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Short-time decay of the Loschmidt echo
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The Loschmidt echo measures the sensitivity to perturbations of quantum evolutions. We study its short-time
decay in classically chaotic systems. Using perturbation theory and throwing out all correlation imposed by the
initial state and the perturbation, we show that the characteristic time of this regime is well described by the
inverse of the width of the local density of states. This result is illustrated and discussed in a numerical study
in a two-dimensional chaotic billiard system perturbed by various contour deformations and using different
types of initial conditions. Moreover, the influence to the short-time decay of sub-Planck structures developed
by time evolution is also investigated.
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I. INTRODUCTION independent regime is observed. In this case, the decay rate
is given by \. Finally, if I' exceeds the bandwidth of the
Quantum irreversibility studies have become a very activgerturbation, the LE has a Gaussian decay.
research topic due to a direct connection with quantum com- The properties of the initial state play an important role in
puters and mesoscopics phys[ds2]. The natural quantity the behavior of the LE6,12]. This point can be relevant to
for these investigations has been introduced by Peres in highserve the mentioned regimes. For example, the Lyapunov
seminal paper of 198@]. Called later Loschmidt ech®E)  regime is not displayed if the initial state is an eigenfunction
or fidelity, it measures the ability of a system to return to anys the unperturbed/perturbed Hamiltoni@h2]. Localized
initial state| ¢) after a forward evolution with a Hamiltonian ;5 packets are needed to observe this regime. On the other
H, followed by an imperfect reversal evolution with a per- hang  zurek has recently stated that dynamical evolution
turbed HamiltonianH="Ho+ 6xH’ (dx parametrize the . ses that these states develop a sub-Planck structures in
strength of the perturbationThus, it is given by phase space, and he predicts that these structures enhance
_ . r 2 their sensitivity to perturbationsl4].
M(®)={¢lexdiHt]ex ~iHot]|4)] @ In this paper, we are mainly interested in the short-time
(throughout the paper is set equal to )L The LE compares decay of th_e LE_. Disregarding system spegific fe_a_tl_Jres and
the evolution of an initial state with slightly different Hamil- the correlations imposed by the characteristics of initial state,

tonians and can distinguish regular and chaotic classical dy¥® Show via perturbation theory that * is given by the
namics[3-5. width I" of the LDOS. In order to see the validity of this
The LE was recently studied in various chaotic systemdesult in a realistic model, we study the characteristic time
using several approachdg,6—13. However, few types in a paradigmatic model of quantum chaos, a 2D chaotic
of decay were discussed in the literature. For a very shotilliard perturbed by a contour deformation. We regard the
time, it is straightforward to show that the LE has a par-influences of the characteristics of the perturbation and the
abolic behavior M(t)=1—6x?(AH")?t2, with (AH’)? initial condition to this important regime. Therefore, we con-
=[{¢|H"?|p)—(#|H'|$)?]. This decay is better resembled sider different perturbations and various types of initial con-
by the Gaussian function exp(t/7)%], with characteristic ditions in our numerical study. We find that some perturba-
time 7=1/(AH’ éx). Though this regime has experimental tions, which we calfjenerig destroy correlations imposed by
relevance[13], it has not been extensively taken into ac-the initial condition giving thatr_*=T". Nevetheless, other
count. perturbations do not act in that way and this fact produces a
After this short-time decay, a crossover to a perturbatiorsiower decay withr~<TI'. In this context, we discuss the
dependent regime was predicted and numerically observegdfluence of an initial time evolution of the wave packet and
[4,6—-8,1Q. For very smalléx, in which a typical matrix the corresponding developed structures in phase space in the
elementU of the perturbation is smaller than the mean levelshort-time decay of the LE. In fact, it is shown that an initial
spacingA, the decay is always Gaussian ui(t) reaches dynamical evolution helps to erase the mentioned correla-
its asymptotic valueM (t—«=)=M.,. If U>A, this regime tions, with the effect of increasing *. If the initial evolved
has an exponential decay ex{d(t), with I" the width of the time is smaller than the Ehrenfest time, the enhanced decay
local density of stated. DOS). This is usually called Fermi is described entirely by the classical streaching around the
golden rule regimgFGR). WhenI'>\, with A the mean unstable manifold given by the Lyapunov expon]. But
Lyapunov exponent of the classical system, a perturbatiofor greater evolved times, the quantum interference lead a
developed sub-planck structure in phase space and this yield
that the decay continuous growing. That is, the sensitivity to
*Electronic address: wisniacki@df.uba.ar perturbations is also enhanced in this céae stated in Ref.
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approximately equal in the studied rangesxf. As we shall
see in the following section, the width of the LDOS is a
measure of the magnitude of a perturbation.

To solve Eq.(1), eigenvalues and eigenfunctions of per-
turbed and unperturbed system are needed. They are ob-
tained using a Hamiltonian expansion of deformed billiards
which has been recently developEtb]. For sx<1/k, (kg
the mean wave number of the region under siudie
eigenenergies and eigenfunctions of the deformed billiard,
are connected to the ones of the stadium by the linearized
Hamiltonian expressed in the basis of eigenstate8xat0

(from now on, we will call¢, to these eigenstates af,
FIG. 1. Schematic figure of the system and the various shapghe respective eigenenergies

deformations. Desymmetrized stadium billiard is plotted with

dashed lines. On continuous lines, deformations of the billiard are H,,(6x)=H, (0)+ éxH! , 3)
shown. The curvilinear coordinates used to describe the deforma- K’ ® my
tions[Eq. (2)] is also included. with HMV(O): E;ﬁw and

[14]). However, if the perturbation produces a decay with , . 9, 0,
7 1=T the developed structures in phase space do not in- H,,=—Cf., AL fhz (S)—on 7n ds.
fluence the short-time decay.

The paper has the following structure. Section Il is de-rpg gigenfunctions and eigenenergieshet 0 are obtained

voted to _describe the model system and the various_ ShaFIf‘sing the scaling methoi®0]. The integral above could be
deformations that we have considered. The paper is selfjiawed as an inner product among the wave functions

contained with the inclusion of the shape parameter Hamil—(w /on defined overC. This relation defines an effective
tonian expansion for a 2D quantum billiards developed inHiIgert space in a windowAk~ perimeter/ared16]. The

Ref.[16]. In Sec. lll, the characteristic time is related to - _ 2 2 ;
: ) ) __cutoff function Cf,,=exd —2(K,—K))%(k,AK)?] restricts the
the width of the LDOS using perturbation theory. Then, in ffect of the perturbation to gtates in this energy shell of

fstf)?cs'e'\\/’ér";letprisse;f itr:‘i‘;arl‘%@ﬁé‘ﬁ%nreggéi'nwivﬁau?ge”;fm'j idth koAk. It allows to deal with a basis of finite dimension
lest case Wﬁgn the initial state is aﬁ ei enfugnctioH fwe with wave numbers around the mean vakge restricting to
b 9 e a particular regionAk of interest. We are considerinky,

follow with Gaussian wave packets. Finally, the initial con- —100 and =1 (m the mass of the particién all the
ditions are the evolved Gaussian wave packets in order tﬂumerical calculations presented above.

study the prediction of Ref.14]. In Sec. V, we make some
final remarks.

Ill. SHORT-TIME DECAY AND THE LOCAL DENSITY

OF STATES
II. MODEL SYSTEM: DEFORMED STADIUM BILLIARDS

. . . . - Our aim is to characterize the short-time decay of the LE.
We use the desymmetrized Bunimovich stadium bl"'ardAs mentioned in the introduction, a simple calculation led

?i.:‘ rg(r)gg.l sn}(;tecms tgt:r)r;p'lsrfelrh?:hk;eor;ivg)r: doﬂéze[gg't theEhe short-time decay to depend on the initial state and on the
ISP 'gmatic sy IS Tully ; S9 perturbation3]. We want to relate the characteristic time
oretical and experimental relevanide/—19. It consists of a

S . g . of the short-time decay with some general properties of the
free particle inside a two-dimensional planar region whoseperturbation
boundaryC is shown in Fig. 1 with dashed lines. The radius The influence of a perturbation over a quantum system

r is taken equal to unity and the enclosed area-isnt4. could be described by the LDOS. The LDOS of an unper-
The system is perturbed by boundary deformations Whicqurbed eigenstate , is defined as
y23

preserves the area of the billiard. Deformations with different
characteristics are chosen in order to understand their influ-

ences in the short-time decay of the LE. Figure 1 shows theAE,&x)zE (o ( 6x)|¢>u)|25[E—{EV( X —E, 1, (4
shape deformations that have been considered. The changes v

of the boundary are parametrized by with E,(6x) and¢ (%) the energy and eigenfunction of the

F(S,6%) =T4(S) +2(s,8%)N, ) perturbed HamiltonialEq. (3)]. This function shows how
the unperturbed states are coupled to the perturbed ones. Be-
with salongC, ro(s) the parametric equation fé; andn the ~ Cause we are not interested in a particular state, an implicit
outward normal unit vector t6 atr(s) [see Fig. 1a)]. Case average over the unperturbed statés considered from now
(a), shown in Fig. 1, is well described in Réfl6]. For de-  ©n- We have chosen the widtHispersion
formation (b)—(d), z(s,6x)=adxcos@NSP) with «

=0.42,P=1+#/2, andN=3, 5, and 10.« is chosen in _ \/ 2
! ! 1 I'(é6x)= E (6x)—E,,oX]|[E (6x)—E 5
order that the width of the LDOS of all deformations are (&%) Ey PulELOX) By, XI[E,(X) ~E,] ©
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800 - " This approximation is also valid for the case in which the
b complex numbers,, behave randomly. Finally, if we con-
sider that thda, | are nearly constant inside the band,

> H
This result is also valid i&, = J,,,,, assuming that we are
averaging over several initial conditions. Note that we have
obtained Eq(9) throwing out all the correlations imposed by
9100 0 100 the perturbation and the wave amplitudes. In the next sec-

r=(u-v) tion, we will see in what manner these correlations influence
the decay.

. 2 .
FIG. 2. Mean value of the matrix elemertts,, as a function of Each perturbation is characterized by the structure and

r=u—v for the deformationga) (dotted ling and (d) (full line). lati f1h . | 4 A |
The peak for the deformatiofa) is due to the bouncing ball orbits. correlations of the matrix elemen pv- AS aN €xampie,

Insets: Image of a piece of the perturbation maltk, | shown as Fig. 2 shows the_ behavior of the mean Valqewﬁ» as a
a density plot. The left plot corresponds to the perturbation label afunction of the distance =v— u for perturbations(a) and
(@) and the right plot corresponds to perturbation label(ds  (d). This function is usually called band profile. The cad®s
Clearly, there is a structure in the perturbation matrix for pertuba-and (c) are not plotted because their band profile are quali-

T %~

3 400 Ox2=T2{ 6x). 9

tion (a) when compared to perturbatidd). tative equal to caséd). Note that perturbatioia) is clearly
nongenericdue to the two important peaks jaf ~25. This
as a practical measure of this distribution . nonuniversality is introduced by the fact that perturbatian

The LDOS exhibits various regimes as a function of thedoes not connect the bouncing ball states with generic states.
strengthdx [21,24). As we shall see, the perturbative regime In the insets of Fig. @ density plot of these matrix are
is relevant for our study. Perturbation thed®T) gives the ~ shown for deformationga) and (d). We will see in the fol-

following first-order expression for the LDOS: lowing section that there are correlations between the matrix
elements of the perturbation which are not exposed in the
IH! |26x2 band profile but have an important influence to the short-time

ppi(E, 8x) = 8(E) +—=~

m&[E—{E,,(&X)—EM}]. decay.
v 2

(6) IV. NUMERICAL RESULTS
Using the definition of the widthEg. (5)] and Eq.(6) it is In this section, we study numerically the behavior of the
straightforward to show short-time decay of the LE in the Bunimovich stadium bil-
liard perturbed by the contour deformation presented in Sec.
Il. We consider different types of initial conditions: Eigen-
[p(6x)=6x+/ > IHI’L,,IZ. fuction of H,, Gaussian wave packets, and evolved Gaussian

wave packets. We would like to see the range of validity of

. ) . Eq. (9) for our particular system.
This expression works very well for all the perturbations of

Fig. 1 with strengthox=<1/k.

With these ingredients in mind, let us consider the
short-time decay of the LE. As pointed out previously, it The simplest case of the LE is when the initial state of Eq.
is given by M(t)=exd—(t/7)?] with 7~ 2=(($|H'?|¢) (1) is an eigenstate dffy. In this case, the LE is directly
—(p|H'|p)?) 6x°. Let be|¢>:2%¢u the initial state, so  related with the Fourier transforiT) of the LDOS. Then,

M(t) is the so called survival probabilify1 2,25, defined as

X% (7) P(t)=(¢,lexdiHt]]¢,)|*=|FTp,(E,x)]%. (10

As we saw in the preceding section, we expect théir

The perturbation matrik,,, is a banded matrix due to the By is well described by Eq9). P(t) is the mean value of
cutoff function Cf,, (see the insets of Fig.)2This band the survival probability over several initial states. We have
structure is quite generic in realistic systems due to the finitgyymerically observed that this is the case for the perturba-
range interaction of unperturbed sta{@?,23. Inside the tjons (b)—(d). These results are shown in Fig. 3. Note that
band, the matrix elementd,, are highly fluctuating num- -1 for perturbationgc) and(d) are not plotted because the
bers. At first sight, if we ignore the system specific featuresresults are the same @s). The widthsI'(5x) and I'pr{ 5x)
we can do the diagonal approximation of K@), resulting  are equal for all the perturbations. For perturbatian =~ *
~0.89"(6x) which is directly related to the structure of the
perturbation matrix(see Fig. 2 imposed by the bouncing
ball stateg10]. Similar attenuation was observed in R€f0]

A. Eigenfuctions of H

2
72=|> a,H!H a,—

ol

> a,H,a,

,2=

T SX2. (8)

> la,lH]
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2251 — Ty - 225 { -~
a T'(3x) o {d)
< (b) * ={c)
*(a) . a (b)
150 . 150 { *®@ L
TP 3 ° Tl—’ M .
75. @ . | 75 ] g - L] e R - a a
0 g fse®”
0 0.025 ox 005 0075 0 0.025 0.05 0.075
dx
FIG. 3. 7! of the survival probability as a function @&k when I . )
the system is perturbed by deformatioias and (b). The width of FIG. 5. 7~ of M(t) as a function oféx when the system is
the LDOST'(8x) and its perturbative evaluatidiy( x) calculated perturbed by deformations), (b), (c), and(d). The initial states are
using Eq.(6) are also plotted. the Gaussian wave packets of E4l). I'(6x) is also plotted in

solid line.

for perturbation(a) in the FGR regime. In this case, the de-

cay rate is given by 015(5)() instead of the expected value We discuss here the short time decay of the LE for this

I'(6x). particular type initial conditions in the stadium billiard per-
Figure 4 summarizes the behavior%(t) in the desym- turbed by 'd.eformatio.ns presented in Fig. 1. We compute

metrized stadium billiard. We have taken an average oveM (1) for initial Gaussian wave packets,

100 initial states. In this figure, the results for perturbation

(d) of Fig. 1 are shown. Other perturbations led to the same d(r)=(mad)Yexdip,.(r—rg) —i|r —ro|2/c?], (11)

qualitative results. For a small perturbation strengibp

curve of Fig. 4, we observe the Gaussian short time decay

and after that an exponential decay with a decay rate givep; o _ .

by the width of the LDOS[5,10]. For large perturbation With [Pol =ko=100 ando _O.1§. An average overa50 |[1|t|al

strength(bottom curve of Fig. #the exponential decay with states was taken. The d'reCt'OP of the momenipigi| po|

decay rate given by’ (5x) is not observed. This is due to the and the center of the wave packgtare chosen randomly. As

constraint imposed by the asymptotic vaMe, . In this case, expected, the short-time decay is well described by a Gauss-

the decay is completely Gaussian. An important point is thatan function exp—(t/7)?]. Figure 5 shows the behavior of

the asymtotioVl .~ A/T"(6X). 7~ 1 as a function of the strengix for all the perturbations

under study. This type of initial conditions imposes correla-

tions so that the second sum of right hand side of &.

does not vanish. The nonuniversalities of each perturbation
The decay of the LE for localized Gaussian wave packetsire clearly exposed im. Note that these differences are not

has been widely studied in the literature. Most of the previ-seen in the width of the LDOS nor in band profile of the

ous works consider this cadd,6,8,10,11 The predicted matrixH/,,. We have considered perturbations with greater

crossover from a perturbation dependent regime to th@umber of oscillations of the boundar) ¢ 10) and we find

Lyapunov regime has been shown for these classically=1/"(6x) for all of them[26].

adapted initial conditions.

B. Localized Gaussian wave packets

1.00 . C. Evolved Gaussian wave packets

. In a recent pap€i4], Zurek showed that dynamical evo-
RN lution of initial Gaussian wave packets in classically chaotic
|§0.10 e systems, produces finer and finer phase space structures
- ' . which saturates after the Ehrenfest time with a sub-Planck
e scale. More important, he predict that this sub-Planck struc-
, . tures enhances the sensitivity of a quantum state to an exter-
0.01 "' : nal perturbation. A numerical study in a time dependent one-
0 0.05 0.1 dimensional model agreed with this assertja], but other
studies reached opposite conclusiphs,28. In Ref.[15] it
FIG. 4. P(t) for the desymmetrized stadium billiard perturbed IS Showed an enhanced decay of the LE of evolved wave
by deformation(d) of Fig. 1. The values of the strength of the Packets but this acceleration is fully described by the classi-
perturbation issx=0.015 for the top curve and 0.05 for the bottom Cal Lyapunov exponent and it is not due to the sub-Planck
curve. The dashed lines correspond to the Gaussian deca§iructures. More specifically, it is pointed out that the char-
exp(—[T'(8x)t]?), and the exponential decay, éxpg[T'(8x)t]), is  acteristic timer(T,) of the short-time decay for a wave
plotted with a dotted line. packet that has been evolved a tifgis given by
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Note that the Ehrenfest timE-=0.025. So, the enhacement
2251 —Iéo . . . . .
o T, of the short-time decay is fully explained with the classical
o0 . instability given by the Lyapunov exponent for evolved
150 { *T=0 . - timesT, smaller than the Ehrenfest time. However, for larger
"o ", et times 7~ 1(T,) is also growing.
75 | . N A qualitative picture of acceleration of the short-time de-
L Less® cay for evolved states is the following. Before the Ehrenfest
s, cee®’ time the wave packet is streaching around an unstable mani-
0 0 0.025 0.05 0.075 fold and just after that times starts the quantum interference

Sx which lead a sub-Planck structures. At that times a small part

. of the Wigner function presents a sub-Planck structure. This

FIG. 6. 7! of M(t) as a function ofdx for perturbationsa).  region grows with time and it seems to be the reason of the
The initial states are Gaussian wave packets that have been evolvgdcelerating decay. Note that for the saturation times the sub-

atimeT,. I'(4x) is also plotted. Planck structure is all around the available phase space.
NTo—T,)
#) , (12)

T 1(T0)= Tl(O)GXL( 5

V. FINAL REMARKS
with 7(0) the characteristic time of the short-time decay for
initial states that have not been evolved,the Lyapunov
exponent and . the mean time for the first collision with the

We have studied the short-time decay of the LE in a 2D
chaotic billiard. The system was perturbed by a contour de-
boundary. formation. Different perturbations were considered in order

We consider the influence of the developed structures il d_evelop the influences of their characterist?c_s_in the be'
phase space in the short-time decay of the LE. 86t) is hawor of the LE. Moreover, several types of initial condi-
computed for the same initial conditioigq. (11)] of the tions _have been used and how they affect the LE have been
preceding section but an unperturbed initial evolution duringg*@mined. _ S
a time T, is applied. Figure 6 shows }(T,) as a function Our findings are the following. For nonlocalized initial
of the strength x for perturbation (8 and with T, States and if the system is perturbed bgemericdeforma-
=0,0.025,0.05, and 1. Note that '(T,) increases with tion, the characteristic time of the short-time Gaussian de-
larger T,, for all perturbation strengths. This fact clearly cay is given by the inverse of the widih of the LDOS. If
points out that an initial evolution enhances the sensitivity tosemiclassical features are exposed in the matrix elements of
this particular perturbation. We have observed thatTgr the perturbation, we have obtained that'<I". For highly
>0.4, 7! converges to the width of the LDOS. Same be-localized initial states, cross correlation between wave am-
havior is shown when the system is perturbed by deformaplitudes are important and this is exposed with the fact that
tions (b) and (c). However, when the perturbation destroys -~ *<I". When the perturbation destroys such correlations,
the correlations imposed by the initial wave packet whichthe characteristic time™* exhibits its maximum valud'.
implies that7=1/T", the short-time decay is not affected by  We have discussed the prediction of Zufd], which
an initial evolution. _ _ stated that an initial dynamical evolution of semiclassical

In order to see if these increments are fully described byyave packets lead a sub-Planck structures in phase space and
Eq. (12) and due to this it has classical nature, in Fig. 7 it iSghjs enhances its sensitivity to perturbation. We found that in

: -1 -1

showed the behavior of *(To)/7 “(0) for several prepa- ihe cases, in which the perturbation does not destroy the
ration timeT, for perturbation(@) with strenghtéx=0.04. It o rrejation mentioned before an accelerated decay is ob-
is clearly observed that Eq12) works well for T;<<0.025. served. As a function of the preparation tifig, we have

observed two regimes. FoF, smaller than the Ehrenfest

° ° time, the enhanced decay is described entirely by the classi-
31 ° cal Lyapunov exponent as pointed out in Ra6]. However,
> °© for larger Ty in which the quantum interference lead the
'% 2.25 5 sub-Planck structures the enhancement of decay is also ob-
= served.
=3 15 | A final point is worth commenting. We have shown that
the short-time decay of the LE has a Gaussian behavior and
for certain perturbations the characteristic time is given by

0.75 0 005 01 015 02 the width of the LDOS. The LDOS of some systems
' T ' ' [12,24,25,29presents a region in which its width is indepen-
dent of the perturbation. We note that these results could be
FIG. 7. 7 1(T,)/ 7 1(0) as a function of the preparation tifig ~ Of importance for the understanding of the measure of the LE
for strenghtsx=0.04. The stadium is perturbed by deformatigh  in recent nuclear magnetic resonance experimgi§ Al-
The prediction of Ref[15] [Eq. (12)] is plotted in solid line. though that system consists @hany interacting nuclear

0
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spins, the results are in accordance with the former. That is, ACKNOWLEDGMENTS
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