, is the nonlinearity parameter of the
the symmetry and well depth, respectively. Adjusting thesekth SQUID, L being its loop inductance. Since the screen-
parameters leads to a transition from a regime characterizeédg currentl ,, appearing on the right hand side of E8) is

|
J+—

|
O '8—
lo

|
—=—sin
21,

I 21,

|
+ 7Dyt 'B—} .

, ®

D AMY 1,
m+#k
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itself a function of every other screening current, E8).

represents an infinite nested series.

In general, this series cannot be summed in closed form;
hence we expand in powers BF. To this end, let us rewrite
Eqg. (8) as A+B)I=A, where we define the following ma-

trices:

A=
0
2aM | 1
Dy
1
A=

B, 0--- 0O
0 B, O
0 Bn

1 1-- 1

0o 1-- 1

’ |:

1 1-- 0

SV -2md, 7

8P — 6P — 27D,

| 6N - 6N 270, |

Then, we obtain by simple iteration,

=A"1A

where we have defineﬁEA‘ll(l— MBA™1). For the spe-
cial case ofN=2, the sum in Eq(10) can be performed

1+Z

—~MBA™!

analytically; the result is

1
B 477'2|01I 02

D318,

Inserting Eq.(10) into Eq. (7), we arrive at our final set of

loa
B1

27TM IOll 02

Dy BB

L In/lon

l=ca,

27TM IOlI 02
®y Bi1B2

I02

B2

equations for the dynamics of theh SQUID,

T -
_kg(k):Jk+(_
Lok !

j:

IIl. GLOBALLY COUPLED SQUIDS WITHOUT NOISE

N

12, k=1,...N.

A. Onset of the running state

©)

(10

(11)

1)1, Cii( )= 69— 2md ) —sin s,
i=1

(12)
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FIG. 1. Phase diagram in the parameter spaké{,) of two
different SQUIDs 3,=0.4,8,=2). SS denotes the stationdie.,
superconducting solution, while RS corresponds to the running
state regime. The solid curves correspond to the uncoupled case
(M=0), and the dashed curve to the coupled okk=(0.1). The
screening current in th8; SQUID as a function of time is numeri-
cally calculated and displayed in Fig. 2 at the points markedlpy
J=04, ®,=0.35; (2) J=0.4, $,=0.41; (3) J=0.4, Dy
=0.47; and(4) J=0.2, ®.,=0.5.

state” characterized by oscillatory phases. The boundary be-
tween these states is plotted for two different valueg af
Fig. 1 (solid curve$. The phase space in Fig. 1 is spanned by
the two primary experimentally controllable parameters: the
bias current) and the normalized external fluk,,. Since
our equations are invariant undér,,—1—®,, the phase
diagram is symmetric around thie.,= 1/2 line. The region
in phase space which exhibits the running state is labeled RS
and the superconducting regime corresponds to SS. In the
superconducting state, all solutions of HE) approach a
fixed point, with the potential energy having stable minima
corresponding to the current conservatibs sin 8, +sin ,
—2J. In this state we can distinguish between two different
cases: In the first one, the so-called hysteretic regime case,
the system possesses four fixed points of which two are
stable(node$ and two are unstablésaddles This case oc-
curs for any value of the nonlinearitg when J=0, and
occurs over some range gf whenJ is different from zero.
In the second case, the system possesses only two fixed
points, one stable and one unstable. The running state can be
reached by increasing and keepingd., constant. In both
the hysteretic case and the nonhysteretic case the stable and
unstable fixed points coalesce in a saddle-node bifurcation at
J=1J.. PastJ., a limit cycle is created in a global bifurca-
tion, the attractor resulting from the chain ¢fmerged
saddle-node-saddle connectid@$).

The phase diagraitior a single SQUIDM =0) of Fig. 1

Before determining the onset of the running state for thecan obviously be obtained numerically; however, recent
coupled case, let us review the situation for a single SQUIDwork [10] has shown that it can also be found analytically.
As mentioned earlier, a single dc SQUID exhibits two differ- Consider the functiori = sind; +sind,—2J. In the supercon-
ent states of operation: a superconducting state where thucting state a plot of vs §; will have two or four zeros
long-time phases are time independent, and a “runninghysteretic or nonhysteretic regime, respectiyeit the on-
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set of the running state only one zero survives fawdl have T
a maximum. Sinced, is given by the continuity equatioh ~
—(8,— 8,— 27w ®,,)| B—sin5,=0 [obtained from the sys- f'
tem (2) in the long-time limii, the onset of the running state

can be found using the Lagrange multiplier technique: maxi-~

— M=0
- M=0.1

MMM

— M=0
-=- M=0.1 @

o

mize f subject to the condition]—(d,— 6,—27D.,)/B = -2

—sin§;=0. The phase diagram so obtaifd®] shows very

good agreement with experimental resyitg]. R e N S,
We can generalize this idea to the caseNoSQUIDs. t t

Without loss of generality we assume thai<pg,<---

< By . We start with the uncoupled case, using earlier results
[10] to obtain the critical point for each SQUID; specifically,
we find the critical values of the bias curredt,, for fixed iy
®,,. For our particular choice 0By we find thatd,;<J.,

@) = @

RVAVAVAVAY

<...<J¢n- Asin the single SQUID case, we seek extrema - 2
of the function f, now defined for the first SQUIDf,
=sind{P+sind’—2J, where we have assumed, for simplic-  +——s—a—m—s—— o560

ity, identically biased SQUIDs),=J for all k. Rather than ! '

having a single constraint we now havé&l2 1 constraints
given by

FIG. 2. Screening current of thg, SQUID, |, as function of

) ) the points(1)—(4) on the phase diagram Fig. 1. (@), for the
Li=J—sins{)+sin&{)—2J
N been displayed, showing the existence of bistabiliiyo solutions

+j§=‘,l Cij(6V— 8P —27d,,),

i=1,... N, (13 oM .
_ _ @y =€0s85)+ > Ci\i=0, (19)
Ki=—2J3+sins{’+sinsy’, i=2,...N. (19 963 =1
To find the extrema of, subject to the constraints ,K;, JH N
:‘Ni?[poprlmy the Lagrange multiplier technique and construct the pre) = iEl Ciohi+ A+ 1€0882)=0, (20)
u | 2 =
N
H(OD, 680 .80 o) =f,+ 3 AL D
i=1
N H X "
+ 0 Nian1Ki. (15 PO CinAi+Aon-1€085, 7 =0. (22)
=2 2 =

The extrema oH, (9H/(95g_i‘)2=0, i=1,... N, can be found

' . . N\, can be easily obtained, by summing E¢K5) and (20),
by solving the following system of equations:

time for the coupled|=2) and uncoupled case. Figures represent
coupled case, the evolution of two different initial conditions have

for M=0.1) of solutions. This corresponds to the hysteretic regime.

A =coss{P—\,(C +cos§<1))—§ Cii\i=0 A=1+ COS@(D: (23
(95(11) 1 1011 1 “, ithi— Y cosé‘(ll)
(16)
while the other multipliersy;, i=2,...,2N—1, are ob-
H 2) @) tained by solving the corresponding linear system of equa-
m——xz(czﬁ COS6y )—i#z Cithi+An+1€0867°=0,  tions. Once we eliminate the Lagrange multiplier, we
1 (17 obtain a single equation fo{’, i=1,... N. This set of
equations, along withL;=0, i=1,... N, and K;=0, i
=2,... N allow us to find the maximum of;, which will
depend ond.,. In addition, we require that such a maxi-
JH N-1 mum should coincide witti; =0 at the onset of the running
=— 2 Cinhi—An(Copt cosﬁ(l’\')) state. This results in a system of nonlinear equations that can
65(1N) =1 be solved. By selecting the appropriate solution one obtains
the critical value of the external flusb., (up to an integer
+\oy-1c088{V =0, (18)  constant
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FIG. 3. Phase diagram in the parameter spdc®{,) of three different SQUIDs8,=0.4,8,=2,8;=3). The screening current of the
B1 SQUID, |, as a function of time is numerically calculated and displayed at the points markéb By=0.9, ®.,=0.23; and(2) J
=0.9, ®,,=0.32, for the coupled casé/=0.1).

In Fig. 1, we show the results .of our calculation fdr y(k):(J_Jcl)_Aky(k)+ka(k)+Dk(y(k))2+2CkX(k)y(k)
=2 as a dashed line. Since for this valueNofve can sum
Eq. (10) exactly, the boundary is exact. Figure 2 displays the +Dy(x®)2,
time evolution of the screening curreht corresponding to J=0,
the B; SQUID for the points marke¢l) through(4) in Fig.
1. In Fig. 3 we show the phase diagram for three different

coupled SQUIDs, and the screening current of tBe M=0, (25

SQUID vs time is plotted. To obtain these results, we have

summed Eq(10) using ten terms. Our analytic results agreewhere  x®= 509 — 59 yW=30-_300, Ax

very well with numerical simulations, the relative error being = cos3{cosé, B=sin>¥sin ¥, Cy

less than 10°. =(1/2)co2¥sinsy, Dy =(1/2)sin3¥coss¥, and we
have introduced a rescaled coupling parameter

B. Frequency of the running state To analyze the center manifo]@Q], the linear part must

first be diagonalized. To this end, let us consider the follow-

. " . ing rotation:
Having found the locus of critical points for the onset of g

the running state we now proceed to find the frequency of the

spontaneous oscillations. As in Sec. Il A, we will make use [ V1] Y1
of techniques applied to the single SQUID c&8k For sim- ug X1
plicity, we consider SQUIDs with identical critical current i | =gl :
lok=1o, Normal resistanc&,=R,, and identical bias J; ’
=J). Rescaling time byr/1,, Eqgs.(7) and(10) yield UN YN

R L I 27 < lo - LA

=3+ ——| - sP 27D, —M D> — (5

Bk Qo 17k By - cosd; —sing; 0 O 0 0 T
siné cos¢d; 0O O--- 0 0
— )= 2m®,) |- sin s +0O(M?). (24) - ' '

We start the analysis of the coupled case by considering 0 0 0 0-- cosfy —sinfy
the dynamics in the vicinity of the fixed-point solution when | 0 0 0 O-- sinfy cosby |
J=J.,. Itis convenient first to rewrite Eq24) in terms of (26)

the sum and difference variablés® = (&9 + 589)/2, s®
:(5(1k)_5(2k))/2, Expanding Eq.(24) up to O((J—J)%)  Where tan 2k=—ﬁksin2§,k)coségk). The eigenvalues are
around the fixed-point solutioB ', s{, andJ=J., yields  given by

P 1 . 2 1 1 1
(K) Wy S o) _
xO 4B y®+ — > —(260)—27d 0———2A, ———A+———" k=2,...N.
kY ﬁk,-#kﬂj( 0 ex) "B g Tk B cos 2, R
(27)

Using the transformatiof26), Eq. (25) transforms into

. 2

(K — | —

X\ = +A
(Bk K

+22 >, XD+ Cp(x®)24 2D xWy® 1 ¢, (x(1)2,
7k
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Uy 0
=S : +S
iJN ‘J_‘Jcl
Lo L0
[0 0 0 0-- 0 0]_. _
2 o1
0 ——-2A, 0O O-- 0o ol u
1
+ . +S
0 0 0 0-- ¢ 0N
| Uy
I 0 in]
where . = — 18— A= (1/B)(1/cosd,). It can be

proven numerically that the eigenvalues are always negative
or zero. Thus, from center-manifold theory, the stability of

(=®,50y=(3),5{) neard=J., can be determined by

studying a one-parameter family of first-order ordinary dif-
ferential equations on a center manifold, represented by the
v4, and e variables. To compute the center manifold and

derive the vector field on the center manifold, we assume

ui=hi(v1,e)=ai(l)v%+ ai(2)801+ ai(3)82+ cee

The center manifold must satisf20]

ah,

fE_Bihi—gi:O, i=1,...,N-1,

wheref=D4(y)2+2C,xOyD+ D, (x1)2,

2
— = 2A,
1

-2

o ,

-N

N

(30

(31)
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0
e 1 :
— > — (28 -27®
51j¢1ﬂj( 0 e
: (28
0
e 1
Bn jEN B

D(y™)?+2CxWyM+ Dy (xH)?

(26— 27Dy,

2e > xW+Cy(x1)2+ 2D xMyD 4 ¢ (x(1)2
i#1

: . @9
Da(y™)?+2Cx My + Dy (xM)?

28 >, XD+ Cy(xN)2+ 2D xNyMN) 4 C (x(N)?2
7N

2e > xW+Cy(x1)2+ 2D xMyD 4 ¢ (x(1)2
i1

UL Day™)P 20X My Dy(xM)?

2¢e
i7

X+ Cy(xN)24+ 2D xNyMN + ¢ (x(N)?2
N

(33
From Eg.(32), equating terms of like powers to zero, the
coefficientsal’,b{" in expansior(31) can be obtained. Once

such coefficients are found, the evolutionugfon the center
manifold can be readily calculated as

N

1 _
2, 5 (28~ 27Dy
= i

. &
v1=(J—J;1)C0SO,— E
2

&
X sin 61+ av§+27lg—lvl+0((3—3cl)3), (34)

where 7;=(2/f;)cossing,, &=[2/(¢_;)]singsinG;, a
=c0s6;(D;—C;sin 20;)—sin,(C,—D4sin20;), and vy
=[2}\':2(1/ﬁj)(§jcosejsin01—njsinajsinal)]. Integrating
the last equation, we obtain the solution

= 2,4 2
P L4 > tar(t\/Fa—y§84)—yT, (35
a

where F = (- Je1)cost; —[ (el B =] o(11B;) (285
—27w®dg,)]siné,. Thus, for the frequency of the running
state we find

va(t)

f=VFa— ‘)/?84/2’77.

(36)
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FIG. 4. Two SQUIDs: Comparison between the numerical simu- FIG. 5. Comparison between the numerical simulations of the
lations of the system of equatioi® and the analytical frequency System of equation§’), and the analytical frequency fo¢=3 and
for two different values of the bias curredit(1) J=J.,+0.001 and N=4 SQUIDs, kept fixed the bias current do=J¢, +0.001. Pa-

(2) J=J,,+0.0005, with J,;=0.821152. Parameters arg, rameters are the same as in Fig. 4, and n@y=1.1, and g,
=0.9, 8,=1, and®,,=0.2. =13.

The most salient feature of this expression is that the fre- 1 X lo T
quency of the running state decreases when the coupling =2 _( 8y — 88)— _(I)ex)- (38)
. : < _ N =1 B @,
increases. In fact, there exists a critical value of the coupling
[obtained by setting the right hand side of £86) equal to  Then Eq.(37) reads
zergl above which the oscillation frequency is zero: too
strong a coupling “kills” the running states. Thus, the cou- (—1)! 27 Ml
pling strength can be used to tune the system towards the5](k)=..]+ 1
bifurcation point, a feature we will use below when we dis- B ®oBk N
cuss ways to improve SQUID sensitivity. Also, we have nu- 2
merically verified that increasing the numbeérof SQUIDs
results in a decrease in the frequency.

Figure 4 shows a comparison between the numerical — ) ) o )
simulations of the system of equatiof® and the frequency WhgreM =M N. We are mtere_sted in the analytical investi-
obtained by using the analytical expressig6) for the case gation of the Langevm dynamics above, for the case of very
of N=2. The agreement between the numerical results anff"9e N. A neat picture of such a case can be given by the
the analytical results is excellent, particularly, as expectediMiting model obtained wheh— < (thermodynamic limit

for small values ofl—J.,. Figure 5 shows a similar com- In this limit, it is well known[21,22 that models with mean-
parison for the cased=3 andN=4. field coupling are described by an evolution equation for the

one-particle probability density. This can be seen by noting
that the hierarchy of equations for all the multiparticle prob-
IV. GLOBALLY COUPLED SQUIDS WITH NOISE ability densities can be closed by assuming molecular chaos.
In such a way, the one-system probability density
(61,68,,t) is asymptotically in the limitN—<«, the solu-
on of the followingnonlinear Fokker-Planck equation:

~ M| =sin o9+ 60+ O(M?), (39
0

In this section, we analyze the model equati¢®4) in
presence of thermal noise. Specifically, we investigate thg
Langevin dynamics :

) % _p| 20+ Z0 7 = L), (40)
. (-1 2 lo —=D|ot+ 35|~ =5 (vip)— < (vyp).
() — 2T ] s (k) S 25 ot d67 9o a6 4o
&=+ B 80— 500 —27d,, CDOM#k l(al 1 96 1 2
The drift terms are given by
— &) —27de | —sins+ gV +oM?),  (37) L
01(511521'[):3_Eﬂ(51,52)_5in51, (41)
where ¢’s are Gaussian white noises, wiflg"(t))=0,
(£ EM () =2D 6 simd(t—t'). _;,. 1 g
Taking into account the mean-field-type coupling, the v2(51'52’t)_‘]+577(51’52) sinéa, (42)
model (24) can be written in a more convenient form by o B
defining the average screening currént where n=358,—6>—2m®Po— (27 M/ D) 1.

016210-8
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The probability density is required to berperiodic as a  and coupling term (2 M/®,)1 should also be periodic.

function of §;, and &,, and normalized according to Then, the expression fay is
27 (27
JO JO p(61,8,,1)d6,d5,=1. (43) n=061—6,— 27D oy— (271 M/ D)l
<] _ | o o
In order to satisfy the periodic boundary conditions, the co- =i2 -1 [ 1101 82~ 2oy (27 MIDQ)1]
efficients appearing in the drift terntd1), (42) must be pe- = |

riodic, and the functiorny(48;,,) should be continued peri-
odically as well. On the other hand, to satisfy the flux
periodicity in the screening current, and reproduce the be-
havior found in Eq(6) for a single element, the flux2b.,, = The average screening current is now given by

— e i 1[01= 827D (2 “7/‘1’0“_]]. (44)

_ 2@ (27 1
|(t)=|of dﬂf(ﬁ)f dJQ(J)f d(bexh(q)ex)Jo fo d51d52E77'(51,52)11(51-52,'[), (45)

where 7' (68;,8,) is the periodic continuation of;— 35,  method (see, e.g., Ref[18]) for a single SQUID already
—27®d.,. For completeness, we have allowed for the posderived in Ref.[15]. The idea is to expang in Fourier
sibility that the parameter values, J, and ®., may be series,
drawn from distributionsf(8), g(J), andh(®,,), respec-

tively. However, for simplicity, we will restrict ourselves to M NS i ms
identical SQUIDs in the remainder of the paper. As in other P(51v52vt)=n=2w m;m rp(tye o™ (49
systems of coupled stochastic equati¢@8], the FPE de-

rived he_re is nonlinear whiqh can be easily seen by inserti”%xploiting the 2r periodicity in 8, and 8,. The coefficients
Eqg. (45) into Eq(40) Thus, ||:1 contrast to the Slngle SQUID rnm in Eq (49) are CompleX valued, Whll@ is real valued.
cas€ 15], where the FPE is linear, we can expect more Com"l’hus,rnmz(rjﬂ”)*, where * denotes the complex conjugate.

plicated dynamical behavior. From the normalization condition43), it follows rg

For the special cas&=0, it is possible to find an analyti- 5 ; . .
cal solution for long time, assuming that a steady-state re;_ 1/(2ar)”. Introducing Eq(49) into the FPE, we obtain the

gime is reached. The stationary solution is given, in this cas{%lec;m?gn?s'ﬁ?_mhy of ordinary differential equations for the
ne

© o

by
. n
po(é‘l,&z;ﬁ,cbex):ae*(llzﬁ D)nze(l/D)COS(?le(llD)COS52, rnm: —D(n2+m2)rﬂq—i J(n+m)rnm+ E(rnmfl_rnm+1)
(46)
m -
where +E(r“m 1_r”m+1)
o -1 n—-m —1)!*t —
= fz 2 dé,ds,e (128 D)7 g(1ID)cosd; o(1/D)coss, | + 3 > ( I) {cog§ 27 |(Peyt M 1)](r!
o Jo !
4 _
@7 —rp) =i sinf 2 [t M D +rieh},
and
n=-—co,,..0© m=—o, . .o |=1...00o (50
_ 27 (2w 1 o
| =|of0 . d51d525(51— Op—2mn where the average screening currens given by
_ ) _ I o (=1) A
ZW(Dex)pO(&la(SZ:ﬁrCDex)r (48) |(t): _0 87722 I ) Im(r|—|el 27T|(I>ex) ) (51)
=1

B

where it should be noted that the average screening current

in Eq. (46) is determined self-consistently via E@8). The numerical method consists of truncating the infinite hi-
In order to study the solution of the FPE in more cases ofrarchy of first-order, coupled nonlinear differential equa-

interest, we have to invoke numerical simulations. To solvdions, for a reasonable number of coefficients=

the nonlinear FPE, we utilize our recently developed numeri—N, ... N, and m=—M, ... M, settingry,=r_N_}

cal method, which consists of a generalization of the spectra+=0. For the truncation of the system of infinitely many non-
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0 . . , 1.2
—— Analytical
o Numerical 10 0 ®=0.26
! " =06
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S
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M ®

FIG. 6. Comparison between the average screening cutrent  FIG. 7. Power spectra of the screening current for a flux-injected
obtained by solving numerically the nonlinear Fokker-Planck equaprobe signal withw,=0.26 andw,=0.6. The peaks at the probe
tion (spectral methoxgl and the analytical solution for different val- frequency are denoted by a solid square and open circle, respec-
ues of the coupling strengti. SQUIDs are identical, and param- tively. Parameter values ar®=0.05, =1, J=0.4, ®./®g
eters are)=0, B=1, ®,,=0.4, andD=0.1. =0.45,9=0.0025, andvi =0.02.

linear ordinary differential equations some experimentatiortime-dependent solution, but does require an alternative way
has been made, according to the following strategy: a numo find the frequency. Fortunately, as we will see below, in-
berN, 2N, 4N of coefficients has been used, and the choiceluding an external time-sinusoidal probe signal leads to a
of N (similarly with M) was made when the absolute error in classical resonand@lso observed in Ref17] for a system

p dropped below a given tolerance, typically 16, The sys-  yndergoing a Hopf bifurcationwhich can be used to deter-
tems of ordinary differential equations have been solved by @jine the underlying frequency.

variable step Runge-Kutta-Fehlberg scheme. We will consider an external flux that has a time-

We have compared the numerical solution obtained Vi soidal componeriteferred to in the figures, as the flux-
the nonlinear Fokker-Planck approach for a one-SQUID

. . _ (0) .
probability density, to the solution of the Langevin equations"ﬁ.”ecpe(.j probe S|gn;1I<IJ_e q>_e “q Sm(“’.pt) a"?d assume, for
for a large number of SQUIDSN=500). The solution of the simplicity, that all the junctions have identical critical cur-

FPE, corresponding to the limiting modgorresponding to "f“'m.3|0' As an ‘?‘S‘de' we mention here Fhat we have obtained
N— ) provides(not shown excellent agreement with the similar qualitative results when keeping the external flux

N-finite case. This shows thal=500 is already close to constant and adding a singsoidal component to the bias cur-
infinity for a practical purpose. Finally, Fig. 6 shows a com-"€nt(see the Appendix To illustrate the effect of the probe
parison between the analytical and numerical solutions of théignal, we first performed Langevin simulations fide=2

FPE for the casgd=0 for different values of the coupling and calculated the average screening curtetih Fig. 7 we
parameteiM. The perfect agreement between the analyticahave plotted the power spectrum of this quantity, for two

and numerical results validates our numerical scheme.  different probe signals; one with a frequeney that differs
significantly from and one that is very close to the underly-

ing frequency. The power spectrum was obtained by averag-
ing 100 time series of 2 time steps each. The figure illus-
A. Numerical results trates clearly that for a probe signal frequency that matches

For the deterministic case we have already found that thi'€ Proad peakcorresponding to the, in-general, nonsinusoi-
coupling strength changes the frequency of the running stat&@l running oscillationsin the power spectrum of the un-
To investigate the effect of the coupling strength in the noisyProbed system, the signal is amplified dramaticdliypen
case we need to determine the underlying frequency of theircle). Thus, adding a probe signal gives us a tool to inves-
system. One way of determining this frequency is to comligate the dynamics of the noisy system.
pute 1 from the Langevin equations and evaluate its time 10 explore parameter space systematically let us now turn
dependence. Unfortunately, this is computationally veryl© theé FPE. In Fig. 8, we have plotted an example of the
costly. On the other hand, our extensive numerical investigatesult of a simulation of the FPE. It shows tHabecomes
tions have shown that calculated from the FPE, which of- nearly purely sinusoidal when we include a sinusoidal probe
fers a computationally superior way to characterize the sys$19nal after a transient. It also shows that the amplitude of
tem, does not display a time-dependent behaj2#. Of  the oscillations inl, AT, is a function ofw,. This is also
course, this finding does not rule out the existence of a stabllustrated in Fig. 9 where we showlz—lz (see below, for two

V. INCLUSION OF AN EXTERNAL PROBE SIGNAL

016210-10
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00 ' ' ‘ ' this end, we calculated the power spectrum af described
above forN=500. The comparison is made easier by the
04 fact that the output signal is essentially sinusoidal which al-
lows us to reIateA%/Z to the peak in the power spectrum.
This power spectrum, for two different values ef,, is
-02 shown in Fig. 9 as an inset. The peaks of these power spec-
= trum are plotted as symbols in Fig. 9 and demonstrate that
08 the FPE accurately describes the dynamics, at least for
N=500.
-04 ¢ 1 B. Towards a theory
Analytical progress can be made if we consider a small
-05 amplitude signalg=¢Q, wheree<1. Thus, Eq.40) con-

0 80 160 240 820 400 tains terms with two different time scales and can be ana-
lyzed via the method of multiple scales. It is then to be
, , _ — expected that an appropriate asymptotic method will be able
FIG. 8. Time evolution of the average screening curreror to capture the long-time behavior pf This may be achieved

two different values of the frequency of the flux-injected probeb introducing fast and slow time scales as follows:
signal: w,=0.26, w,=0.6. Parameters ar®=0.05, g=1, J g '

=0.4, q>(e8>=o.45, andq=0.01. ¢
B T=—, t=t. (52)
different values oM, as a function ofw,. The appearance

of a well defined peak in Fig. 9 demonstrates the classical o ] o o
resonance effect. We look for a distribution function which is a2 periodic

Of course, the FPE is strictly valid only fot—c, how-  function of §; and 6, according to the ansatz,
ever, we have seen that the Fokker-Planck approach already
yields quantitatively correct answers for relatively small val-
ues ofN. Furthermore, the qualitative behavior f§r=2 and p(81,8,,te)= > p"M(8,,8,,t,7)e"+0(3). (53
N—oo is mostly the same. In particular, both limits display n=0
the characteristic resonance of Fig. 7. As a test of our simu-
lations, we can compare the results obtained with the FPE t®he expansion of the periodic functidr(8;,5,,e)=(1/8)
results obtained with the Langevin equations for lalgdo X[ 8;— 8,— 27 n—27(®./P,)] in Eq. (42), wheren is an

integer that ensures them2periodicity of the solution, in

2

0.6 ‘ ‘ powers ofe is given by
15 T
0.5 om0z | dh
N h=h(6,8,0)+e—| +O(s?). (54)
h 1.0 E e=0
04 - ,||| 'é* b
& ':". T Taking into account thatb,=®+£Q sin(wyt), we find
:t 0.3 - | || ~ osf 11 that
e
i
e 2 _Qsinwp (59
! . . I —_ = SIN(w )
02 04 o 06 08 1 de o p d(b(eo)
0.1 1
where

o0
@, )

(56)

) ) _ ) V=£(51—52—27Tn—2’ﬂ
FIG. 9. Aj/2, obtained by solving the FPE, as a function of the B

flux-injected probe frequency for two different values of the cou-

pling strengthM =0.01(solid line) andM =0.05(dashed ling The  Inserting Eqs.(53), (54), and (55) into Eq. (40), we obtain
SQUIDs are identical, witlg=0.01 and remaining parameters as in the following hierarchy of equations fgr!):

Fig. 8. The inset shows the power spectra obtained via direct Lange-

vin simulations forN=500 for w,=0.5 (squar¢, and w,=0.27 )

(triangle). The peaks of these power spectra are also plotted in the ap -0 (57)
main figure. ar '
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2 2

— =0 @ @ — =0 (b)
o =1 A

-2 -2
L] ()]

ex ex

FIG. 10. Transfer characteristics for different coupling strength values, and for two different values of the biasJdur=e@zl in (a),

andJ=0.35 in (b)]. In (a), the points marked by1),(2) correspond to the solution obtained by numerical simulation of the FPE. Other
parameters ar®=0.1, andg=1.

(yp(l)

or

(72p(0) +a2p(0) The normalization conditions

982 965

2 (27
fo J'o p™M(81,8,,1)d5,d8,= on (62
J

27M—
_ — p—si 0)] ,(0)
051“‘] v—sind;+ B‘DOI )p

follow from Eq. (43).

p Y] Equation(57) implies thatp(®) is independent of. Then
J+v—sind,— WO))p(O) the terms in the right side of Ed58) which do not have
‘952 Do 7-dependent coefficients give rise to secular terfus-

ap(O) bounded on the time scalé¢. The condition that no secular
(58)  terms should appear is

at
?p®  52p0 d 27M_,
PNE) 2o g2, 4 + ——||J—v—sins + 10) | p(®
Z =D p2 + p2 —— (J—v sinéy)p™ 98, 985 | 90 BPo
T 3671 355 o
i 2m _(0)) o _ 9p®
J+v—sindy— ——I —=0.
" 27M (1105 (1) 4 T () 35, 2 Bd, at
° (63)
2
S5 | (3= S|n52)p(1)——(|(°) @ This equation should be solved fpf® together with Eq.
K 2 Bo (60), the normalization condition, and initial condition data.
9o Note that this problem is equivalent to solving the F@B)
+|71)p(0)) — p_+Q sin(wpt) without the probe signal. As mentioned above numerical ex-
at periments show that the solution of this FPE evolves towards
o dv 3 dv a stationary state at long times. Such a stationary solution
x{7 (O)p<°) (0)p(0) ] (59)  can be found by imposing™=0 in Eq. (50), and solving
901| d®g ’?‘S dde numerically the corresponding nonlinear system of equa-

tions. As in the single SQUID cagé5], it is worthwhile to
where study the input-output transfer characteri¢fi€), which is a
convenient descriptor of the system response in terms of ex-
perimentally measurable quantities. The TC is a plot of the

average screening curreinis the external fluxb.,. In Fig.
10 we show the effect of the coupling strength on the TCs for
B o rom dv two d_ifferent values of the bias current. The TC is a perio_dic
W= f J d51d52( vpM+Q sin(wt) oL )) function in®, [see Eg(50)], so only one complete cycle is

o Jo ddg shown for eachl. Notice that in Fig. 1(), a hysteretic be-
(61) havior can be observed for large values of the coupling, and

_ 27 (27w
|(°>=f0 fo dé,dé,v p©@), (60)
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2

. ?pM  g2pM | 4 .
i (1) = _ — —qj (1)
- iwp't'=D + (J—v—sinéd,)
— . 082 083 | 94 P
1+ pemmmTTTTTTTTTTTOTTTETEEEmTTE T 27M - . . NI
iy () MY GO Iy D MET(O NN DA I T
L ,8<I>o(| p 1 pt) 75, I+v
el “ 27M - . A
------- _qj W) (1O 5(1) 1 | (1)x ;(0)
|=0 ] sinégy)p 5Dy (1557% pt 4 1120% i)
Q| 9| dv . ~
D S (0) —500) ., —
J dv . .
- — (O)(w-i-w )— (O)(w—w ) ,
, 95, dCDéO) [p p) — P p)]
o 100 200 300 400 500 (65)
t
where

FIG. 11. Time evolution of the average screening curtefdr
two different initial conditions. Parameters dbe=0.1, J=0.1, B

S0 i) — |7 greiot,m i—01
=1, ®,,=0.5, andM=0.05 corresponding to the hysteresis re- p(01,62,) ffmdte p(01,02,8), =01,

gime in Fig. 1@a). (66)
some range of. The hysteresis is characterized by a nega- e for

tive slope of the transfer characteristicdag,= 0.5, showing 10= f J d6,d8,vp@, (67)
three possible solutions. Only two of them, however, are o Jo

stable, corresponding to the upper and lower branch. By in-

creasing®., we can reach the upper branch for values of 2w [ . Q dv .
®,, higher than 0.5, while the contrary takes place when we Tmzj’ J dé,d s, vp W +i > (0)[p(0)((o+ wp)
decreaseb.,. The branch connecting the upper and lower o Jo dd

branch in Fig. 108) cannot be observed in the numerical

simulations(see Fig. 1}, and is therefore most likely un- _;(0)(0)_0) )]] (68)
stable. This behavior can also be found in the noiseless PP

single SQUID cas¢10]. Note that the effects of the probe

signal are absent from the zero-order expression for the dissnd * denotes convolution. Equatid5) should be solved

tribution function,lp(o); they do appear when calculating the fo, 5(1) together With27[27d 8,d 5,pM=0. Assuming that
first correction,p™.

(0) i i irhi ~(0)
To calculate first-order corrections, we again impose thé’ evolves fo a statu_nnary SOJt,Ilt)Ion fgr long tirfiee.. p )
condition that no secular terms appear and that the right-hand 6(@)f(51,65)], we find thatp*~’=0 is the only solution

side of Eq.(59) vanishes. The resulting equation is Orf Eq.(65), unlessw=*w,. Then, Eqs(65) and(68) imply
that
52p(1) &zp(l) J
+ - —|(J—v—si @) ~ _
2 a2 | aey T VTSNP pI= 7" (81,6,)8(w—wp)+ 7™ (81,82) B+ wp).
(69)
27M — — ) ) ]
+ (1000 4 | D)0y | — S| OFv Inserting Eq.(69) in Eq. (65), we obtain two uncoupled
0 2 equations forp* and»~. These can be solved by expanding
oM - 9pD) 7~ in Fourier series,
N O 10,1 1),y -
siné,)p 50, (ITp =+ 11pt) P L
3T do 3T dy 7°(01,0)= 2 2 (TH)feltoem™z,  (70)
i — () pp—— (0) coemeEre
+Q5|n(wpt)[é,51 dq)éo)P ﬁ52 d(I)éo)p ]
and solving the corresponding nonlinear systems of equa-
=0. (64)  tions for the coefficientsT™). Once we obtainT*);', we
The analysis of the equation above can be readily acconf:an calculatel™™ from Eq. (68). Notice that p(+ wp)
plished in Fourier space. Fourier transforming Ef), we  =p*(—w)), by taking the complex conjugate in Eq§5)
obtain and (68). Then it follows from Egs.(69 and (70) that
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FIG. 12. Amplitude of the average screening current as function of Comparison between the theoretical results and the numerical
simulations, marked by symbols. Parameters @re0.05, B=1, J=0.4, M=0.01 (solid line for the theory, and solid triangle for the

simulations, and M =0.05 (dashed line for the theory, and open square for the simulatigas Flux-injected probed(?=0.45, q
=0.01. (b) Current-injected probd,=0.4, g=0.01.

(THY™=((T")~™*. Therefore, we conclude that (1) ity in the FPE tqward the_ station:_alry state, and thus to calcu-
_ ATlne d the i ) ‘ Iat.e the correlation function and its Fourier transform to ob-
(= wp)=(1"")"(+wp), and the inverse Fourier transform tain the power spectrum. However, extracting any analytical

yields information from such an approach is quite involved. Fur-
thermore, it might be possible to compute the frequency di-

| D(t)=2 Re{ﬁl)(wp)]cos(wpt)—z Im[ﬁl)(wp)]sir(wpt). rectly using Langevin simulations. However, for large noise
(72) levels, extracting the frequency from Langevin simulations

would require averaging over many runs, making the FPE

Knowing | 1)(t), its amplitude can be readily computed and approach presented in this paper far more suitable.
the result is

VI. DISCUSSION

Ar=2VTOAW)* 1 0(2). (72 In this paper we have investigated the dynamics of an

array of globally coupled SQUIDs. We have found that the

In Fig. 12a), we plot the numerical solution for two dif- coupling can I_ead to interesting effects. The main _result is
ferent values of the coupling and the theoretical approximath@t the coupling strength determines the underlyine.,

tion (72), showing a remarkable agreement with the theoret!Unning frequency of the system. For the deterministic case,

ical results corresponding to the first-order expansion. IfNiS can be seen directly from the exact solution we have

should be noticed, however, that the amplitude of the prob&Pund. For the noisy case, this can be determined either via

signal considered here is smali=0.01. For increasing direct numerical simulations of the Langevin equations or

strength of the amplitude, higher orders in the expansioffi2 the investigation of the FPE we have derived. _
may be required. Oncg® is known, it is also straightfor- As in other nonlinear systems, determining the underlying
ftrequency can have practical applications. Unfortunately, for

ward to find the successive terms in the expansion. Witho . , : -
entering into a detailed study, some general features can ejg_rge noise levels, this task is .gener.ally very ,d'ff'Cl,Jlt' How-
ily be drawn from the hierarchy of equations fof). Simi- €€, we have shown that the inclusion of a sinusoidal probe
larly to the analysis fop(%), and by taking into account that signal can be utilized to determine this frequency. In particu-
1) _ ] o _ lar, we have found that the power spectrum of the experi-
p™M) is a function exclusively ofs* w,, it is straightforward  mentally relevant observabléhe average screening current
to prove thatp!®=0 is the only solution, unles&=0, displays a classical resonance phenomenon. As the frequency
*2w,. In general, successive terms will depend on highewof the probe signal approaches the underlying frequency, the
harmonics of the main frequenay, . response gets amplified. Thus, the plot of response amplitude
We note that the probe signal could also be applied as aws frequency shows a maximum at the underlying frequency.
addition to the bias currer(turrent injection, keeping the Noting that the underlying frequency is a function of the
external fluxd ., constant. The resulting FPE may be solvedexternally controllable bias parameters, we are now in a po-
in a manner analogous to the solution given above for theition to explain the resonance behavior observed in earlier
flux-injected case. We relegate the details to the Appendixexperiments[12]. In these experiments, a time-sinusoidal
but show a comparison between the theory and numericgirobe signal was applied to a single dc SQUID, with the dc
simulations in Fig. 1tb). Again, the agreement is remark- bias current and external magnetic flux used as deterministic
ably good. Finally, we mention that it is also possible tolaboratory control parameters. Past the onset of the saddle-
calculate the frequency by analyzing the transition probabilhode bifurcation, characterized by the experimental observa-
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s ‘ " ‘ the target frequencyoutpu) divided by the power of the

200 | . . target signal(iinput), as a function of the coupling strength
for N=2. The curves, for two different values gf clearly
show a typical resonance shape, indicating the presence of an
150 | ol optimal value ofM. The inset of Fig. 13 shows the power

) spectrum for two different values &fl. The peak values at

g o, are also plotted as symbols in the amplification curves. At
g 100 the optimal value of the coupling strength, the target signal
g for the small value ofy is amplified by more than 100, rep-
[

resenting a dramatic increase in sensitivity of the SQUID.
Note that in this example we have only used two SQUIDs,
making this scenario experimentally plausible.

The results of this paper can be applied to other systems
displaying bifurcations; in fact, an application of these ideas
0 ‘ ‘ ‘ to the problem of noise-induced firing in type-lI neurons is

0 0.04 0.08 0.12 . . . :
M currently being actively exploref®5] via an analysis of the
Morris-Lecar model equations in the neighborhood of their

FIG. 13. Ratio between the peak in the power spectrum and thé&ddle-node bifurcation, using center-manifold reduction
signal strength as a function of the coupling streridtfor a system  theory. Note also that, in the single SQUIBs well as the
of two coupled SQUIDs. The signal frequencyds=0.018 withan ~ Morris-Lecar neuropy one can approximate the dynamics
amplitude ofg=0.01(solid line) andq=0.0025(dashed ling The  near the onset of the bifurcation by simple “Integrate-and-
inset shows the power spectrum for two different value$/ofM fire” dynamics[2]. This representation is elegant; it provides
=0.045 for the closed square aMi=0.122 for the open circle g valuable tool for doing analytic calculations near the criti-
Other parameters as in Fig. 2. cal point, and it affords a case for the universality of such

simplified dynamics close to the critical point. The procedure
uses the alreadgvia center-manifold theojycomputed run-
ning frequency to set the width of the “bottleneckih the
tion of a phase diagram analogous to Fig. 1, we observed @rcle representation of the dynamics near the critical ppint
local maximum in the local SNR measured at the probe frefollowing which a linear Langevin equation is written down
guency, for certain bias parameters. The noise in the experio describe the diffusion through the bottleneck with the
ment was not controlled externally, being assumed to arisaoise added to the normal form. An analogous procedure for
from thermal noise in the junctions. Clearly, the results ofthe coupled SQUID case is currently under investigation.
this work indicate that such an effect occurs because, at a
particular bias condition, the resulting spontaneous oscilla-
tion frequency matches the probe frequency, leading to a ACKNOWLEDGMENTS
considerable decrease in the local dispersiomeasured

about the probe frequencyin fact, in our earlier wor{ 2], This work was supported by the Office of Naval Research
we showed that at this resonance, the noise floor of the dE{Code 331 We also thank the National Partnership for Ad-
vice was lowered across the output power spectrum, with thganced Computational Infrastructure at the San Diego Super-

most striking effects appearing at the probe frequency and it§ompyter Center for computing resources, and acknowledge
harmonics. The results of this paper, while providing the bas

¢ o X ) valuable discussions with Dag Winkler, Kurt Wiesenfeld, and
sis for explaining the experimental observations, also ShOW{-erry Clark.

that the effect is more striking in a coupled array, when the

coupling coefficient can, in fact, control the resonance via its

effect on the underlying oscillation frequency. )

The observed resonance phenomenon might be used toAPPENDIX' FPE SO:;LI;BSS ;%i:tJRRENT-INJECTED
develop more sensitive SQUID-based measurement or quan-
tification systems. Imagine trying to detect a weak sinusoidal e . -
target signal with an amplitude that is very small, perhaps N @ manner similar to the theory shown in Sec. VB, itis
even smaller than the noise level. If the target frequency iStraightforward to analyze the case of a probe signal given by
far removed from the underlying SQUID frequency this sig-Y = Jo+d Sin(@gt), g=¢Q, wheree<1. In the following, we
nal will be difficult to detect. However, by coupling SQUIDs shall illustrate the_ main d|ﬁerences_. Inse_rtlng E§3) into
and adjusting the coupling strengtbr other control param- Ed- (40), we obtain now the following hierarchy of equa-
eters if the coupling strength is inaccessible to adjustment!ons:
we can match the underlying frequency to the target fre-
guency and increase the response dramatically.

This scenario is shown in Fig. 13 where we have plotted ap
the amplification of the target signal, defined as the power at ar

(0)

=0, (AL)
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In a manner analogous to the theory for the flux probe
signal case, necessitated by the need to remove the secular
terms, we obtain the following equations fof®) and p®):

PHYSICAL REVIEW B57, 016210 (2003

(92[)(1) (72[)(1) 9
J—v—sins;)pM
982 982 | 961 ( 1P
2aM 0) (1) 7(1) (0
+,8_(|( )p 4T, |- 2 ey
27M z?p(l)
_qj 1)_ 100,411,000y - 22
sind,)p 5D, (I + 11 pt) P
(0) (0)
—Qsin(w t) 851 852 }:0_ (A5)

Fourier transforming Eq(A5), we obtain

7o PpM g .
iwp®=D p2 + p2 ——|(J—v—sins;)pW®
965 985 | 961
27M o . DR
+ - (|(0)*p(1)+|(1)*p(0)) ——| I+

A 27M -, = - .
—sin 52)p(1)— m( | (0 P(1)+ | (D= p(O))

Q

[N A
> | 751w+ o) = w=0p)]

+ a%z[ﬂf))(m wp)—p (0~ wpn] . (hB)

#?p®  52p0) J 27M_,
TP 3 —sing + S0 |
052 aa | ael )TN g )P A
- Equation (A6) can be solved forp® together with
O 34 p—sin 5y 2mM (0))p(0) op‘° )_ J37[3™d8,d8,p™M=0. In Fig. 1Zb) we show a comparison
552 BD, at ' between the theoretical solution and the numerical simula-

tion.
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