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Chaos based on Riemannian geometric approach to Abelian-Higgs dynamical system
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Based on the Riemannian geometric approach, we study chaos of the Abelian-Higgs dynamical system
derived from a classical field equation consisting of a spatially homogeneous Abelian gauge field and Higgs
field. Using the global indicator of chaos formulated by the sectional curvature of the ambient manifold, we
show that this approach brings the same qualitative and quantitative information about order and chaos as has
been provided by the Lyapunov exponents in the conventional and phenomenological approach. We confirm
that the mechanism of chaos is a parametric instability of the system. By analyzing a close relation between the
sectional curvature and the Gaussian curvature, we point out that the Toda-Brumer criterion becomes a suffi-
cient condition to the criterion based on this geometric approach as to the stability condition.
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There has long been an investigation in chaos of classicakcently advocated to investigate the mechanism of the onset
field theories such as the pure Yang-Mills theoljé$ the  of chaos in the Hamiltonian systems and this has been ap-
Yang-Mills-Higgs (YMH) theories[2,3], and the Abelian plied to particular systems such as thenkie-Heiles system
gauge-HigggAH) theorieg4] in order to understand general [8] and the homogeneous YMH syst¢@]. Basic idea of this
properties of their classical solutions. It has been shown thatpproach starts with a picture that the trajectories of a dy-
the classical solutions in the YMH and AH theories exhibit namical system can be viewed as geodesics on a Riemannian
an order-to-chaos transition, i.e., a system has a threshol@anifold endowed with a suitable metric. Based on this ap-
from order to chaos as the strength of the perturbation to theroach, the chaos stems from a parametric instability due to
system increases. This phenomenon has been studied in tResitive curvature fluctuations along the geodesics of the
hope that it may provide additional knowledge about theconfiguration space manifold. This mechanism is quite dif-
vacuum structure of these field theorigs]. The chaos is ferent from that based on the hyperbolicity in the conven-
detected by studying the instability of the system which istional approach. Thus it is very interesting and important to
evolving with time after being perturbed initially. A quanti- Study whether or not the Riemannian geometrical approach
tative characterization of chaos is mainly provided by thebrings the results consistent with those on chaos of the AH
Lyapunov exponents of a given trajectory, which are thedynamical system that have been provided by numerical
mean exponential rate of the divergence of trajectories sustudies in the conventional approach.
rounding it. Let us begin with the Lagrangian density of the AH field

The stability or instability of the trajectory depends on thetheory given by[10]
curvature of the manifold on which the trajectory is defined.
In the conventional approach based on the abstract ergodic
theory, the hyperbolicity of the manifold, i.e., the negative
curvature manifold, provides an explanation of the origin of
chaog6]. Since the study of the stability of the system needswhere the field strengtf,,,=J,A,—d,A, and the covariant
the information on the evolution of the perturbations of aderivative D $=0d,6+iA,¢. The Higgs potential is
given trajectory, the numerical simulation plays a central rolev(¢) = «/4(| ¢|?—1)?. As we have rescaled both the elec-
and many numerical studies have been carried out by usingic charge and the symmetry-breaking scale to unity in the
algorithms under this conventional and phenomenologicaiormu|ation, we have only the Coup|ing constantas the
approach. The result of the numerical simulation, howeveryemaining parameter. The spatially homogeneous approxima-
generally depends on the theory used for constructing thgon assumes that the field depends only on tims that
algorithms of computations. Many works so far have beery, A, =0 andd,¢»=0 hold in Eq.(1), wherek=1,2,3. We
done in almost the same theoretical framework based on thgssumeA,(t) = q,(t) for all k components of the gauge field
ergo_dic theory. Thus it must'be ir_nportant to study the dy-and ¢(t)=q,(t)exp(6) for the Higgs field. Under this ap-
namical models of the classical field theories from an approximation in addition to the gauge conditiona§=0, we

proach different from the conventional one in order to exampptain the nonlinear dynamical system described by the
ine the validity of the results on order and chaos obtained s@iamiltonian as

far.

The purpose of this paper is to study the chaos of the Lo o
spatially homogeneous model of the AH theory from a Rie- H(p,q)=3z(p1+p3) +V(d1,02), 2
mannian geometric approa¢f,8]. This approach is being

L=—3F,,F*"+(D,$)*(D*¢)—V(4), @
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wherep=(p1,p,), 4=(d;,9,), andp=g. In the Riemann- 1.5
ian geometric approadl8], the sectional curvaturé(®, de-
fined as

Do gy - AN, PV, X PPV B
(P,Q)—m ﬁ—q%pﬁ Epl mplpz ,

(4)

plays a central role to study the dynamical behavior of a
system with two degrees of freedom. TH$?) controls the
stability of the Jacobi-Levi-CivitdJLC) equation for geode-
sic spread. Since the instability of the system stems from the

0.5}

condition of K(?><0, the global indicator of the order-to- 805 0.6 04 02 qo 0.2 0.4 0.6 0.8 1
s . . (2) . 1
chaos transition is the integraK~)) of the negative values
_assumed bk (?) over a constant energy surfale , which FIG. 1. Potential level contours for 0.88<1.0 at «x=1.0.
is defined by The innermost contour correspondsQe- 0.05 while the outermost

one corresponds tQ=1.0.
(K(2)>=;f dogk{? :if dpdqd[H(p,q)

OV ACGe )se T AGE pad P.4 larger Q irrespective of the values of. The transition from

B N (2) order to chaos seems to occur at almost the same value of
E]O(—K')K*(p,q), 5 Q=0.40~0.50.

Second we try to study whether or not the global structure
determined by(K{?)) is consistent with the result obtained
by the conventional approach. The integf¥{”)) is essen-
tially related to the ratiqu between the area covered by the

A(EE)ZJ dg'E:f dpdqd[H(p,q)—E]. (6) regular trajectories and the total area in the phase space ac-
g cessible to the motions. The ratio is quantitatively deter-
mined by calculating the Lyapunov exponent of the system,
It should be noted that this quanti¢(*)) depends only on  which is frequently used as a reliable indicator of chaos in
the geometric property of the ambient manifold, and it doeshe conventional and phenomenological approach. The
not require any numerical integration of the equations ofLyapunov exponent gives the average rate of the exponen-
motion involved in the dynamics. tially fast divergence or convergence of two nearby trajecto-

Let us first study this global indicatqn(fz,))). The sec- ries in the phase space. A chaotic system corresponds to
tional curvatureK® corresponding to the AH dynamical >0, while a regular one corresponds Xe=0. Numerical
system of Eqs(2) and(3) is given by determination of the ratig is done by using the fraction of

initial points leading to regular state=0. This method has

where@® is the step function, i.e@(x)=0 for x<0 while
O(x)=1 forx=1. The aredA(3g) in Eqg. (5) is given by

) 1 - ) ) 5 some practical difficulties because the condition for a regular
K@(p,q)= m[qZDﬁ(QH 3kq;— K)P7 state,\ =0, is not numerically realized in finite integration
1 2
—40d102P1P2]- (7 20
18F - o
The Hamiltonian(2) describes the motion of a particle in a 16
two-dimensional potential weW(q,,q,). The potential con- 14r

tour defined byW=E is determined once the coupling con-
stant k is given. We introduce the paramet&=4E/« to
characterize the potential contour. The contour is closed 8
whenQ=1, while the contour is open to the-axis direc- 6
tion whenQ>1. The contour of the potential for 0.68) 4t
2
0
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=<1.0ing,>0 region is shown for the case ot 1.0 in Fig.

1. Thus the system is completely described®wgnd « and
the calculation ofK{?)) has to be done under the condition L
of Q=1 to confine the trajectories in a finite region. We have 0 01 02 03 04 0.5 06 07 0.8 0.9 1
calculated(K (%)) for the rangeQ=0.05~ 1.0 while varying 0

the energ)E(gnd the coupling constaat Figure 2 shows the FIG. 2. Plots of—(K{?,)/0.03 vsQ for the AH dynamical sys-
result of (K{Z)) versusQ obtained from the computation at tem. The correspondence of a marker to a valug &f as follows:

different values 0&20.1,0.5,1.0,5.0, and 10.0. The integral the triang|e isk=10.0, the square ig=5.0, the circle isk=1.0,
(K{?)) is zero for smallQ<0.4 and begins to increase for the diamond isc=0.5, and the star ig=0.1.
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Third we study the mechanism of the instability of this
1 S . system. In the Riemannian geometric approach, the instabil-
B ity is determined by the way that the separation between
0.8y O nearby geodesics evolves with time. The evolution of such a
o6k | geodesic spread is described by the JLC equation. This JLC
o T*\G equation can be written in the form of the Hill equation as
0.4} 1% (8]
8
0.2f S 1 d?Y(t)
. o TQOY()=0, (8)
OF ¢ ¢ & ¢ o ¢ o o o o ° * 4 dt
(a)
0 01020304050607 0809 1 where
ot=] AV 3(VV)?] 3 [ v Y 2
" 0= 2W | awe|Poa; P70,
0.81 1 1 PV ©
0.6} B Y 2W 1% z9qiﬂqkpipk'
a I8
0.4} 13 Here AV=?V/3q2+ 4°V/dq3 is the Euclidean Laplacian
© and VV=(9V/dqq,dV/dq,) is the Euclidean gradient, and
0.2 W=E—-V(q,,q,). The quantityY(t) gives a measure of the
Y - ] geodesic spread. This Hill equation determines the stability
®) of system. The unstable solutions appear when(8cgsatis-
0 01 02 03 04 05 06 07 038 0.9 1 fies the condition of)(t) <0. However, this condition is not
a

the only way to make unstable solutions. From the viewpoint
FIG. 3. Plots ofu (full dots) vs Q at different values of for the ~ Of the nonlinear oscillatioi11] we have another chance to

AH dynamical system(a) «=0.5 and(b) x=5.0. In order to com-  9€t unstable solutions through a parametric resonance. The
pare with », the global indicator(K{2)) is also plotted with a instability due to the parametric resonance is expected to
suitable scale factor. occur when the parameters characterizing the system vary

periodically in time. In this case the stable solution becomes
time. Thus we need to assume that the value.af zero  ynstable even if the system satisfies the conditiorf2¢f)
whenever it becomes less thap, a certain value ok after > for each value of the parameters. Since this geometric
sufficiently time evolution of the system. We took;  approach claims that the parametric resonance is a main
=0.001 because we confirmed from many simulations thafnechanism of instability, it is important to investigate
all values of A<\, approach zero. For each value @  \whether or not such a phenomenon indeed occurs. We have
=0.05-1.0 we have computed the Lyapunov exponents calculated bothy(t) and Q(t) for various initial values at
for 5000 random initial pOintS. For each initial pOint We |ow Q (Ordered System‘and at h|g|"Q (Chaotic System F|g-
made the 19 successive iterations. The calculation of the e 4a) shows the absolute value of the enveldét)| for
ratio u was done for several values ef Figures 83 and  Q=0.05 atk=5.0, where|Y(t)| presents a weak exponen-
3(b) show the result of (full dots) versusQ for the case of  tjal growth at an early stage of time evolution but becomes a
xk=0.5 andx=5.0, respectively. The ratip exhibits almost  constant in longer times. Since the regular motion is charac-
the same tendency in Figs(a® and 3b): u stays 1.0 for terized by a bounded or a linearly growing oscillation, this
small Q<0.4, where the whole area in the phase space ipehavior of Fig. 4a) is reasonable. Figure(d) shows the
covered by regular trajectories. On the other handiegins  frequency((t) for the same values dp and « as those in
to decrease below 1.0 for larg€, where the measure of Fig. 4a), where((t) is positive as expected. On the other
chaotic trajectories begins to increase. In Figs) and 3b) hand, Figs. &) and 4d) present the results fop=1.0 at
we also putK{?)) of Fig. 2 with a suitable scale factor for x=5.0, where the envelop&/(t)| is exponentially growing
graphical reasons to compare with We see tha(ng_)Q while the frequency)(t) stays always positive. The behav-
starts increasing at the same valugét whichu beginsto  ior of the envelopeY(t)| in Fig. 4(c) is consistent with the
decrease. Therefore we can confirm th&(ﬂ) brings the  behavior of nearby trajectories used for the calculation of the
same qualitative and quantitative information that is pro-Lyapunov exponents. Thus we can confirm that the onset of
vided by the Lyapunov exponents in the conventional ap<haos in this Riemannian geometric approach is due to the
proach. For the numerical integration for the equations oparametric instability of the system which always satisfies
motion, we used a fourth-order Runge-Kutta routine with athe condition ofQ)(t)>0 as shown in Fig. @l).

time stepAt, equal to 102. We chose the size dft so that Fourth we consider the criterion on the stability of the
any reduction of the size does not cause significant change Bystem. The stability connects with the curvature of the
the results. manifold. In the geometric Riemannian approach the sign of
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FIG. 4. Plots of the envelog&’| and the frequenc{) vs time for the AH dynamical system with=5.0: (a) |Y| and(b) Q for an initial
value atQ=0.05 (ordered systep while (c) | Y| and(d) Q for an initial value atQ= 1.0 (chaotic system

the sectional curvaturk(® of Eq. (4) determines the stabil- seem not to have any relation with each other at first glance
ity of the system: i.e., a stable state is realizek {P)>0 at Fig. 5b). However, from more careful observation of Fig.
while the instability occurs i (?<0. On the other hand, 5(b) we find the fact thak (?) becomes always positive when
the stability of the system can be also determined by usings is positive.

the Gaussian curvature defined by This observation can be supported as follows: In the AH
dynamical system the stability matrix defined by
9V 9?2V FAVARE: = 3°V1dq;0q; becomesny;=q,?, Myy=0,°+ 3k05— &, and
G )=77*( ) : (10  my=m,=2 . Let us putm;; ase=m;;, B=m,,, and
(q 02 G2\ 99199 12= M= 2010; putm;j asa=my;, B=My,

y=my,. Since the potential/(q,,q,) is symmetric under
) o ) _ g;— —d; and g,— —Q,, the phase space we should con-
This quantity is equivalent to the product of the eigenvaluesider is confined to the first quadrant so that0 holds. If

characterizing the two-dimensional flow in the tangent dy-g>0, the sectional curvatuté® of Eq. (7) can be written
namics equation for the perturbed trajectories and the sign gfs

G controls the time evolution of trajectories. If we have a

region whereG is negative, so is one of the eigenvalues, and @) 5 ) 5

for this negative eigenvalue the perturbed trajectory evolves 2WK'“=ap,“+B8p; —2yp1po=(ap,— VBpy)
exponentially with time. In this case the system exhibits an

exponential instability in this region, such as the C system +2(Vap=y)pip. (1)
[6]. In order to see the possible relation betw&@andK (?),

we have calculated them for various initial values leading tdf p;p,<0, it is obvious from the second part of EEd1)
regular trajectories or chaotic ones. Figure 5 gives examplethatk (?)>0, i.e., the system is stable.p§p,>0, it is found
of the time evolution ofG andK?). For the regular trajec- from the third part of Eq(11) thatK(®>0 holds as long as
tories bothG and K(?) always have positive values, as ex- the conditionya3—y>0 holds. This condition implies that
pected, as shown in Fig.(&, while for chaotic ones they the
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15 — — In conclusion, we have studied the dynamical properties
of the AH dynamical system from the Riemannian geometric
approach. From the analyses on the global indicatdf))
we have found that this system shows the transition from
order to chaos for a wide range af and E satisfying Q
<1. The behavior ofK(?)) is completely consistent with
the behavior of the ratig. determined by the Lyapunov ex-
SRR R g R ponents that have been used in the conventional approach.
ob N I Especially the threshold valu®* for the order-to-chaos
K® transition is almost the same in both approaches. Through a
@ detailed quantitative comparison between the Riemannian
geometric analysis and the traditional one we have confirmed
that the order-to-chaos transition is an inherent characteris-
tics of the AH dynamical system.

The above conclusion is based on the result that the quan-
tity (K{?,) obtained by computing the microcanonical aver-
age of the sectional curvatute!® agrees with the ratiqu
determined by using the values of the Lyapunov exponent
for many initial conditions. This ratio is the fraction of the
k@ numbers of initial conditions for which=0 and\>0. Al-

‘ though the numerical calculation af has been done for a
very large number of initial conditions, the amount of nu-
merical calculation is not enough to obtain the ensemble av-
AL : sle erage from whichu can be determined. Nevertheless, in the
= N present analyses we have found tpaggrees with{K)).
800 810 820 830 840 850 860 8§70 880 890 900 Thus we might claim that the ergodicity is not required when
t we estimate the relative weight of stable versus unstable tra-

FIG. 5. Plots ofG (solid line) andK® (dotted ling vs time for  J€ctories such ag. Since the present analysis is restricted to
the AH dynamical system witk="5.0: (a) G andK® for an initial ~ the specific model of the AH theory, it is a very important
value atQ=0.05 (ordered systepn while (b) G and K® for an  issue to study whether or not this claim is generally valid in
initial value atQ=1.0 (chaotic system many dynamical systems.

We have also found the relation of the stochasticity crite-
rion between(K(?,) and the Gaussian curvatu@ with the
aid of a concrete calculation (® in Eq. (7) andG in Eq.

(10). Since the Gaussian curvatu@ provides the basis of
the Toda-Brumer criterion, it will be an interesting issue to
gerive a mathematical relation betweéhand K> more

800 810 820 830 840 850 860 870 880 890 900
t

40

Gaussian curvaturés is positive because of5=(\agB
+ %) (JaB— 7). This means that the stable conditiG0
is a sufficient condition foK(?>0, i.e., G>0=K®>0.
The contraposition also holds, i.&?<0=G<0, which
strictly holds as shown in the inset in Figibh. This Gauss-
ian curvature has a direct connection with the Toda-Brume - ; :
criterion[12] for studying the stability of the dynamical sys- directly frqm_the definition of the Rlema_nman curvature ten-
tem. The present analysis reveals that the Toda-Brumer creor, th_e Ricci curv_ature, and the Gaussian curvature anc_j then
terion is a sufficient condition to the criterion based on thel© clarify a close link between the curvature of the manifold
sectional curvature as to the stability condition. and the stability of the trajectories. .
Finally let us consider the meaning of the conditign The present work gives one concrete example showing
>0. Since this condition gives the inequality ad+3xq2  that the Riemannian geometric approach is very effective for
> k, the allowed region in thegg ,q,) plane is the outside of "€S€arch on chaos in the Hamiltonian dynamical systems
the ellipse, whose major and minor axes are given byVith two degrees of freedom, where the dominant mecha-
(41,02) = (— Vx.0),(Vx,0),(0—1/\3), and (0,1{3). On nism of chaos is due to the parametric instability. It will be a
the other hand, from the equati®f{0,0,) = E on the poten- VEry important issue to apply this approach to the high-
tial contour, we see that the physically allowed valuegof ~dimensional cas¢3] such as the YMH field theory with

i ) /— = space-time dependence whose magnetic monopole solution
are confined to the region agl— \/6g Q< V1+ \/6 for - has been shown to exhibit the order-to-chaos transition in the
0<Qs=1. The above inequality implies the relation that .,hventional and phenomenological analyses.
1/3<(1-JQ)¥2 ie., Q<i=0.44...=Q*. Thus we
find that the system becomes stable wiernQ* so thatQ*
will be regarded as the threshold value of the transition from
order to chaos. It should be noticed that this threshold value
Q* seems to be consistent with the value observed in Fig. 2, | would like to thank H. Fujisaka, T. Hada, and S. Ohta
which distinguishes betweeK (?))=0 and(K{?))#0. for many helpful discussions.
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