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Cooperative dynamics in a class of coupled two-dimensional oscillators
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We study a system of globally coupled two-dimensional nonlinear oscillators@using the two-junction super-
conducting quantum interference device~SQUID! as a prototype for a single element# each of which can
undergo a saddle-node bifurcation characterized by the disappearance of the stable minima in its potential
energy function. This transition from fixed point solutions to spontaneous oscillations is controlled by external
bias parameters, including the coupling coefficient. For the deterministic case, an extension of a center-
manifold reduction, carried out earlier for the single oscillator, yields an oscillation frequency that depends on
the coupling; the frequency decreases with coupling strength and/or the number of oscillators. In the presence
of noise, a mean-field description leads to a nonlinear Fokker-Planck equation for the system which is inves-
tigated for experimentally realistic noise levels. Furthermore, we apply a weak external time-sinusoidal probe
signal to each oscillator and use the resulting~classical! resonance to determine the underlying frequency of the
noisy system. This leads to an explanation of earlier experimental results as well as the possibility of designing
a more sensitive SQUID-based detection system.
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I. INTRODUCTION

A large class of two-dimensional~2D! nonlinear systems
exemplified in this work by the two-junction or dc superco
ducting quantum interference device~SQUID!, is known to
displayspontaneous~i.e., in the absence of external drivin
signals! oscillations when the dynamical system crosse
threshold through a bifurcation@1#. The oscillations are pe
riodic but nonsinusoidal, approaching sinusoidal behavio
one goes farther past the bifurcation threshold. The osc
tion frequency is a function of the ‘‘distance’’ past the ons
of the bifurcation, and displays a characteristic scaling
havior with respect to the bias parameter that controls
bifurcation@1#. In specific dynamical systems, the spontan
ous oscillation frequency may be computed, usually via
center-manifold reduction of the dynamics to a 1D norm
form. Applying an external sinusoidal signal to the system
this state of spontaneous oscillation yields a very rich a
complex dynamical behavior@2# including a lowering of the
noise-floor ~when fluctuations are present! as well as
frequency-mixing behavior characterized by the genera
of combination harmonics@3# whose spectral amplitudes de
pend on the background noise.

When tuned near the onset of bifurcations, dynamical s
tems can display an enhanced sensitivity to external pe
bations with the response characterized by signal amplifi
tion @4#, often with a concomitant lowering of a
environmental noise floor~see, e.g., Refs.@2,5#!, but also
~depending on the parameters! potentially adverse effects
e.g., the amplification of environmental fluctuations with
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accompanying lowering of the response signal-to-noise r
~SNR! @6#. Among the nonlinear systems that have be
studied in recent years, the dc SQUID has recently recei
considerable attention, since it is a device that is seve
constrained by noise-floor issues and one in which a deta
study of the~noise-mediated! cooperative behavior in vari
ous regimes of operation can yield clever techniques for c
fronting noise-related performance issues that constrain
rent devices.

The dc SQUID@7# consists of two Josephson junction
symmetrically inserted into a superconducting loop. It is t
most sensitive magnetic field detector in existence and
widely used in a variety of fields including biomagnetic
geophysics, communications, and explosives detection. I
external signal is present, the system can be in either of
dynamical states depending on the biasing~usually achieved
by a combination of externally applied magnetic flux a
bias current to the SQUID loop!: a static or superconductin
state wherein the potential function has stable minima co
sponding to a conservation of total loop current~the applied
bias current is balanced by the sum of the Josephson cur
in the junctions! and a spontaneously oscillating or ‘‘run
ning’’ regime wherein the potential minima disappear. T
oscillation ~or running! frequency has been computed@8#; it
shows the scaling behavior referred to above.

Past research has focused primarily on designing and
veloping sophisticated shielding and noise-cancellation te
niques to render SQUIDs more noise tolerant and has, alm
exclusively, dealt with single SQUIDs. Recently, a new str
egy has emerged: instead of trying to minimize noise, t
strategy searches for the area in parameter space wher
SQUID is optimally sensitive. Specifically, thestochastic
resonance~SR! effect @9# and its variations, have been stu
ied theoretically@10,11# and experimentally@12#, particularly
d-
©2003 The American Physical Society10-1
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near the onset of the saddle-node bifurcation from static
running dynamics. While the spectral response and the
companying SNR at the frequency of a weak sinusoidal
get signal have been observed in experiments@12# and simu-
lations @10,11# to display a SR-like amplification, there ar
indications that this is not completely in line with the ‘‘cla
sic’’ SR behavior. Specifically, we have observed a ma
mum in the SNR in the space of thedeterministiccontrol
parameters~loop bias current and magnetic flux!. The theory
in this paper and in earlier work@13# provides an explanation
for these experimental observations.

Often, a dramatic enhancement in the system respo
can be achieved by coupling elements in an array@14#. Mo-
tivated by this phenomenon, we study here the dynam
behavior in a globally coupled ensemble of dc SQUIDs w
and without background noise~assumed to arise mainly from
thermal fluctuations in the junctions!. The SQUIDs and their
bias conditions~including the coupling strengths! need not
be identical in practice, although some restrictions may
imposed by our desire to obtain analytical results. We st
our globally coupled system both analytically and nume
cally, finding that the system exhibits static and oscillato
regimes of operation, completely analogous to the sin
SQUID case@2,8#. Our analysis stems from the cente
manifold reduction technique that was applied to the sin
SQUID problem, and recently described semianalytic te
niques for solving the 2D Fokker-Planck equation~FPE! as-
sociated with the Langevin dynamics@15#. This previous
work is conveniently generalized to treat theN-SQUID (N
may be arbitrary! case with global coupling.

Particular attention is paid to the underlying~i.e., running!
frequency of the system. For the deterministic case, we
an exact solution for the frequency of the running state.
the noisy case, however, a general technique to determin
frequency is not available. With small noise levels, a cen
manifold reduction of the dynamics to a 1D normal form,
was performed in Ref.@8# is, in principle, possible~see also
Ref. @16#!. However, for experimentally realistic values
noise an alternative method needs to be applied. We h
recently shown@13# that the introduction of a sinusoida
‘‘probe’’ signal leads to a classical resonance phenome
~also observed in Ref.@17# for a system undergoing a Hop
bifurcation! which can be exploited to determine the und
lying frequency of the running state.

Our main results are the following.
~1! Increasing the number of SQUIDs renders the tim

independent~superconducting! stationary state more stable
restricting the accessible values of the parameter where
can find an oscillatory solution.

~2! The frequency of the oscillatory solutions depends
the coupling, with large coupling and/or largeN reducing the
frequency and extending the parameter regime for the e
tence of stationary state; coupling can destroy the runn
solutions.

~3! A nonlinear FPE may be derived and solved in t
stationary state for the averaged screening current, the
vant experimental observable. Notice that the Fokker-Pla
equation obtained for a single element is always a lin
partial differential equation~see, e.g., Ref.@18#!. We stress
01621
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the fact that due to the nonlinear nature of our derived F
classical results regarding linear FPEs including linear
sponse theory@18,19# cannot be applied in general and alte
native approaches are needed.

~4! Coupling a time-sinusoidal target or probe signal
each SQUID leads to a resonance in the averaged scree
current when the signal frequency approaches the runn
frequency. This affords the possibility of using a single d
vice or an array as a frequency-sensitive detector.

The paper is organized as follows: After a rapid overvie
of the dc SQUID dynamics in Sec. II, we obtain~Sec. III A!
the stationary states and study the onset of the oscilla
regime in terms of the two natural laboratory control para
eters, the magnetic fluxFex , and the dc bias currentJ for
arbitrary values of the coupling and numberN of SQUIDs. In
Sec. III B, we present an analytical calculation of the fr
quency of the running state and its scaling in terms of
distance from the bifurcation point. This is followed~Sec.
IV ! by an investigation into the effects of noise on t
coupled system dynamics. Finally, we discuss the inclus
of a sinusoidal probe signal in Sec. V. Our results are su
marized and discussed in Sec. VI.

II. BACKGROUND AND MODEL EQUATIONS

In its simplest form, a dc SQUID consists of two Josep
son junctions inserted symmetrically~asymmetric configura-
tions are also possible, in practice, but we do not treat
here! into a superconducting loop. The dynamics of this d
vice are well known@7# and we offer only a rapid overview
without derivation. In terms of the Schro¨dinger phase angle
d1,2 of the two ~assumed identical! junctions we can write
down the measurable screening currentI in the loop,

b
I

I 0
5d12d222p

Fe

F0
22pn, ~1!

whereb[2pLI 0 /F0 is the nonlinearity parameter,I 0 is the
junction critical current,L is the loop inductance,Fe is an
external applied magnetic flux, andF0[h/2e is the flux
quantum. The quantum mechanical wave function along
superconducting loop must be single valued at any poin
space. This can be accomplished if the magnetic flux is qu
tized which is ensured via the term containing the integen.
In the absence of noise and a target magnetic flux, we
use the resistively shunted junction model to write do
equations for the currents in the two arms of the SQUID
a lumped circuit representation; when transformed via
Josephson relationsḋ i52eVi /\, linking the voltage and the
quantum phase difference across the junctioni, these equa-
tions take the form

tḋ15
I b

2
2I 2I 0 sind1 , tḋ25

I b

2
1I 2I 0 sind2 , ~2!

wheret[\/2eR, R being the normal state resistance of t
junctions. The dc bias currentI b is applied symmetrically to
0-2
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COOPERATIVE DYNAMICS IN A CLASS OF COUPLED . . . PHYSICAL REVIEW E67, 016210 ~2003!
the loop. Rescaling the time byt/I 0, one can write the above
in the form ḋ i52]U(d1 ,d2)/]d i with the 2D potential
function defined as

U~d1 ,d2!52cosd12cosd22J~d11d2!1
1

2b
~d12d2

22pFex!
2, ~3!

where we have introduced the dimensionless bias curreJ
[I b/2I 0 and normalized applied fluxFex[Fe /F0.

In the static regime, one may set the time derivatives
Eq. ~2! equal to zero, in the absence of any external tim
dependent signals; in practice, this could be done with tim
dependent signals if the signal frequency as well as the b
width of any underlying noise are well contained within t
device bandwidtht21, ensuring that the device behaves li
a static nonlinearity. The resultant steady-state phase e
tions are constrained by the continuity relation

d22d152pn22p
Fe1LI

F0
. ~4!

Notice from Eqs.~2! and~1! that the screening currentI is a
periodic function in the applied magnetic fluxFex , going
through one complete cycle for every flux quantumF0 ap-
plied. The inherent periodicity of the SQUID implies that
cannot distinguish between zero applied field and any o
field that generates an integral number of flux quanta. Th
fore, in the numerical simulations of our system of differe
tial equations we have setn50 for simplicity.

Adding and subtracting the steady-state phase equat
we are led immediately to the current conservation relati
for the loop,

2J5sind11sind2 , 2I 5I 0~sind22sind1!. ~5!

Further, theI equation can be manipulated to yield a tra
scendental equation for the screening current,

I

I 0
52sinS pFex1

bI

2I 0
D cosFsin21S J1

I

I 0
D1pFex1

bI

2I 0
G .
~6!

Equation ~6! may be solved numerically for the screenin
current; the ensuing transfer characteristic~TC! is periodic in
the applied fluxFex with period 1, and possibly hysteretic
with the hysteresis loop width controlled by the bias curr
J. ForJ50 one obtains hysteresis for any nonlinearityb; for
0,J<1, hysteresis occurs over some range ofb, linked to
a multistable potential functionU. When the current conser
vation equations~5! are satisfied, the SQUID is in its supe
conducting state with the state point resting in a poten
minimum, corresponding to a saturation state on the TC
this configuration, the bias current is balanced by the Jose
son supercurrents in the junctions.

A close examination of potential function~3! shows that
the externally adjustablebias parametersFex and J control
the symmetry and well depth, respectively. Adjusting the
parameters leads to a transition from a regime character
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by a multistable potential and the long-time static solutio
discussed in the preceding paragraph, to one wherein pai
minima and saddles have coalesced to yield a potential w
points of inflection, followed by~upon further adjustment o
the bias parameters! a potential with no minima. In this re
gime, the conservation relations are no longer obeyed un
one includes an ohmic correction term and the SQUID
said to be in the ‘‘running regime’’~sometimes referred to a
the ‘‘voltage regime’’!, characterized by spontaneous oscil
tions in the observable~in this case, the screening currentI ).
A ‘‘saddle-node’’ bifurcation has occurred with the critica
point corresponding to a point of inflection in the potenti
The spontaneous oscillations have zero frequency at the c
cal point; past this point, the frequency increases with a ch
acteristic scaling behavior@1,8# with the distance from the
bifurcation.

Following this preamble, we start with an extension of t
model equations~2! to describe a system of globally linearl
coupled dc SQUIDs, a network that can be experimenta
realized in a variety of ways. One possible experimental s
nario could be the following: a network of pickup coils
connected in parallel to sense and sum the fluxes of all
SQUIDs. Some of the resulting flux~depending on the cou
pling strength! is applied to each SQUID by feeding back th
total output current through a feedback coil. Since ev
SQUID can interact magnetically with the next neighb
leading to a local-type coupling, it is advisable to place ea
SQUID in a shielded environment. This form of couplin
gives rise to a near-global coupling similar to the one
have proposed here, with each SQUID subject to a flux
to all the other SQUIDs in the same way. Global coupling
also most amenable~of all the possible coupling schemes! to
theoretical treatment.

The theoretical variables of interest are the Schro¨dinger
phase differencesd j

(k) ( j 51,2) across each Josephson jun
tion of thekth SQUID (k51, . . . ,N),

tk

I 0k
ḋ j

(k)5Jk1~21! j
I k

I 0k
2sin d j

(k) , j 51,2, k51, . . . ,N,

~7!

whereI k represents the screening current,Jk the normalized
~to I 0k) externally applied bias current,I 0k the critical cur-
rent of thekth junctions, andtk5\/(2eRk) is a characteris-
tic time constant (Rk being the normal state resistance of t
junctions!. The screening currentI k ~the experimental ob-
servable of interest! at thekth SQUID is induced in the loop
by an external magnetic fluxFe which is assumed identica
for all SQUIDs. Each SQUID is inductively coupled to th
loop currents of the remaining SQUIDs with equal mutu
inductance coupling of strengthM. The screening current ca
be written in the form

bk

I k

I 0k
5d1

(k)2d2
(k)2

2p

F0
S Fe1M (

mÞk
I mD , ~8!

wherebk[2pLkI 0k /F0 is the nonlinearity parameter of th
kth SQUID, Lk being its loop inductance. Since the scree
ing currentI m appearing on the right hand side of Eq.~8! is
0-3
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itself a function of every other screening current, Eq.~8!
represents an infinite nested series.

In general, this series cannot be summed in closed fo
hence we expand in powers ofM. To this end, let us rewrite
Eq. ~8! as (A1B)I 5D, where we define the following ma
trices:

A5F b1 0••• 0

0 b2••• 0

A � A

0 ••• bN

G ,

B5
2pM

F0 F 0 1 1••• 1

1 0 1••• 1

A � A

1 1 1••• 0

G , I 5F I 1 /I 01

I 2 /I 02

A

I N /I 0N

G ,

D5F d1
(1)2d2

(1)22pFex

d1
(2)2d2

(2)22pFex

A

d1
(N)2d2

(N)22pFex

G . ~9!

Then, we obtain by simple iteration,

I 5A21DF11(
j 51

`

~2MBA21! j G5CD, ~10!

where we have definedC[A21/(12MBA21). For the spe-
cial case ofN52, the sum in Eq.~10! can be performed
analytically; the result is

I 5
1

12
4p2I 01I 02

F0
2b1b2

M2
F I 01

b1
2

2pM

F0

I 01I 02

b1b2

2
2pM

F0

I 01I 02

b1b2

I 02

b2

G .

~11!

Inserting Eq.~10! into Eq. ~7!, we arrive at our final set o
equations for the dynamics of thekth SQUID,

tk

I 0k
ḋ j

(k)5Jk1~21! j(
i 51

N

Cki~d1
( i )2d2

( i )22pFex!2sind j
(k) ,

j 51,2, k51, . . . ,N. ~12!

III. GLOBALLY COUPLED SQUIDS WITHOUT NOISE

A. Onset of the running state

Before determining the onset of the running state for
coupled case, let us review the situation for a single SQU
As mentioned earlier, a single dc SQUID exhibits two diffe
ent states of operation: a superconducting state where
long-time phases are time independent, and a ‘‘runn
01621
;

e
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state’’ characterized by oscillatory phases. The boundary
tween these states is plotted for two different values ofb in
Fig. 1 ~solid curves!. The phase space in Fig. 1 is spanned
the two primary experimentally controllable parameters:
bias currentJ and the normalized external fluxFex . Since
our equations are invariant underFex→12Fex the phase
diagram is symmetric around theFex51/2 line. The region
in phase space which exhibits the running state is labeled
and the superconducting regime corresponds to SS. In
superconducting state, all solutions of Eq.~2! approach a
fixed point, with the potential energy having stable minim
corresponding to the current conservationf 5sind11sind2
22J. In this state we can distinguish between two differe
cases: In the first one, the so-called hysteretic regime c
the system possesses four fixed points of which two
stable~nodes! and two are unstable~saddles!. This case oc-
curs for any value of the nonlinearityb when J50, and
occurs over some range ofb whenJ is different from zero.
In the second case, the system possesses only two
points, one stable and one unstable. The running state ca
reached by increasingJ and keepingFex constant. In both
the hysteretic case and the nonhysteretic case the stable
unstable fixed points coalesce in a saddle-node bifurcatio
J5Jc . PastJc , a limit cycle is created in a global bifurca
tion, the attractor resulting from the chain of~merged!
saddle-node-saddle connections@20#.

The phase diagram~for a single SQUID,M50) of Fig. 1
can obviously be obtained numerically; however, rec
work @10# has shown that it can also be found analytical
Consider the functionf 5sind11sind222J. In the supercon-
ducting state a plot off vs d1 will have two or four zeros
~hysteretic or nonhysteretic regime, respectively!. At the on-

FIG. 1. Phase diagram in the parameter space (J,Fex) of two
different SQUIDs (b150.4,b252). SS denotes the stationary~i.e.,
superconducting! solution, while RS corresponds to the runnin
state regime. The solid curves correspond to the uncoupled
(M50), and the dashed curve to the coupled one (M50.1). The
screening current in theb1 SQUID as a function of time is numeri
cally calculated and displayed in Fig. 2 at the points marked by~1!
J50.4, Fex50.35; ~2! J50.4, Fex50.41; ~3! J50.4, Fex

50.47; and~4! J50.2, Fex50.5.
0-4
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COOPERATIVE DYNAMICS IN A CLASS OF COUPLED . . . PHYSICAL REVIEW E67, 016210 ~2003!
set of the running state only one zero survives andf will have
a maximum. Sinced2 is given by the continuity equationJ
2(d22d122pFex)/b2sind150 @obtained from the sys
tem ~2! in the long-time limit#, the onset of the running stat
can be found using the Lagrange multiplier technique: ma
mize f subject to the conditionJ2(d22d122pFex)/b
2sind150. The phase diagram so obtained@10# shows very
good agreement with experimental results@12#.

We can generalize this idea to the case ofN SQUIDs.
Without loss of generality we assume thatb1,b2,•••

,bN . We start with the uncoupled case, using earlier res
@10# to obtain the critical point for each SQUID; specificall
we find the critical values of the bias current,Jck , for fixed
Fex . For our particular choice ofbk we find thatJc1,Jc2
,•••,JcN . As in the single SQUID case, we seek extrem
of the function f, now defined for the first SQUID:f 1

5sind1
(1)1sind2

(1)22J, where we have assumed, for simpli
ity, identically biased SQUIDs,Jk5J for all k. Rather than
having a single constraint we now have 2N21 constraints
given by

Li5J2sind1
( i )1sind1

( i )22J

1(
j 51

N

Ci j ~d1
( j )2d2

( j )22pFex!,

i 51, . . . ,N, ~13!

Ki522J1sind1
( i )1sind2

( i ) , i 52, . . . ,N. ~14!

To find the extrema off 1, subject to the constraintsLi ,Ki ,
we apply the Lagrange multiplier technique and construct
function

H~d1
(1) ,d2

(1) ; . . . ;d1
(N) ,d2

(N)!5 f 11(
i 51

N

l iL i

1(
i 52

N

l i 1N21Ki . ~15!

The extrema ofH, ]H/]d1,2
( i )50, i 51, . . . ,N, can be found

by solving the following system of equations:

]H

]d1
(1)

5cosd1
(1)2l1~C111cosd1

(1)!2(
i 52

N

Ci1l i50,

~16!

]H

]d1
(2)

52l2~C221cosd1
(2)!2(

iÞ2
Ci1l i1lN11cosd1

(2)50,

~17!

A

]H

]d1
(N)

52 (
i 51

N21

CiNl i2lN~C221cosd1
(N)!

1l2N21cosd1
(N)50, ~18!
01621
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]H

]d2
(1)

5cosd2
(1)1(

i 51

N

Ci1l i50, ~19!

]H

]d2
(2)

5(
i 51

N

Ci2l i1lN11cosd2
(2)50, ~20!

A ~21!

]H

]d2
(N)

5(
i 51

N

CiNl i1l2N21cosd2
(N)50. ~22!

l1 can be easily obtained, by summing Eqs.~16! and ~20!,

l1511
cosd2

(1)

cosd1
(1)

, ~23!

while the other multipliersl i , i 52, . . . ,2N21, are ob-
tained by solving the corresponding linear system of eq
tions. Once we eliminate the Lagrange multiplierl i , we
obtain a single equation ford1

( i ) , i 51, . . . ,N. This set of
equations, along withLi50, i 51, . . . ,N, and Ki50, i
52, . . . ,N allow us to find the maximum off 1, which will
depend onFex . In addition, we require that such a max
mum should coincide withf 150 at the onset of the running
state. This results in a system of nonlinear equations that
be solved. By selecting the appropriate solution one obta
the critical value of the external fluxFex ~up to an integer
constant!.

FIG. 2. Screening current of theb1 SQUID, I 1, as function of
time for the coupled (N52) and uncoupled case. Figures repres
the points ~1!–~4! on the phase diagram Fig. 1. In~4!, for the
coupled case, the evolution of two different initial conditions ha
been displayed, showing the existence of bistability~two solutions
for M50.1) of solutions. This corresponds to the hysteretic regim
0-5
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FIG. 3. Phase diagram in the parameter space (J,Fex) of three different SQUIDs (b150.4,b252,b353). The screening current of th
b1 SQUID, I 1 as a function of time is numerically calculated and displayed at the points marked by~1! J50.9, Fex50.23; and~2! J
50.9, Fex50.32, for the coupled case (M50.1).
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In Fig. 1, we show the results of our calculation forN
52 as a dashed line. Since for this value ofN we can sum
Eq. ~10! exactly, the boundary is exact. Figure 2 displays
time evolution of the screening currentI 1 corresponding to
the b1 SQUID for the points marked~1! through~4! in Fig.
1. In Fig. 3 we show the phase diagram for three differ
coupled SQUIDs, and the screening current of theb1
SQUID vs time is plotted. To obtain these results, we ha
summed Eq.~10! using ten terms. Our analytic results agr
very well with numerical simulations, the relative error bei
less than 1023.

B. Frequency of the running state

Having found the locus of critical points for the onset
the running state we now proceed to find the frequency of
spontaneous oscillations. As in Sec. II A, we will make u
of techniques applied to the single SQUID case@8#. For sim-
plicity, we consider SQUIDs with identical critical curren
I 0k5I 0, normal resistanceRk5R0, and identical bias (Jk
5J). Rescaling time byt/I 0, Eqs.~7! and ~10! yield

ḋ j
(k)5J1

~21! j

bk
Fd1

(k)2d2
(k)22pFex2

2p

F0
M(

lÞk

I 0

b l
~d1

( l )

2d2
( l )22pFe!G2sind j

(k)1O~M2!. ~24!

We start the analysis of the coupled case by conside
the dynamics in the vicinity of the fixed-point solution whe
J5Jc1. It is convenient first to rewrite Eq.~24! in terms of
the sum and difference variablesS (k)5(d1

(k)1d2
(k))/2, d (k)

5(d1
(k)2d2

(k))/2. Expanding Eq.~24! up to O„(J2Jc1)3
…

around the fixed-point solutionS0
(k) ,d0

(k) , andJ5Jc1 yields

ẋ(k)52S 2

bk
1AkD x(k)1Bky

(k)1
«

bk
(
j Þk

1

b j
~2d0

( j )22pFex!

12«(
j Þk

x( j )1Ck~x(k)!212Dkx
(k)y(k)1Ck~x(k)!2,
01621
e

t

e

e
e

g

ẏ(k)5~J2Jc1!2Aky
(k)1Bkx

(k)1Dk~y(k)!212Ckx
(k)y(k)

1Dk~x(k)!2,

J̇50,

Ṁ50, ~25!

where x(k)5d (k)2d0
(k) , y(k)5S (k)2S0

(k) , Ak

5cosS0
(k)cosd0

(k) , Bk5sinS0
(k)sind0

(k) , Ck

5(1/2)cosS0
(k)sind0

(k) , Dk5(1/2)sinS0
(k)cosd0

(k) , and we
have introduced a rescaled coupling parameter«
52pM /F0.

To analyze the center manifold@20#, the linear part must
first be diagonalized. To this end, let us consider the follo
ing rotation:

F v1

u1

A

vN

uN

G 5SF y1

x1

A

yN

xN

G ,

S5F cosu1 2sinu1 0 0••• 0 0

sinu1 cosu1 0 0••• 0 0

A � A

0 0 0 0••• cosuN 2sinuN

0 0 0 0••• sinuN cosuN

G ,

~26!

where tan 2uk52bksinS0
(k)cosd0

(k) . The eigenvalues are
given by

0,2
2

b1
22A1 ,2

1

bk
2Ak6

1

bk

1

cos 2uk
, k52, . . . ,N.

~27!

Using the transformation~26!, Eq. ~25! transforms into
0-6



F v̇1

u̇1

A

v̇N
G 5SF J2Jc1

0

A

J2Jc1
G 1S3

0

«

b1
(
j Þ1

1

b j
~2d0

( j )22pFex!

A

0 4 ~28!
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u̇N
0 «

bN
(
j ÞN

1

b j
~2d0

( j )22pFex!

13
0 0 0 0••• 0 0

0 2
2

b1
22A1 0 0••• 0 0

A � A

0 0 0 0••• c2N 0

0 0 0 0••• 0 cN

4F
v1

u1

A

vN

uN

G 1S3
D1~y(1)!212C1x(1)y(1)1D1~x(1)!2

2«(
j Þ1

x( j )1C1~x(1)!212D1x(1)y(1)1C1~x(1)!2

A

DN~y(N)!212CNx(N)y(N)1DN~x(N)!2

2« (
j ÞN

x( j )1CN~x(N)!212DNx(N)y(N)1CN~x(N)!2
4 , ~29!
ti
o

if-
t

nd
e

e

g

where c6k521/bk2Ak6(1/bk)(1/cos 2uk). It can be
proven numerically that the eigenvalues are always nega
or zero. Thus, from center-manifold theory, the stability
(S (k),d (k))5(S0

(k) ,d0
(k)) near J5Jc1 can be determined by

studying a one-parameter family of first-order ordinary d
ferential equations on a center manifold, represented by
v1, and « variables. To compute the center manifold a
derive the vector field on the center manifold, we assum

ui5hi~v1 ,«!5ai
(1)v1

21ai
(2)«v11ai

(3)«21•••,

i 51, . . . ,N, ~30!

v j5hj 1N~v1 ,«!5bj
(1)v1

21bj
(2)«v11bj

(3)«21•••,

j 52, . . . ,N. ~31!

The center manifold must satisfy@20#

f
]hi

]v1
2Bihi2gi50, i 51, . . . ,2N21, ~32!

where f 5D1(y(1))212C1x(1)y(1)1D1(x(1))2,

B53
2

2

b1
22A1

c22

c2

A

c2N

cN

4 ,
01621
ve
f

he

g53
2«(

j Þ1
x( j )1C1~x(1)!212D1x(1)y(1)1C1~x(1)!2

A

DN~y(N)!212CNx(N)y(N)1DN~x(N)!2

2« (
j ÞN

x( j )1CN~x(N)!212DNx(N)y(N)1CN~x(N)!2
4 .

~33!

From Eq. ~32!, equating terms of like powers to zero, th
coefficientsai

( l ) ,bj
( l ) in expansion~31! can be obtained. Once

such coefficients are found, the evolution ofv1 on the center
manifold can be readily calculated as

v̇15~J2Jc1!cosu12F «

b1
(
j 52

N
1

b j
~2d0

( j )22pFex!G
3sinu11av1

212g
«2

b1
v11O„~J2Jc1!3

…, ~34!

where h j5(2/c j )cosujsinu1, j j5@2/(c2 j )#sinujsinu1, a
5cosu1(D12C1sin 2u1)2sinu1(C12D1sin 2u1), and g
5@( j 52

N (1/b j )(j jcosujsinu12hjsinujsinu1)#. Integrating
the last equation, we obtain the solution

v1~ t !5AF

a
2

g2«4

a2
tan~ tAFa2g2«4!2

g«2

a
, ~35!

where F 5 (J2 Jc1)cosu12@(«/b1)(j 5 2
N (1/b j )(2d0

( j )

22pFex)#sinu1. Thus, for the frequency of the runnin
state we find

f 5AFa2g2«4/2p. ~36!
0-7
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The most salient feature of this expression is that the
quency of the running state decreases when the couplin«
increases. In fact, there exists a critical value of the coup
@obtained by setting the right hand side of Eq.~36! equal to
zero# above which the oscillation frequency is zero: t
strong a coupling ‘‘kills’’ the running states. Thus, the co
pling strength can be used to tune the system towards
bifurcation point, a feature we will use below when we d
cuss ways to improve SQUID sensitivity. Also, we have n
merically verified that increasing the numberN of SQUIDs
results in a decrease in the frequency.

Figure 4 shows a comparison between the numer
simulations of the system of equations~7! and the frequency
obtained by using the analytical expression~36! for the case
of N52. The agreement between the numerical results
the analytical results is excellent, particularly, as expec
for small values ofJ2Jc1. Figure 5 shows a similar com
parison for the casesN53 andN54.

IV. GLOBALLY COUPLED SQUIDS WITH NOISE

In this section, we analyze the model equations~24! in
presence of thermal noise. Specifically, we investigate
Langevin dynamics

ḋ j
(k)5J1

~21! j

bk
Fd1

(k)2d2
(k)22pFex2

2p

F0
M(

lÞk

I 0

b l
~d1

( l )

2d2
( l )22pFex!G2sind j

(k)1jk
( j )1O~M2!, ~37!

where j i
( j )’s are Gaussian white noises, with^j i

( j )(t)&50,
^j i

( l )(t)j j
(m)(t8)&52Dd i j d lmd(t2t8).

Taking into account the mean-field-type coupling, t
model ~24! can be written in a more convenient form b
defining the average screening currentĪ ,

FIG. 4. Two SQUIDs: Comparison between the numerical sim
lations of the system of equations~7! and the analytical frequenc
for two different values of the bias currentJ: ~1! J5Jc110.001 and
~2! J5Jc110.0005, with Jc150.821 152. Parameters areb1

50.9, b251, andFex50.2.
01621
-

g

he
-
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al

d
d,

e

Ī 5
1

N (
l 51

N
I 0

b l
S d1

( l )2d2
( l )2

2p

F0
FexD . ~38!

Then Eq.~37! reads

ḋ j
(k)5J1

~21! j

bk
F S 11

2p

F0bk

M̄ I 0

N
D ~d1

(k)2d2
(k)22pFex!

2
2p

F0
M̄ Ī G2sind j

(k)1jk
( j )1O~M2!, ~39!

whereM̄[M N. We are interested in the analytical inves
gation of the Langevin dynamics above, for the case of v
large N. A neat picture of such a case can be given by
limiting model obtained whenN→` ~thermodynamic limit!.
In this limit, it is well known@21,22# that models with mean-
field coupling are described by an evolution equation for
one-particle probability density. This can be seen by not
that the hierarchy of equations for all the multiparticle pro
ability densities can be closed by assuming molecular ch
In such a way, the one-system probability dens
r(d1 ,d2 ,t) is asymptotically in the limit,N→`, the solu-
tion of the followingnonlinearFokker-Planck equation:

]r

]t
5DF]2r

]d1
2 1

]2r

]d2
2G2

]

]d1
~v1r!2

]

]d2
~v2r!. ~40!

The drift terms are given by

v1~d1 ,d2 ,t !5J2
1

b
h~d1 ,d2!2sind1 , ~41!

v2~d1 ,d2 ,t !5J1
1

b
h~d1 ,d2!2sind2 , ~42!

whereh5d12d222pFex2(2p M̄ /F0) Ī .

- FIG. 5. Comparison between the numerical simulations of
system of equations~7!, and the analytical frequency forN53 and
N54 SQUIDs, kept fixed the bias current toJ5Jc110.001. Pa-
rameters are the same as in Fig. 4, and nowb351.1, andb4

51.3.
0-8
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The probability density is required to be 2p periodic as a
function of d1, andd2, and normalized according to

E
0

2pE
0

2p

r~d1 ,d2 ,t !dd1dd251. ~43!

In order to satisfy the periodic boundary conditions, the
efficients appearing in the drift terms~41!, ~42! must be pe-
riodic, and the functionh(d1 ,d2) should be continued peri
odically as well. On the other hand, to satisfy the fl
periodicity in the screening current, and reproduce the
havior found in Eq.~6! for a single element, the flux 2pFex
os

o
e

tin
D
m

-
r
s

n

o
lv
er
tr

01621
-

e-

and coupling term (2p M̄ /F0) Ī should also be periodic
Then, the expression forh is

h5d12d222pFex2~2p M̄ /F0! Ī

5 i(
l 51

`
~21! l

l
@ei l [d12d222pFex2(2p M̄ /F0) Ī ]

2e2 i l [d12d222pFex2(2p M̄ /F0) Ī ] #. ~44!

The average screening current is now given by
Ī ~ t !5I 0E db f ~b!E dJg~J!E dFexh~Fex!E
0

2pE
0

2p

dd1dd2

1

b
h8~d1 ,d2!r~d1 ,d2 ,t !, ~45!
e.

e

hi-
a-

n-
where h8(d1 ,d2) is the periodic continuation ofd12d2
22pFex . For completeness, we have allowed for the p
sibility that the parameter valuesb, J, and Fex may be
drawn from distributionsf (b), g(J), and h(Fex), respec-
tively. However, for simplicity, we will restrict ourselves t
identical SQUIDs in the remainder of the paper. As in oth
systems of coupled stochastic equations@23#, the FPE de-
rived here is nonlinear which can be easily seen by inser
Eq. ~45! into Eq.~40!. Thus, in contrast to the single SQUI
case@15#, where the FPE is linear, we can expect more co
plicated dynamical behavior.

For the special caseJ50, it is possible to find an analyti
cal solution for long time, assuming that a steady-state
gime is reached. The stationary solution is given, in this ca
by

r0~d1 ,d2 ;b,Fex!5ae2(1/2b D)h2
e(1/D)cosd1e(1/D)cosd2,

~46!

where

a5F E
0

2pE
0

2p

dd1dd2e2(1/2b D)h2
e(1/D)cosd1e(1/D)cosd2G21

,

~47!

and

Ī 5I 0E
0

2pE
0

2p

dd1dd2

1

b
~d12d222pn

22pFex!r0~d1 ,d2 ;b,Fex!, ~48!

where it should be noted that the average screening curreĪ
in Eq. ~46! is determined self-consistently via Eq.~48!.

In order to study the solution of the FPE in more cases
interest, we have to invoke numerical simulations. To so
the nonlinear FPE, we utilize our recently developed num
cal method, which consists of a generalization of the spec
-

r

g

-

e-
e,

t

f
e
i-
al

method ~see, e.g., Ref.@18#! for a single SQUID already
derived in Ref.@15#. The idea is to expandr in Fourier
series,

r~d1 ,d2 ,t !5 (
n52`

`

(
m52`

`

r n
m~ t !ei nd1ei md2, ~49!

exploiting the 2p periodicity in d1 andd2. The coefficients
r n

m in Eq. ~49! are complex valued, whiler is real valued.
Thus,r n

m5(r 2n
2m)* , where * denotes the complex conjugat

From the normalization condition~43!, it follows r 0
0

51/(2p)2. Introducing Eq.~49! into the FPE, we obtain the
following hierarchy of ordinary differential equations for th
coefficientsr n

m :

ṙ n
m52D~n21m2!r n

m2 i J~n1m!r n
m1

n

2
~r n21

m 2r n11
m !

1
m

2
~r n

m212r n
m11!

1
n2m

b (
l

~21! l 11

l
$cos@2p l ~Fex1M̄ Ī !#~r n2 l

m1 l

2r n1 l
m2 l !2 i sin@2p l ~Fex1M̄ Ī !#~r n2 l

m1 l1r n1 l
m2 l !%,

n52`, . . . ,̀ , m52`, . . . ,̀ , l 51, . . . ,̀ , ~50!

where the average screening currentĪ is given by

Ī ~ t !5
I 0

b F8p2(
l 51

`
~21! l

l
Im~r l

2 lei 2p lFex!G . ~51!

The numerical method consists of truncating the infinite
erarchy of first-order, coupled nonlinear differential equ
tions, for a reasonable number of coefficientsn5
2N, . . . ,N, and m52M , . . . ,M , setting r N11

M115r 2N21
2M21

50. For the truncation of the system of infinitely many no
0-9
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linear ordinary differential equations some experimentat
has been made, according to the following strategy: a n
ber N, 2N, 4N of coefficients has been used, and the cho
of N ~similarly with M ) was made when the absolute error
r dropped below a given tolerance, typically 10212. The sys-
tems of ordinary differential equations have been solved b
variable step Runge-Kutta-Fehlberg scheme.

We have compared the numerical solution obtained
the nonlinear Fokker-Planck approach for a one-SQU
probability density, to the solution of the Langevin equatio
for a large number of SQUIDs (N5500). The solution of the
FPE, corresponding to the limiting model~corresponding to
N→`) provides~not shown! excellent agreement with th
N-finite case. This shows thatN5500 is already close to
infinity for a practical purpose. Finally, Fig. 6 shows a com
parison between the analytical and numerical solutions of
FPE for the caseJ50 for different values of the coupling
parameterM̄ . The perfect agreement between the analyti
and numerical results validates our numerical scheme.

V. INCLUSION OF AN EXTERNAL PROBE SIGNAL

A. Numerical results

For the deterministic case we have already found that
coupling strength changes the frequency of the running s
To investigate the effect of the coupling strength in the no
case we need to determine the underlying frequency of
system. One way of determining this frequency is to co
pute Ī from the Langevin equations and evaluate its tim
dependence. Unfortunately, this is computationally v
costly. On the other hand, our extensive numerical invest
tions have shown thatĪ calculated from the FPE, which of
fers a computationally superior way to characterize the s
tem, does not display a time-dependent behavior@24#. Of
course, this finding does not rule out the existence of a st

FIG. 6. Comparison between the average screening curreĪ
obtained by solving numerically the nonlinear Fokker-Planck eq
tion ~spectral method!, and the analytical solution for different va

ues of the coupling strengthM̄ . SQUIDs are identical, and param
eters areJ50, b51, Fex50.4, andD50.1.
01621
n
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e

a

a

s
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e

l

e
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y
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time-dependent solution, but does require an alternative
to find the frequency. Fortunately, as we will see below,
cluding an external time-sinusoidal probe signal leads t
classical resonance~also observed in Ref.@17# for a system
undergoing a Hopf bifurcation! which can be used to deter
mine the underlying frequency.

We will consider an external flux that has a tim
sinusoidal component~referred to in the figures, as the flux
injected probe signal!: Fe5Fe

(0)1q sin(vpt) and assume, for
simplicity, that all the junctions have identical critical cu
rentsI 0. As an aside, we mention here that we have obtai
similar qualitative results when keeping the external fl
constant and adding a sinusoidal component to the bias
rent ~see the Appendix!. To illustrate the effect of the probe
signal, we first performed Langevin simulations forN52

and calculated the average screening currentĪ . In Fig. 7 we
have plotted the power spectrum of this quantity, for tw
different probe signals; one with a frequencyvp that differs
significantly from and one that is very close to the under
ing frequency. The power spectrum was obtained by ave
ing 100 time series of 223 time steps each. The figure illus
trates clearly that for a probe signal frequency that matc
the broad peak~corresponding to the, in-general, nonsinus
dal running oscillations! in the power spectrum of the un
probed system, the signal is amplified dramatically~open
circle!. Thus, adding a probe signal gives us a tool to inv
tigate the dynamics of the noisy system.

To explore parameter space systematically let us now
to the FPE. In Fig. 8, we have plotted an example of
result of a simulation of the FPE. It shows thatĪ becomes
nearly purely sinusoidal when we include a sinusoidal pro
signal after a transient. It also shows that the amplitude
the oscillations inĪ , AĪ , is a function ofvp . This is also
illustrated in Fig. 9 where we showAĪ

2/2 ~see below!, for two

-
FIG. 7. Power spectra of the screening current for a flux-injec

probe signal withvp50.26 andvp50.6. The peaks at the prob
frequency are denoted by a solid square and open circle, res
tively. Parameter values areD50.05, b51, J50.4, Fe /F0

50.45, q50.0025, andM50.02.
0-10
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COOPERATIVE DYNAMICS IN A CLASS OF COUPLED . . . PHYSICAL REVIEW E67, 016210 ~2003!
different values ofM̄ , as a function ofvp . The appearance
of a well defined peak in Fig. 9 demonstrates the class
resonance effect.

Of course, the FPE is strictly valid only forN→`, how-
ever, we have seen that the Fokker-Planck approach alr
yields quantitatively correct answers for relatively small v
ues ofN. Furthermore, the qualitative behavior forN52 and
N→` is mostly the same. In particular, both limits displa
the characteristic resonance of Fig. 7. As a test of our si
lations, we can compare the results obtained with the FP
results obtained with the Langevin equations for largeN. To

FIG. 8. Time evolution of the average screening currentĪ for
two different values of the frequency of the flux-injected pro
signal: vp50.26, vp50.6. Parameters areD50.05, b51, J
50.4, Fe

(0)50.45, andq50.01.

FIG. 9. AĪ
2/2, obtained by solving the FPE, as a function of t

flux-injected probe frequency for two different values of the co

pling strength:M̄50.01~solid line! andM̄50.05~dashed line!. The
SQUIDs are identical, withq50.01 and remaining parameters as
Fig. 8. The inset shows the power spectra obtained via direct La
vin simulations forN5500 for vp50.5 ~square!, and vp50.27
~triangle!. The peaks of these power spectra are also plotted in
main figure.
01621
al
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u-
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this end, we calculated the power spectrum ofĪ as described
above forN5500. The comparison is made easier by t
fact that the output signal is essentially sinusoidal which
lows us to relateAĪ

2/2 to the peak in the power spectrum
This power spectrum, for two different values ofvp , is
shown in Fig. 9 as an inset. The peaks of these power s
trum are plotted as symbols in Fig. 9 and demonstrate
the FPE accurately describes the dynamics, at least
N>500.

B. Towards a theory

Analytical progress can be made if we consider a sm
amplitude signal,q5«Q, where«!1. Thus, Eq.~40! con-
tains terms with two different time scales and can be a
lyzed via the method of multiple scales. It is then to
expected that an appropriate asymptotic method will be a
to capture the long-time behavior ofr. This may be achieved
by introducing fast and slow time scales as follows:

t5
t

«
, t5t. ~52!

We look for a distribution function which is a 2p periodic
function of d1 andd2 according to the ansatz,

r~d1 ,d2 ,t;«!5 (
n50

2

r (n)~d1 ,d2 ,t,t!«n1O~«3!. ~53!

The expansion of the periodic functionh(d1 ,d2 ,«)5(1/b)
3@d12d222p n22p(Fe /F0)# in Eq. ~42!, wheren is an
integer that ensures the 2p periodicity of the solution, in
powers of« is given by

h5h~d1 ,d2,0!1«
d h

d« U
«50

1O~«2!. ~54!

Taking into account thatFe5Fe
(0)1«Q sin(vpt), we find

that

d h

d« U
«50

5Q sin~vpt !
d n

dFe
(0)

, ~55!

where

n5
1

b S d12d222p n22p
Fe

(0)

F0
D . ~56!

Inserting Eqs.~53!, ~54!, and ~55! into Eq. ~40!, we obtain
the following hierarchy of equations forr ( j ):

]r (0)

]t
50, ~57!

-

e-

e
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FIG. 10. Transfer characteristics for different coupling strength values, and for two different values of the bias currentJ @J50.1 in ~a!,
and J50.35 in ~b!#. In ~a!, the points marked by~1!,~2! correspond to the solution obtained by numerical simulation of the FPE. O
parameters areD50.1, andb51.
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]d2
F dn

dFe
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where

Ī (0)5E
0

2pE
0
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dd1dd2n r (0), ~60!

Ī (1)5E
0

2pE
0

2p

dd1dd2S n r (1)1Q sin~vpt !
dn

dFe
(0)

r (0)D .

~61!
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The normalization conditions

E
0

2pE
0

2p

r (n)~d1 ,d2 ,t !dd1dd25d0n ~62!

follow from Eq. ~43!.
Equation~57! implies thatr (0) is independent oft. Then

the terms in the right side of Eq.~58! which do not have
t-dependent coefficients give rise to secular terms~un-
bounded on thet time scale!. The condition that no secula
terms should appear is

DF ]2r (0)

]d1
2

1
]2r (0)

]d2
2 G2

]

]d1
F S J2n2sind11

2pM̄

bF0
Ī (0)D r (0)G

2
]

]d2
F S J1n2sind22

2pM̄

bF0
Ī (0)D r (0)G2

]r (0)

]t
50.

~63!

This equation should be solved forr (0) together with Eq.
~60!, the normalization condition, and initial condition dat
Note that this problem is equivalent to solving the FPE~40!
without the probe signal. As mentioned above numerical
periments show that the solution of this FPE evolves towa
a stationary state at long times. Such a stationary solu
can be found by imposingṙ n

m50 in Eq. ~50!, and solving
numerically the corresponding nonlinear system of eq
tions. As in the single SQUID case@15#, it is worthwhile to
study the input-output transfer characteristic~TC!, which is a
convenient descriptor of the system response in terms of
perimentally measurable quantities. The TC is a plot of
average screening currentĪ vs the external fluxFex . In Fig.
10 we show the effect of the coupling strength on the TCs
two different values of the bias current. The TC is a perio
function inFex @see Eq.~50!#, so only one complete cycle i
shown for eachJ. Notice that in Fig. 10~a!, a hysteretic be-
havior can be observed for large values of the coupling,
0-12
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some range ofJ. The hysteresis is characterized by a ne
tive slope of the transfer characteristic atFex50.5, showing
three possible solutions. Only two of them, however,
stable, corresponding to the upper and lower branch. By
creasingFex we can reach the upper branch for values
Fex higher than 0.5, while the contrary takes place when
decreaseFex . The branch connecting the upper and low
branch in Fig. 10~a! cannot be observed in the numeric
simulations~see Fig. 11!, and is therefore most likely un
stable. This behavior can also be found in the noise
single SQUID case@10#. Note that the effects of the prob
signal are absent from the zero-order expression for the
tribution function,r (0); they do appear when calculating th
first correction,r (1).

To calculate first-order corrections, we again impose
condition that no secular terms appear and that the right-h
side of Eq.~59! vanishes. The resulting equation is

DF ]2r (1)

]d1
2

1
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]d2
2 G2

]
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1
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bF0
~ Ī (0)r (1)1 Ī (1)r (0)!G2

]

]d2
F ~J1n

2sind2!r (1)2
2pM̄

bF0
~ Ī (0)r (1)1 Ī (1)r (0)!G2

]r (1)

]t

1Q sin~vpt !H ]

]d1
F dn

dFe
(0)

r (0)G2
]

]d2
F dn

dFe
(0)

r (0)G J
50. ~64!

The analysis of the equation above can be readily acc
plished in Fourier space. Fourier transforming Eq.~64!, we
obtain

FIG. 11. Time evolution of the average screening currentĪ for
two different initial conditions. Parameters areD50.1, J50.1, b

51, Fex50.5, andM̄50.05 corresponding to the hysteresis r
gime in Fig. 10~a!.
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dFe
(0) @ r̂ (0)~v1vp!2 r̂ (0)~v2vp!#G

2
]

]d2
F dn
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(0) @ r̂ (0)~v1vp!2 r̂ (0)~v2vp!#G J ,

~65!

where

r̂ ( j )~d1 ,d2 ,v!5E
2`

`

dt e2 ivtr ( j )~d1 ,d2 ,t !, j 50,1,

~66!

Ī̂ (0)5E
0

2pE
0

2p

dd1dd2nr̂ (0), ~67!

Ī̂ (1)5E
0

2pE
0

2p

dd1dd2F nr̂ (1)1 i
Q

2

dn

dFe
(0) @ r̂ (0)~v1vp!

2 r̂ (0)~v2vp!#G , ~68!

and * denotes convolution. Equation~65! should be solved
for r̂ (1) together with*0

2p*0
2pdd1dd2r̂ (1)50. Assuming that

r (0) evolves to a stationary solution for long time@i.e., r̂ (0)

5d(v) f (d1 ,d2)], we find thatr̂ (1)50 is the only solution
of Eq. ~65!, unlessv56vp . Then, Eqs.~65! and~68! imply
that

r̂ (1)5h1~d1 ,d2!d~v2vp!1h2~d1 ,d2!d~v1vp!.
~69!

Inserting Eq.~69! in Eq. ~65!, we obtain two uncoupled
equations forh1 andh2. These can be solved by expandin
h6 in Fourier series,

h6~d1 ,d2!5 (
n52`

`

(
m52`

`

~T6!n
mei nd1ei md2, ~70!

and solving the corresponding nonlinear systems of eq
tions for the coefficients (T6)n

m . Once we obtain (T6)n
m , we

can calculate Ī̂ (1) from Eq. ~68!. Notice that r̂(1vp)
5 r̂* (2vp), by taking the complex conjugate in Eqs.~65!
and ~68!. Then it follows from Eqs.~69! and ~70! that
0-13
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FIG. 12. Amplitude of the average screening current as function ofvp . Comparison between the theoretical results and the nume

simulations, marked by symbols. Parameters areD50.05, b51, J50.4, M̄50.01 ~solid line for the theory, and solid triangle for th

simulations!, and M̄50.05 ~dashed line for the theory, and open square for the simulations!. ~a! Flux-injected probeFe
(0)50.45, q

50.01. ~b! Current-injected probeJ050.4, q50.01.
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2m)* . Therefore, we conclude thatÎ̄ (1)

(2vp)5( Î̄ (1))* (1vp), and the inverse Fourier transform
yields

I (1)~ t !52 Re@ Ī̂ (1)~vp!#cos~vpt !22 Im@ Ī̂ (1)~vp!#sin~vpt !.
~71!

Knowing I (1)(t), its amplitude can be readily computed a
the result is

AĪ 52AĪ̂ (1)~ Ī̂ (1)!* 1O~«2!. ~72!

In Fig. 12~a!, we plot the numerical solution for two dif
ferent values of the coupling and the theoretical approxim
tion ~72!, showing a remarkable agreement with the theo
ical results corresponding to the first-order expansion
should be noticed, however, that the amplitude of the pr
signal considered here is small,q50.01. For increasing
strength of the amplitude, higher orders in the expans
may be required. Oncer (1) is known, it is also straightfor-
ward to find the successive terms in the expansion. With
entering into a detailed study, some general features can
ily be drawn from the hierarchy of equations forr ( j ). Simi-
larly to the analysis forr̂ (1), and by taking into account tha
r̂ (1) is a function exclusively ofv6vp , it is straightforward
to prove that r̂ (2)50 is the only solution, unlessv50,
62vp . In general, successive terms will depend on hig
harmonics of the main frequencyvp .

We note that the probe signal could also be applied as
addition to the bias current~current injection!, keeping the
external fluxFex constant. The resulting FPE may be solv
in a manner analogous to the solution given above for
flux-injected case. We relegate the details to the Appen
but show a comparison between the theory and nume
simulations in Fig. 12~b!. Again, the agreement is remark
ably good. Finally, we mention that it is also possible
calculate the frequency by analyzing the transition proba
01621
-
t-
It
e

n

ut
as-

r

n

e
x,
al

l-

ity in the FPE toward the stationary state, and thus to ca
late the correlation function and its Fourier transform to o
tain the power spectrum. However, extracting any analyt
information from such an approach is quite involved. F
thermore, it might be possible to compute the frequency
rectly using Langevin simulations. However, for large no
levels, extracting the frequency from Langevin simulatio
would require averaging over many runs, making the F
approach presented in this paper far more suitable.

VI. DISCUSSION

In this paper we have investigated the dynamics of
array of globally coupled SQUIDs. We have found that t
coupling can lead to interesting effects. The main resul
that the coupling strength determines the underlying~i.e.,
running! frequency of the system. For the deterministic ca
this can be seen directly from the exact solution we ha
found. For the noisy case, this can be determined either
direct numerical simulations of the Langevin equations
via the investigation of the FPE we have derived.

As in other nonlinear systems, determining the underly
frequency can have practical applications. Unfortunately,
large noise levels, this task is generally very difficult. Ho
ever, we have shown that the inclusion of a sinusoidal pr
signal can be utilized to determine this frequency. In parti
lar, we have found that the power spectrum of the exp
mentally relevant observable~the average screening curren!
displays a classical resonance phenomenon. As the frequ
of the probe signal approaches the underlying frequency,
response gets amplified. Thus, the plot of response ampli
vs frequency shows a maximum at the underlying frequen
Noting that the underlying frequency is a function of th
externally controllable bias parameters, we are now in a
sition to explain the resonance behavior observed in ea
experiments@12#. In these experiments, a time-sinusoid
probe signal was applied to a single dc SQUID, with the
bias current and external magnetic flux used as determin
laboratory control parameters. Past the onset of the sad
node bifurcation, characterized by the experimental obse
0-14
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tion of a phase diagram analogous to Fig. 1, we observe
local maximum in the local SNR measured at the probe
quency, for certain bias parameters. The noise in the exp
ment was not controlled externally, being assumed to a
from thermal noise in the junctions. Clearly, the results
this work indicate that such an effect occurs because,
particular bias condition, the resulting spontaneous osc
tion frequency matches the probe frequency, leading t
considerable decrease in the local dispersion~measured
about the probe frequency!. In fact, in our earlier work@2#,
we showed that at this resonance, the noise floor of the
vice was lowered across the output power spectrum, with
most striking effects appearing at the probe frequency an
harmonics. The results of this paper, while providing the
sis for explaining the experimental observations, also sh
that the effect is more striking in a coupled array, when
coupling coefficient can, in fact, control the resonance via
effect on the underlying oscillation frequency.

The observed resonance phenomenon might be use
develop more sensitive SQUID-based measurement or q
tification systems. Imagine trying to detect a weak sinuso
target signal with an amplitude that is very small, perha
even smaller than the noise level. If the target frequenc
far removed from the underlying SQUID frequency this s
nal will be difficult to detect. However, by coupling SQUID
and adjusting the coupling strength~or other control param-
eters if the coupling strength is inaccessible to adjustm!
we can match the underlying frequency to the target
quency and increase the response dramatically.

This scenario is shown in Fig. 13 where we have plot
the amplification of the target signal, defined as the powe

FIG. 13. Ratio between the peak in the power spectrum and
signal strength as a function of the coupling strengthM for a system
of two coupled SQUIDs. The signal frequency isvp50.018 with an
amplitude ofq50.01 ~solid line! andq50.0025~dashed line!. The
inset shows the power spectrum for two different values ofM (M
50.045 for the closed square andM50.122 for the open circle!.
Other parameters as in Fig. 2.
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the target frequency~output! divided by the power of the
target signal~input!, as a function of the coupling strengt
for N52. The curves, for two different values ofq, clearly
show a typical resonance shape, indicating the presence
optimal value ofM. The inset of Fig. 13 shows the powe
spectrum for two different values ofM. The peak values a
vp are also plotted as symbols in the amplification curves
the optimal value of the coupling strength, the target sig
for the small value ofq is amplified by more than 100, rep
resenting a dramatic increase in sensitivity of the SQU
Note that in this example we have only used two SQUID
making this scenario experimentally plausible.

The results of this paper can be applied to other syste
displaying bifurcations; in fact, an application of these ide
to the problem of noise-induced firing in type-I neurons
currently being actively explored@25# via an analysis of the
Morris-Lecar model equations in the neighborhood of th
saddle-node bifurcation, using center-manifold reduct
theory. Note also that, in the single SQUID~as well as the
Morris-Lecar neuron!, one can approximate the dynamic
near the onset of the bifurcation by simple ‘‘Integrate-an
fire’’ dynamics@2#. This representation is elegant; it provide
a valuable tool for doing analytic calculations near the cr
cal point, and it affords a case for the universality of su
simplified dynamics close to the critical point. The procedu
uses the already~via center-manifold theory! computed run-
ning frequency to set the width of the ‘‘bottleneck’’~in the
circle representation of the dynamics near the critical poi!,
following which a linear Langevin equation is written dow
to describe the diffusion through the bottleneck with t
noise added to the normal form. An analogous procedure
the coupled SQUID case is currently under investigation
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APPENDIX: FPE SOLUTION FOR CURRENT-INJECTED
PROBE SIGNAL

In a manner similar to the theory shown in Sec. V B, it
straightforward to analyze the case of a probe signal given
J5J01q sin(vpt), q5«Q, where«!1. In the following, we
shall illustrate the main differences. Inserting Eq.~53! into
Eq. ~40!, we obtain now the following hierarchy of equa
tions:

]r (0)

]t
50, ~A1!

e
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In a manner analogous to the theory for the flux pro
signal case, necessitated by the need to remove the se
terms, we obtain the following equations forr (0) andr (1):

DF ]2r (0)

]d1
2

1
]2r (0)

]d2
2 G2

]

]d1
F S J2n2sind11

2pM̄

bF0
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Fourier transforming Eq.~A5!, we obtain
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@ r̂ (0)~v1vp!2 r̂ (0)~v2vp!#J . ~A6!

Equation ~A6! can be solved for r̂ (1) together with

*0
2p*0

2pdd1dd2r̂ (1)50. In Fig. 12~b! we show a comparison
between the theoretical solution and the numerical simu
tion.
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