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Signal detection via residence-time asymmetry in noisy bistable devices
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We introduce a dynamical readout description for a wide class of nonlinear dynamic sensors operating in a
noisy environment. The presence of weak unknown signals is assessed via the monitoring of the residence time
in the metastable attractors of the system, in the presenc&mdwan usually time-periodic, bias signal. This
operational scenario can mitigate the effects of sensor noise, providing a greatly simplified readout scheme, as
well as significantly reduced processing procedures. Such devices can also show a wide variety of interesting
dynamical features. This scheme for quantifying the response of a nonlinear dynamic device has been imple-
mented in experiments involving a simple laboratory version of a fluxgate magnetometer. We present the
results of the experiments and demonstrate that they match the theoretical predictions reasonably well.
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[. INTRODUCTION amplitude of each harmonic achieves a maximum for a cer-
tain noise intensity. The threshold crossing events are noise
A large class of dynamic sensors have nonlinear inputeontrolled, but a synchrony of sorfg] between the mean
output characteristics, often corresponding to a bistable pcoerossing rate and the signal frequency is obtained for a criti-
tential energy function that underpins the sensor dynamicsal noise intensity. The effect of an additional target dc signal
These sensors include magnetic field sensors, e.g., the simpi then, to skew the potential, resulting in the appearance of
fluxgate sensadrl,2] and the superconducting quantum inter- features at even harmonics of the bias frequend$] in the
ference devic¢3], ferroelectric sensorst], and mechanical system response. For the casesafthreshold bias signals,
sensorg5], e.g., acoustic transducers, made with piezoelecthe SR scenario has been analyzed for prototype bistable
tric materials. In many cases, the detection of a small dc osystemq8]. The spectral amplitude at«?is zero unless the
low-frequency target signal is based on a spectral techniquasymmetrizing dc signal is present, hence the appearance of
[1,2] wherein a known periodic bias signal is applied to thepower at 2» and its subsequent analysis has been proposed
sensor to saturate it, driving it very rapidly between its twoas a detection/quantification tool for the target sigf&il
locally stable attractors that correspond to the minima of thejiven that w is known a priori. In practice, a feedback
potential energy function, when the attractors are fixednechanism is frequently utilized for reading out the
points. Usually, the amplitude of the bias signal is taken to basymmetry-producing target signal via a nulling technique
quite large, often above the deterministic switching threshold1-3].
that is itself dependent on the potential barrier height and the The above readout scheme has some drawbacks. Chief
separation of the minima, in order to render the responsamong them is the requirement of large onboard power to
largely independent of the noise. In this configuration, theprovide a high-amplitude, high-frequency bias signal for the
switching events between the stable attractors are controllechse when one usessaprahreshold bias signal. The feed-
by the signal. In the presence of background noise and aliback electronics can also be cumbersome and introduce their
sence of the target signal, the power spectral density of thewn noise floor into the measurement and, finally, a high-
system contains only odd harmonics of the bias sigtadden  amplitude, high-frequency bias signal often increases the
to be time sinusoidal For the case o$ulthreshold bias sig- noise floor in the system. The power constraints could be
nals, one may analyze the response in the context of thmitigated somewhat by utilizing a low-amplitude, low-
stochastic resonancéSR) scenarid 6], wherein the spectral frequency bias signal, and allowing the crossing events to be
largely noise controlled; this is the SR scenario. With mod-
erate amounts of noise, this scenario could work, the primary
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function are beyond control. If the crossing rate(&ven equal residence times in the two states. The residence times
approximately known in the absence of the bias signal, thencan be computed analytically in some limiting cagese
the signal frequency may be appropriately adjusted to yieldbelow and Ref[9]). In the presence of weak noise, having
optimal performanc€6,8]. In some situations involving high rms amplitude small compared to the bias signal amplitude,
noise intensity, one may not even need a bias signal, if thene obtains a spread in the residence times which must now
noise is strong enough to yield an acceptable crossing ratbe described statistically. For the case in which the bias sig-
This special case is intriguing; it affords the possibility of nal is suprahreshold, the residence-time distribution for the
operating the sensdclearly under very specific conditions right and left potential wells will be almost symmetric with a
with minimal onboard power. This situation was discussednean value, roughly corresponding to the deterministic resi-
earlier[9]. Clearly, however, any sensor configuration, par-dence time, approaching the distribution mode. In the ab-
ticularly one with asulthreshold bias signal, is very depen- sence of the target dc signal, the distributions coincide. The
dent on the conditions of the experiment or the particulapresence of the external target signal, assumed very small
signal analysis task at hand. The commonly used measure t@mpared to the potential barrier height, renders the potential
describe SR, the signal-to-noise ratio at the fundamental or asymmetric with a concomitant difference in the mean resi-
higher harmonic frequency of the periodic bias signal, is notlence times which, to first order, should be expected to be
always the most informative one from a signal analysisproportional to the asymmetry-producing target signal itself.
standpoint. Rather, information-based meas[t8that can  Hence, the difference between the mean residence times in
be connected to the signal detection statistics may be morthe two states of the system provides an observable that can
useful. Such a description has been rigorously obtained ibe used as a quantifier for detecting the presence of the target
the SR scenario for a prototype system subject to a sma#lignal.
asymmetrizing dc target signal with a known time-periodic  This procedure has some advantages compared to the con-
bias signal, in Gaussian background ndis&]. ventional readout scheme: it can be implemented experimen-
The above preamble delivers an outline of readoutally without complicated feedback electronics, with or with-
schemes based on a computation of the power spectrum out the presence of bias signal@epending on the
information transfer as an appropriate measure of the systeexperimental scenario, as mentioned abolrefact, the dif-
response. We propose here, a description of the systefarence in residence times is quantifiable even inathgence
dynamics that makes possible the use of a measuremeat the periodic bias signal, with only noise driving the sensor
technique based on the system residence times in its steatigtween its steady states. Although, as outlined earlier, prac-
stateq 9]. For a two-state system, the residence time in ondical considerations, e.g., observation times that depend on
of the stable steady states is defined as the time elapsed bbe relative magnitude of the noise standard deviation and
tween the first crossing of that threshold and the first crossthe barrier height may limit the applicability of this proce-
ing of the other threshold. In the presence of a noise backdure in some cases. The residence-time-based technique
ground, the residence times in the stable states have randosorks without the knowledge of the computationally de-
components. The residence-time statistics in a bistable sysaanding power spectral density of the system outfdut
tem were proposed for the first time[ib2] as a quantifier for most cases a simple averaging procedure on the system out-
the SR phenomenon that involves, as already mentioneghut works just fingand, finally, it performs well in the pres-
sulthreshold driving signals. They have also been studied irence of noise. We hasten to note that threshold statistics un-
a prototype bistable model systéa8]. Important features of derpin the class of “level-crossing detectors” that have been
the residence-time distribution are often seen in neurophysavailable for a variety of applications for almost fifty years.
ological experimental data. It is widely believed that the The method outlined above has, in different forms, been used
point process generated by successive “firing” events conin nonlinear sensor@specially sensors that have a hysteretic
tains much relevant information about the stimulus that leadsutput-input transfer characteristic such as those that utilize
to the firing [14]. Under the appropriate conditions on the the dynamics in a ferromagnetic core in the signal detection
spike train, most importantly a renewal character correspondstage, albeit without a clear understanding of the ramifica-
ing to uncorrelated crossing evenfd,5] it is possible to tions of sensor noise on the physics of the measuref2ént
connect the “inter spike interval histograntthe residence- The aforedescribed ideas are quantified in the framework
time distribution, RTD, in the language of this papar the of a mean field model for the evolution of the average
output power spectral density. Here we propose to use thmagnetization in a ferromagnetic core. Detection of a dc
crossing statistic$16] in order to gain information on the target signal is achieved by prebiasing the core with a
presence of small unknown target signals in a nonlinear dysupréahreshold time-periodic signal that we take to be sinu-
namic detector, taken to be a two-state system for the resoidal, although other periodic wave forms may be better
mainder of this work. suited for specific applications. We introduce one such wave
We start by noting that in absence of any backgroundorm and compare the system response to this signal, to the
noise, and with asuprahreshold bias signal amplitude, one response to a sinusoidal signal having the same frequency
obtains the same residence times in each stable state, wignd a suitably defined equivalent amplitude. The object of
two crossing events per period of the bias signal. With ahe paper is to comput@T), the ensemble-averagéd the
small (compared to the potential barrier heigtarget signal, presence of noigalifference in mean residence times for the
taken to be dc throughout this work, the potential is skewedight and left wells of the potential function, when a small dc
at the outset of each measurement. Hence one obtains usignal causes an asymmetry. To lowest or{&f) should be
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proportional to the target signal. Our calculations are carrieghear when the field amplitude exceeds a critical value. Of
out in the context of experiments on a so-called advancedourse, this begs the question of having a continuum model
dynamic fluxgate magnetometer prototype, a room4n which one may incorporate the dynamical behavior of the
temperature magnetic field detector that is envisioned to usterromagnet, including the effects of time-dependent external
the residence-time readout scheme. Some preliminary exnagnetic fields. This is accomplished through mean field
perimental results, obtained with a very simple laboratorytheory[22] that allows one to use a master equation for the
prototype, are presented in the latter sections of the papesiveragednagnetizatiorx(t) and arrive at the dynamic equa-
The dynamics of the ferromagnetic core subject to ion,

symmetry-breaking dc target signal, together with a known

bias signal in background noise are examined, the object dx x+h(t)
being a computation of the differen¢AT) in the residence RTERR am‘{ T
times. However, we also recast the dynamics in terms of the

more familiar standard-quartior Duffing) bistable potential where 7 is a system time constant, affd a dimensionless
description. This system, usually analytically more tractableemperaturg20]. h(t) is an external magnetic field that may
than the complex dynamics that it mimics in this case, hage time dependent, having the dimensiombiVe have also
been extensively utilized as a “test bed” for a plethora of expressed Eq1) in terms of the gradient of a potential en-
nonlinear stochastic dynamic phenomena, and it can be exrgy function(the analog of the free energy function referred
pected to yield results that are in good qualitative agreemenb above,

with those from systems described by more compllent

still bistable potential functions. Using this “equivalent” x2

standard quartic representation, the issue of optimal achiev- U(x,t)= 7 = cIncostic{x+h(t)}], 2

able accuracy and bounds thereon is also addressed, using

stochastic perturbation theory. A family of estimation proce-yhere we sec=T"!. The potential energy functiof®) is
dures that are asymptotically optimal for vanishingly smallp;staple forc>1. Dynamical hysteresis in the systém and
noise is deyeloped using this theoretical m_achlnery. Numerigiher systemssee belowwith qualitatively similar potential

cal simulations have showi 8] that the estimators that are energy functions, witin(t) often taken to be time sinusoidal,

SO0 d_eveloped and opt.imiz.ed fo.r.very small noise are als¢,55 peen the subject of much recent st[@8,24. Coopera-
applicable to larger noise intensities. o tive phenomena, e.g., SR, arising in the presence of back-
We find that while the standard quartic yields, for the grqung fluctuation§24,25 have also been examined in the
most part, the same qualitative behavior as the “s@#® |ierature. The role of background fluctuations has been ig-

called because it has a shallower slopexat> than the  nqred in the derivation of E); however, in our ensuing
much steeper Duffing or “hard” potentigpotential function  \york  a fluctuation term will be added, phenomenologically
that describes the “single domain” ferromagnetic sample inyg the right-hand sidérhs), in an attempt to capture the in-
the mean field limit, there are some differences in the behavjj,ence of the noise floor.
ior predicted by the two potentials, and we highlight and  Tne theoretical part of this paper is an attempt to make
explain these differences where they occur. We also invoke&qntact with laboratory experiments carried out with a crude
where necessary, the simplest of all static threshold systemgngition of a fluxgate magnetometer, consisting of a ferro-
with hysteresis, the Schmidt triggésT) [17], as a tool to  magnetic ring core wound with a primatinput) coil and a
obtain analytic results that are expected to show the samgondaryoutpup coil. Details of the setup are given in Sec.
qualitative behavior as more complicated dynamical two-y|| \we are interested in a “macroscopic” magnetic descrip-
state systems. Finally, we note that the ideas in this pap&fon of the fluxgate dynamics, rather than a detailed micro-
may be extended to tristable or multistable dynamic systemsyagnetic description based on individual domain dynamics:
e.g., the class ofd®?)* models discussed by Rao and Pandit, detailed derivation of mean field dynamics of the fafin
[19]. is not our intent. Rather, we use an equation of the f@tm
to model the dynamics of the entire core, assuming the ap-
II. MODELS AND DETERMINISTIC DYNAMICS plicability of_the mean field description. Sgch_ modeling has
been used in the literatufd,2] and we will find that the
The best-known system that exhibits hystergdld is the  model yields reasonably goadiven that it is, at best, an
ferromagnet, usually described by Ising-type mod2ls22, approximation to a detailed micromagnetic description of the
and exhibiting a phase transition to the paramagnetic statdomain dynamicgsagreement with the experimental results,
when the temperatur€ exceeds the Curie temperaturg. thereby validating our description. Other collective ap-
One may describe the ferromagnet by a Landau free energyroaches to the stochastic dynamics of aggregates of mon-
function that is even in the order parametélre magnetiza- odomain ferromagnetic particles do exist in the literature
tion m); this potential energy function is, then, bistable in the[26], usually starting from the Landau-Gilbert equati¢ag]
ferromagnetic phase, becoming monostable in the paramagpr a single-domain particle with thermal noise included; sto-
netic phase. The transition to monostability can be achievedhastic resonance in such a system has also been studied
by sweeping the temperature through the Curie point or ap-28].
plying an external magnetic field that breaks the symmetry of As mentioned earlier, the modél) will be augmented by
the potential, causing one of the metastable states to disapn additive noise term; in this section, however, we will fo-

U
=—-—(Xx,1), 1
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cus attention on the deterministic dynamics. In practice, the 25 - 25 o
time constantr is very important, particularly in the presence R
of noise. If 7 is the smallest time scale in the system, i.e.,

both the noise bandwidtfdefined for Gaussian noise as the °~ > ° y
inverse of the correlation time;) and the bias signal period =
are well within the system bandwidth !, then the device 25 o 3 28 p 3
essentially behaves like a static nonlinearity, with the left- X X
hand side Eq(1) equated to zero. Hence, the dynamics are 25 . 25
reduced to following the dynamics of the noise plus the sig- 3
nal, as they traverse two thresholds, given essentially by the £

2 2

fixed points of the potential2). This procedure has already
been described for bistable systems subjeciukihreshold
time-sinusoidal bias signals. It is convenient to start our de- 25 s 2.5
scription of the deterministic dynamics with this assumption )
and a suprahreshold bias signal having the forin(t)
=Asinwt (periodTo=2m/w), since an analytic solution of FIG. 1. Mean field potential2) (c=6) with sinusoidal driving
Eg. (1) is not possible for large bias signal amplitudes. Wesignal having amplitudeA=1 and periodT,. Solid lines depict
note that in practical devices, the bias signal is known, andotential at times=0 (upper lefy, To/4 (upper righ, To/2 (lower
controllable; hence we will assume, always, that the signaleft), and 3T¢/4 (lower right. Dashed line depicts potential having
parameters can be varied at will. We also remind the readetdditional dc offset=0.3.
that the bias signal plays a critical role in conventional read-
out schemes, via the appearance of even harmonics of the
frequencyw in the output power spectral densi§SD of m t1o= w_lsin_1<
when the symmetry-breaking target dc signal is appl&d

In this work, we will assume the deterministic bias signal
h(t) to be suprahreshold, i.e., switching between the two
stable attractors in the potential system, or between the statithe next up crossing occurstah=t,o+ 27/ w, sinceh(t) is

X X

b+e
1 + .

()

sin~

) b+e
ATgp=2w Y sint

21-112 -1/2

thresholds when the device dynamics are irrelevant, is consuprahreshold and one can expect an(op down crossing

trolled by the bias signal, with one threshold crossing occurwithin every half cycle of the signal. Theh, =t,;—t;, and

ring during each half cycle. The exact time to thresholdT_=t,,—t,,, whence we obtain,

crossing depends, of course, on the system and bias param-

eters. The variable of interest for the deterministic situations

of this section is, then, the differenceT=|T,—T_|, the

difference between the residence times in the states of the

two-state system. This quantity is clearly a function of the

system and bias parameters. It is zero when the two stable

states are symmetric about the unstable fixed point, and a®efining a “sensitivity” via S(¢) =dAT/de we obtain

quires a finite value when a dc target signal breaks this sym-

metry. Figure 1 demonstrates the “rocking” of the potential

energy function(2) with a bias signah(t)=A sinwt+e (@ 2 b+e b—s\?

=2m/Ty) when the dc offset is zero and also when it is Se)= wA A 1= A

finite. Of course, one could also examine the response to (5)

sulthreshold bias signals, the SR scenario. We will not do so

in this paper, however, since a large body of literature al- _

ready exists on this subjef,8]. which clearly increases with, saturating ae=A—b. Itis
Consider first the simplest possible manifestation of anstructive to note thalTgy vanishes where=0, and

two-state system, S[I17], characterized by a two-state out- ATgp—4e/Aw for large (compared to the threshold loca-

put and a hysteretic transfer characteristic. Its output rests ition) A. In the largeA regime, we can also show that the

one state as long as the input voltage is less than a thresholetsidence timeT ., — (1/w)(7+2¢/A), which approaches

The switch to the other state is almost instantandthesST ~ T,/2 at very largeA as expected. A completely analogous set

can be modeled as the limiting case of a dynamical systerof limiting values exist for the other residence tifie .

[29] with very small time constant), occurring when the One may show that othénonsinusoidalbias wave forms

input voltage exceeds the threshold. Letb be the ST can lead to enhanced sensitivity under the appropriate opera-

thresholds, witth(t) the suprahreshold time-sinusoidal sig- tional conditions. One such wave form is obtained by adding

nal introduced above, ang(<b) a dc target signal whose a square wave having amplitudg and a triangular wave of

effect is to “displace” the sinusoidal signal upwards by anamplitudex,, both having frequencw. The amplitudes of

amounte. Then, crossings of the upper and lower thresholdgshe component signals are set according to the prescription

occur ath(tig) +e=b andh(tyg) +e=—b, at timest; 5, k1+k,=A. The result is a periodic wave forrtperiod T

respectively. Thus, =27/ w) given by
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FIG. 2. Sinusoidal signah sin(2at/Ty) with A=1, periodT,
=100, and two realizations of wave for(6) obtained via Eq(6).
K1+ k,=A, andk,=0.05(top wave form, x,=0.25(bottom wave
form).

2w 17 T

H(t)=K1+7 t—ia Ky, 0<t<;
B 2w ¢ 3 ’7T<t<27T 5
Tt 20/ o o ©)

Figure 2 shows a sinusoidal signal having perigg= 100

and wave form(6) having the same period. For wave form

(6), it is clear that the parameters, , determine whether

PHYSICAL REVIEW E 67, 016120 (2003

and the sensitivityS=9ATM/ge is obtained asS®"
=Tolky, SV=Ty/2k,, and SV=0 for each of the three
regimes defined in Eq8). Throughout this paper we use the
superscript(i) to denote quantitiege.g., crossing and resi-
dence timepassociated with the bias wave for(®).

Plotting the quantityATgq, versuse for the two bias
signal wave forms considered, shows immediately that the
bias signal wave forni6) can yield a better separatiakT
for low values of the target signal. This will be illustrated via
simulations in Sec. IV.

Finally, we introduce an alternative realization of the dy-
namics(1) in terms of the simpleffrom an analytic stand-
point) Duffing or “hard” potential,

dx AU 4(x,1)
TR 9
with the potential function defined as
a b
Ug(x,t)=— x>+ —x*—[e+h(t)]x, (10)

2 4

a,b being constants to be determined. In the absence of any
external signalg ¢,h(t)=0] this potential has an unstable
maximum at 0, and stable minima &= a/b=—Xgn0,

with the height of the potential barrier given iU 4,
=a?/4b. For the “soft” potential (2) the corresponding
quantities may readily be obtained via expansion about the
limiting values for largec. We then obtain an unstable maxi-
mum at 0, with minima atX,p=1+Ap,=—Xyn, 4,

threshold crossings occur on the signal segments having (tanhc—1)/(1—c secHc). The barrier height iSAU o

slopel'==, I'<0, orI'>0. In fact, it is evident that for
crossings of the upper threshold, at tim%, one has

= |x§0/2—(1/c)ln coshexy|. We then set the parameteash
in Eq. (10) by demanding that the extrema, and hence the

t{3=0 if x;—Kx,=b—e with crossings occurring on the energy barrier heights, of the potentié and(10) coincide

I'=o segment, and{})>0 for x;— k,<b—e&, for crossings

when e=h(t)=0. This readily leads to the “equivalent”

occur on thel'’>0 segment. For the lower threshold, the hard potential10) with the definitions

crossing times aré'(): ml o for k;— k,=b+ e, correspond-
ing to crossings on th& =% segment, and%)>m/w for
k1— k,<b+e, corresponding to crossings on tHé<0
segment.

_ 48U,

2 l

a

a (11

P
Xpo

For the cases when the threshold crossings occur on thEhe two potentials now have the same extrema and barrier
I'#% segments one can, analogous to the time-sinusoidaleight in the signal-free case; of course their sloffes x
case, obtain the upper and lower threshold crossing times as +«) are quite different. This difference leads to changes

(i) — _
>0 pa 5w (7)
whence we obtain,
. &
AT(I):TO_, Kl_K2<b_8,
K2
. b+e—Kk1+ky
AT(')=T0—, —es<k1—Kkry<=b+teg,
2K2
AT =0, K1— Ky>b+eg, (8)

that are quantitative only, when we examine the response of
both models to the target signal in the presence of a noise
floor and the periodic bias signal. Hence, with the definitions
(11), the hard potential affords a model that captures most of
the essential physics of this class of devices. This is particu-
larly convenient from the standpoint of analytic calculations,
plus it allows us to draw on the huge body of literature on
various aspects of the noisy nonlinear dynamics of these de-
vices. We note that the energy barrier separating the stable
steady states, decreases with decreasing§or c<1, the
parabolic term in the potentié®) starts to dominate, and the
dynamics approaches linearity. The case of very small energy
barrier is relevant when one considers, for example, “soft”
ferromagnetic cores in which one observes frequency-
dependent hysteresis loop areas, as well as cores that are
approximately “single domain{30]. In these cores, the hys-
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teresis loop is very narrow, the energy barrier is very smallthe deterministic residence-time differenc€l, can be ana-
and they can be well approximated by the poter{@alwith lytically derived only when we ignore th@nterna) system
c~1. dynamics invoking the larg@ limit, wherein we can simply
Consider now, the inclusion of a smdilith respect to approximate the bistable dynamics by (aondynami¢
the barrier heightasymmetrizing dc signal, together with  Schmidt trigger with appropriately computed threshold set-
a known bias signah(t)=Asinwt that we take to be tings. We now make th&leterministig treatment of this sec-
suprahreshold. The hard potenti@l0) develops points of tion more realistic, by introducing a noise floor.
inflexion atX¢q,= Va/3b= —X¢gm, and the threshold cross-
ings occur whene +h(t) = —axep+bxiy, with a similar 1. LEVEL CROSSING DYNAMICS IN THE PRESENCE
condition involving the other inflexion poink;q,,. The rhs OF A NOISE FLOOR
of this expression is-x.=—+/4a%/27b with the opposite
i.e., pl ign corr ndin rossing of the inflexion . i . 2
E)oin,tg:?n .SI? isci%peosr?aontdto %;?eathca?ivse grg atsseumineg t?]eSs=0)" and for the.n0|s_eless case, the bias S'gnal periodically
bias amplitude to be large enough that the signal dominate ocks” the potentllaI.(Elg. 1)'. It t.he signal amplitude ex- .
the dynamics, so that the Duffing dynami@ can be ap- cgeds the determ|_n|st|c swnc_h_lng threshold, the state point
proximated by the simple threshold dynamics of the formWIII mal_<e_, s_uccesswe_ly, tra_nS|t|ons to the two stable states at
considered in the ST description above. The crossin eterministic(well-defined times separated by a half cycle

“thresholds” are, thus, given by the points of inflexion. In a f the bias signal; these switch events are quite regular.

procedure completely analogous to that utilized in the ST, we Now consider the noisy case; throughout this work we

obtain the difference in residence times for the equivaleni"”ltlj"’I‘Q."Q'uénfe that th%nmfe_ |sUGh(I':1us§|ar|l and co;related, e, it
system(9) in the absence of noise, is derived from an Ornstein-Uhlenbeck procg3s],

We have noted that in the absence of the target signal

Xete) | [Xe—e (t)=—71.+oF(1), (14)
—A | sin I(T) (12

sin~!

2
ATdOZ

w

whereF(t) is a Gaussian delta-correlated noise having zero
An analogous expression for the residence-time differencenean and correlation functiofF(t)F(t’))=d5(t—t’). We
may be obtained for the mean-field dynamit$ under the readily obtain for the correlation function of the colored
same conditions, i.e., assuming the system and signal pararGaussian noise(Z(t){(t"))=({%yexd —|t—t'|/7.], where
eters to be such that the system may be well approximated byt?) = o®7./2. We also assume that the signal frequendsg
a static threshold device. The points of inflexion arex@t, ~ well within the noise band, i.e., the noise is widebasl a
=4(c—1)/c=—x;sy and we obtain for the difference in vis the signal. This is a reasonable assumption, and it will
residence times, become evident that it may be possible to somewhat mitigate
problems arising from the noise statistics by adaptively ad-
justing the bias signal amplitudgis a visthe noise floor and
barrier heighk in real scenarios.

For e=0 andA suprahreshold(this is well represented
where gm,pz{c*1tanh*1xfsmp—xfsmp—a}/A. Analogous ex- by the conditionAx,/AU>3/2 wherex, denotes the loca-
pressions for the wave forig®) may be derived analytically; tion of a stable fixed point of the potentiathe threshold
we defer these calculations to a later section. crossings to the stable states are controlled by the signal, but

In the following sections we compute and analyze thethe noise does introduce some randomness into the interspike
mean residence-time difference in the presence of systeintervals. The result is a distribution of residence tinfiee
noise. As mentioned earlier, we expect the expressidns RTD) whose variance increases with increasing noise inten-
(12), and(13) to provide good approximations to the mean sity. For A far above the deterministic switching threshold
residence-time difference when the known bias signal is weland moderate noise, the RTD assumes a symmetric narrow
suprahreshold and the noise and target signal are smallalmost Gaussiarshape with a mean valuéhe mean cross-
Throughout this work, we will consider the>1 case, cor- ing time) nearly the same as the most probable value or
responding to bistability in the potential functid@). It is  mode. The mean valudsr modes, in this cageof the his-
worth noting, however, that temperature fluctuatignbich ~ tograms corresponding to transitions to the left and right
can reasonably be expected to occur in applicajidead  stable states coincide. As the signal amplitude decreases, the
directly to fluctuations in the barrier height and the locationsRTD starts to develop a tail so that the mean and mode get
of the minima, since these quantities depend on the paraseparated. The appearance of the tail is an indication of the
mater c. Hence, we may encounter situations wherein thegrowing role of noise in producing switching events, al-
potential switches between monostability and bistability onthough thesuprahreshold signal is still the dominant mecha-
the time scale of the fluctuations. This scenario is not treatedism. When the signal amplitude falls below the determinis-
here; rather it will be addressed in a forthcoming publicationtic crossing threshold, the crossings are driven largely by the

It is very important to reiterate that the results of thisnoise. The RTD can assume a characteristic multipeaked
paper hold true for a very large class of dynamical systemsstructure[13,32 that shows “skipping” behavior since the
those whose dynamics are underpinned by a bistableven  noise can actually cause the crossings to occur at different
multistable potential energy function. The expressions for multiplesnTy/2 (n odd) of the half period, and the stochastic

2
ATs=—|sin"tg,—sin g, (13
w p
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resonance scenario comes into pl&ythrough a synchroni- (6) For very special situations, primarily those in which
zation of characteristic time scales in the system. The noisthere is a small amount of noise, one can carry out the above
determines the tail of the RTD, and introduceSammetrig procedure with a very weak bias signal. In this case the
broadening, or dispersion, in individual lobes of the RTD,RTDs for each potential well are almost unimodal with long
since the individual crossing events do not always occur pretails. The mean values and modes are, again, dependent on
cisely at timesnTy/2. We will not consider thigso-called the target signal; however, in this case, the slopes of the
sulthreshold case in the current paper, limiting ourselves tolong-time tails of the density functions are different for the
the suprahreshold bias signal case only. two wells, and this difference can also be used as an identi-
We reiterate that with zero target signal, the crossing stafier, if needed, of the target signal. The limiting case of zero
tistics to the left or right minimum of the potential, are iden- bias signal has also been studjégt our studies indicate that
tical, with coincident RTDs, as should be expected. How-this operating mode may be optimal even for small target
ever, let us now consider the case of a nonzero but smaflignalsz, with (AT) proportional toe. This operating mode
target signalgx,<AU o, that is sufficient to skew the po- relies on th_e_prese_nce of back_gropnd noise that is strong
tential (Fig. 1) but not remove one of the minima, in the enough to initiate interwell switching events without the

presence of Gaussian noise and the bias sigrsi ot. Be- presence pf @uprahreshold bias signal. Of course, in prac-
fore presenting simulation results, we comment on some 1‘ee§'—sc""I a_ppllcat|ons, the_ presence of assorteiten non-
tures that we should expect to observe in the RTDs aussian and nonstationanyoise sources, as well as read-
(1) The potentials2) and (10) are nowa priori skeWed out issues, could make the zero bias signal mode a possibility
P P for only very specialized scenarios. For these, more compli-

even forA=0. Hence, the mean residence times in the tWocated, noise backgrounds, the renewal assumption for the

stable states will be different. Denote these times by the,,ssing events cannot be expected to hold. This operation
ensemble-averaged quantities, ),(T ), respectively. mode may be particularly well suited for applications

(2) For very large bias signal amplitudes and moderat&yherein the potential barrier height can be adjusted during an
noise intensity ¢°<AU0,AUp), the RTDs are two well-  experiment. It does afford the attractive possibility of signifi-
separated symmetric near-Gaussian distributions centere@ntly reduced onboard power.
about modes that coincide with their medfis.). For signal (7) Our calculations to date indicate that a sinusoidal bias
amplitudes much larger than the rms noise amplitude, thgignal is not always optimal; in some operational scenarios,
distributions tend to coincide. As the noise intensity in-better sensitivity may be obtained by using other signal wave
creases, the distributions become broader and, as the bifmms, e.g., wave fornf6) or a triangular wave form, which
signal amplitude drops to the deterministic switching threshave a stepwise linear behavior. An exhaustive study along
old and below, start to develop tails with separated modethese lines is beyond the scope of this paper, however, we do
and means. present resultssee following sectionbased on a bias signal

(3) The separatiofAT)=|(T,)—(T_)| of the mean val- of the form(6). In general, however, the choice of optimal
ues yields a direct measure of the asymmetry-producing tabias wave form is very dependent on the system and signal
get signal. It can be calculated for the zero noise ¢8se. parameters in a given operating scenario.
II), as well as with weak noise and bias signal amplitAde Note that in an experiment, under any of the above sce-
that is wellsuprahreshold. We will find in factSec. \j that,  narios, it isnot necessary to actually compute the RTDs. One
in the largeA/o limit, (AT) is well approximated by its simply accumulates crossing times for the two saturation
deterministic analog, and is proportional to the asymmetrizstates of the hysteresis loop, and computes the arithmetic
ing signal e. Theoretical calculations of this quantity are mean for each set of residence times. Then, an important
currently underway, but numerical simulations are shown beissue is the amount of datdependent on the response time
low. For ana priori balanced devicé.e., symmetric poten- of the electronics the amount of time one can “look” at the
tial function), in fact, the existence of a nonzef&T) can be target signal, as well as the bias frequeneyrequired to
taken as a sign of the presence of the target signal. obtain reliable estimates ¢fAT). It is clear that increasing

(4) In the presence of increasing amounts of noise thehe bias signal amplitude, in order to better discriminate the
RTDs tend to merge and their mean val@eich are now RTDs, can lead to enhanced detection probabilities. In this
well separated from the modemay also be difficult to dis- context, it is important to point out that the above technique
tinguish, sinc€ AT)— 0 with increasing noise. However, in- may be implemented with bias signal amplitudes that are not
creasing the bias signal amplituthis could be done adap- substantively larger than the potential barrier height, and also
tively in a real applicationonce again leads to the signal as with relatively low bias frequencies; this is true particularly
the dominant mechanism for crossing events and the distrior the new “single-domain’30] class of magnetic fluxgate
butions “sharpen” somewhat and have less overlap, becomsensors that have mainly Gaussian correlated noise and small
ing more resolvable, even though the separafidit) may  1/f risers. In practice, however, one should expect to con-
actually decrease. front a tradeoff between the bias signal amplitit@s is a

(5) For sukthreshold bias signals, the crossing events ardéunction of the on-board power in a practical sensord the
noise dominated and the RTDs multimodal in general. Th&oncomitant degree of resolution of the peaks of the histo-
stochastic resonand@] scenario may be exploited to yield grams, and what is necessary for a reliable estimate, usually
better signal processing. This scenario has been extensivelyith a limited observation time, of the target signal from
discussed in the literature; we do not dwell on it here. (AT).
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FIG. 3. Residence-time density vs normalized time for noise FIG. 4. Same as Fig. 3, but with noise variance paramefer
variance parameters’=0.05,0.1,1.Qtop to bottom for mean field =0.1£=0.1, and bias amplituda= 1.6 (tallest paiy, 1.2 (middle
model c=4) with bias signal of amplitudé&=1.0 and periodl,  pair), and 0.8(lowest pai}. Curves in lower panels correspond to
=100, and asymmetrizing dc signa0.1. Left panel: sinusoidal A=0.8 (top), 1.2 (middle), and 1.6(bottom).
driving signal. Right panel: wave forn6) with «;+k,=A, k;
=2k, (note the different scaleLower panels: mean residence-time dence times computed using a sinusoidal bias sigied
difference vso? for changing target dc signat=0.3 (top), 0.2  pane) and wave form(6) (right pane), as a function of the
(middle), and 0.1(bottom). normalized timet/T,. For clarity, results are shown only for
the mean field mode(l); in all cases, however, we obtain
excellent agreement when the simulations are carried out us-
ing the equivalent quartic mod€l0), with parameters com-

We now show the results of numerical simulations carriedputed via Eq(11). The bottom row of each figure shows the
out on the original mean-field modéll) as well as the residence-time differencéAT) as a function of the noise
equivalent quartic mode9), using a sinusoidal bias signal variances?. The bias amplitudé is suprahreshold in all
as well as wave forng6), with a Gaussian noise background cases. We remind the reader that the case of zero bias signal
present in all cases. The noise is assumed to enter additivehas already been discussed in H6f, and the case afub-
on the rhs of both models. We use=4 for all simulations;  threshold bias signdthe SR scenariohas also been exten-
this completely defines bofbistablg potentials via Eqs(2)  sively discussed in the literature; we do not address these
and (10). The value ofc remains constant throughout this situations here. The following features are observed.
work, it being assumed that this parameter cannot easily be (1) Increasing the noise variance leads to an increase in
adjusted in experiments. Note that real devices usually havihe standard deviation of the density function; the two com-
a time constantr that sets the device bandwidth. The time ponents of the RTDs broaden and, simultaneously, lose
constantr of real devices is usually about 18 so that, in  height at their modes so that the normalization is preserved.
the simulations, the signal frequency and noise band are alls the bias amplitud@ approaches the deterministic switch-
adjusted to lie well within the instrument bandwidih *. ing threshold, one expects the noise to play an increasingly
For theoretical calculations, this implies that one may repreimportant role in switching events; this would lead to a tail in
sent the device as a “static” nonlinearity, analogous to ourthe density function, and a separation of the mean value from
approach in Sec. Il, and simply track the noise and signathe mode. In all cases, the distributions remain symmetric
dynamics as they pass through the system. Under these coaboutT,/2, as expected.
ditions, the results for different signal frequencias long as (2) Wave form(6) leads to a larger separation of the mean
wl2m<7"1) are very similar; for frequencies larger than values, particularly at low to intermediate noise intensities
71, however, dynamic hysteresis effects can become morésee lower panelsHence, it may be more convenient to use
important. In our simulations, we consider a dynamical dethis bias wave form for specific operational situations,
vice wherein the time-derivative term cannot simply be dis-wherein resolution is a problem and signal observation times
carded; we take=1. Finally, we set the correlation time of are constrained.
the noise ag.=0.1 and the bias signal peridd,=100, so (3) While the sinusoidal bias signal clearly has a fixed
that the bias signal is within the noise band. In this work, wewave form(specified by its amplitude and frequencwave
do not investigate the effects of noise color, the subject of dorm (6) can be adjusted by choosing the relative values of
huge amount of attention in the literatufsee, e.g., Ref. «; andk,, subject to the constraint; + x,=A. Hence, it is
[33]); this analysis is deferred to a later publication. worth the digression, at this point, to investigate the value of

The results of simulations, wherein we examine the ef{AT) as a function of the parametets and«, in Eq.(6). In
fects of changing the noise varianed, the bias amplitude order to compare this value with the value obtained for the
A, and the(dc) target signak, are shown in Figs. 3 and 4. In sinusoidal bias signal we keep the conditiept- k,=A. In
both cases, the top row shows the probability density of resiFig. 5 we show(AT) as a function ofk, for different values

IV. SIMULATIONS
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04 T T T ' ' the figure are very closg@ndistinguishable on the scale of the
figure) to the horizontal lingcorresponding to the determin-
istic case. This is to be expected since the curves generated
using wave form(6) also converge to the same value at large
k,. With decreasing noise intensity, the curves approach the
e deterministic caséthe largeA/o limit), and the optimak

A g2 is then given byk,.~(A—b—¢)/2. The effect of changing

= ¢, while keeping all the driving parameters fixed, is to
v change the barrier height and the separation of the potential
minima. For decreasing, the barrier height decreases, the
curves in Fig. 5 tend to converge towards the deterministic
results, i.e., the zero noise case, more rapidly. In addition, the
optimal value ofkx, moves towards lower values and the
maximal separatioQAT), at the optimalk,, is lower.

(4) At very large noise{AT) approaches zero. This is
expected, with the distributions overlapping more and more
with increasing noise. The approach to zero is slower for
larger target signals because of the larger asymmetry in the
potential that they bring. Also, the details about the potential
+ kp=A, Ty=100£=0.1. Solid curves corresporftéft to right to and the bias signal wave form, become increasingly irrel-

noise intensity?=0,1.0,10.0. Dotted curve denotes result obtainedevant aso’ 'n,me_ases' . .
via “equivalent” deterministic ¢->=0) threshold mode(15). Hori- (5) At vanishingly small noisesiAT) is almost flat, for
zontal line denote\T for sinusoidal bias wave form with same SMall target signals, and shows a monotonic decrease with
amplitude and frequency, and zero noise: lines corresponding thcreasing noise. At zero noiseot shown on the plojshe
different noise intensitie§for sinusoidal driving cageare indistin- ~ curves would intersect the vertical axis at the deterministic
guishable from deterministic case on scale of the figure. differenceAT.

(6) Increasing the bias signal amplitude reducesT)
of the noise intensity together with the value obtained for theeven as it renders the distributions somewhat more resolv-
sinusoid. The dynamical system described by the “soft” po-able for large noisgsee Fig. 4. This indicates that in a
tential (2) is simulated, so that only or(@nterna) adjustable  practical application, it may not necessarily be of benefit to
parameterc changes the shape of the potential. The dat@pply an extremely large bias signakee the following sec-
points represent the theoretical prediction obtained by aption). Our simulations show that bias signals having ampli-
proximating the double well potential with the “equivalent” tude not much larger than the barrier height will suffice. Of
(see Sec. )l Schmidt trigger system, course, exceptional cases, e.g., large noise, or non-Gaussian
and/or nonstationary noise, may necessitate the application
of larger drive signals. An important point to be made here is
that the(possibly detrimentaleffects of a large noise back-
ground may be reduced—but not entirely eliminated—by
27 b+e—A+2k, carefully increasing the bias signal. This procedure can also
(AT)= DU P render the device response somewhat immune to the noise

FIG. 5. Effect of varying parameters in tisaprahreshold bias
wave form(6). Normalized mean residence-time differencexys
for dynamical system described by E@$) and(2). c=4A=1,k;

(AT)=0, K2<%(A— b—e),

212 statistics. Such an “adaptive” control could be achieved by,
1 1 e.g., a neural network in practical situations. Using wave
~(A—b—e)<k,<—-(A—b+e), form (6) leads[see Fig. 4to a somewhat cleaner resolution
2 2 of the modes of the RTDs with increasing bias amplitude,
and, as already noted, the difference in mean residence times
2T € 1 is actually greater than in the sinusoidal driving case, with
(AT)= 0 Ky K2>§(A_ bte), (15 the appropriate selection @f,. The fact that wave forn(6)

is locally linear where the threshold crossings occur, contrib-
where we have rearranged the result in B}, and set the utes to the far better resolution of the residence-time differ-
thresholdb as in Eq.(13). The nonmonotonic behavior of ence(AT) that it brings. In all cases, a very large bias signal
(AT) as a function of«, can be readily understood by using has the effect of effectively linearizing the response, with the
the same argument presented for the derivation of(8qt residence-time densities merging into a single peak centered
is interesting to note that there exists an optimum value foat T,/2.
K, and that by a proper selection of the combinatign«, (7) In the limit of low noise andsuprahreshold bias am-
the wave form in Eq(6) can outperforniin terms of(AT)) plitude, one expects the simple “nondynamical” picture pre-
the more conventional sinusoidal bias. In fact, one observesented in Sec. Il to yield a very good description of the
that x,=A (a purely triangular bias signainost closely ap- dynamics, with the mean residence times well approximated
proximates the sinusoidal wave form. The value$&T) for by the deterministic expressiolis2) and(13). A simple cal-
the sinusoidal bias signal with the noise intensities used irulation in the following section will demonstrate this point
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nicely. From a practical standpoint, the fact that one can, irground noise intensity, and potential barrier height.
the low-noise case, compudepriori the expected observable  We start by assuming that we have collectédamples
(AT) via the determinsitic quantity for given target and biasfor each of the residence tim@s.. . The mean values of the
signals, can be of considerable utility in practical applica-two RTDs arg(T,-.); as discussed above, these may be com-
tions. puted directly from the crossing times data g#te subscript
(8) The difference in mean&AT) is proportional to the n denotes an experimental or simulated quahtityhe actual
target signal, provided the latter is wef®]. The smallest mean valuegT..) are then given by
target signal strengthe=0.1) used in the figures is rela-
tively strong so that this relationship may be only approxi- oT +
mately true, with higher-order term@ &) giving a nonva- (To)=(Tn=x)+(6Ths), (SThe)= N (16)
nishing contribution tqAT). N
(9) As already noted, but not shown in the figures, the tw
descriptions(mean field and equivalent quaitigive very
similar results, with some quantitative differences attribut-
able to the approximatiofill), wherein the mean field po-
tential is replaced by a “harder” potentialthe quartic

Avhere or,, is the standard deviation of each distribution.
The second term represents the uncertainty inherent in the
measurement process. Then the mean difference in residence
times may be written in terms of the experimentally obtained

mode). The relevant observabk\T) is virtually identical quantities,

for both models except for some minor differences, partly (AT)=(AT,)+ &(AT,), (17)
attributable to simulation difficulties, at very low noise inten-

sities. where (AT,)=(T,,)—(T,_). We can easily obtain from

Finally, we comment here on an interesting effeeso-  Eq. (16),
nant trapping (RT) [34], which is observed when the bias
signal amplitude is just barely above the deterministic o7 to7
switching threshold. In this regime, the noise can actually &(AT,)=\/6Ta, + 6T = \/ ————~o1 2N,
cause the system to miss a threshold crossing; the state point
remains trapped in one of the stable attractarsnear the
unstable point of the potentjaby the noise. This effect leads where we setr ~or =07, since the distributions are

[9] to @ maximum in{AT) at a critical noise intensity; the ijansical with the separation of means being the only mani-
effect (which shouldnot be confused with the substance of festation of the presence of the target signal.

Fig. 5 disappears as the bias signal amplitude is increased, Now, we introduce an output SNR via the definition
to the point where the crossings are, predominantly, driven

by the signal. Clearly, RT is a mechanism that affords the (AT,) (AT, /N
possibility of using even weaker bias signals—usually desir- =m = V7
able because of power constraints—while exploiting the in- n T
trinsic noise floor of the device. A very detailed study of RT
in this class of systems will be published in a forthcoming
paper.

In the following section, we present an attempt to charac- Tob Tob
terize performance via a signal-to-noise rdi8N\R) that we N
may compute analytically in the limit of small noise, by
asymptotic expansions. We also comment on the notion of fjence, we finally obtain for the SNRiote that it is a func-
finite observation time o . tion of all the system parameters, and, specifically of the bias

signal amplitudeA),

(19

We assume that we are given a finite observation fing
=2N[(T,+T_)/2], whence we can obtain

Tob
T AT (ATo+2(T.) 2(T_y

(20

V. TOWARDS PERFORMANCE OPTIMIZATION 1 (AT,) Tob
2 a7, (To-)’

(21

Following the results of the preceding section, one may
ask the logical question: what is the optimal detector conit is of interest to compute and analyze the SKR) as a
figuration for the detection of a given target signal in a noisefunction of the bias amplitudé and other system param-
background? As discussed in earlier woeK, the (theoreti- eters, as a means to optimizing performance. The simple
cal) largest(AT) is obtained for zero bias signal. However, threshold description of the ST as well as the potential-based
in real applications this observation must be tempered by thenodels(mean field and equivalent standard quartitfords
constraint of finite observation tink,,. The noise intensity us an analytic computation of the SNR, which we now de-
should be high enough to allow switching events so that thacribe. It is most important to reiterate, at this point, the
system vyields acceptable sensitivity and SNR without thestringent constraints on our use of the threshold descriptions
bias signal. Otherwise, a bias signal must be applied. In thé4), (12), and(13). For all three models, the noise standard
following we introduce a quantifier to take into account bothdeviation must be small compared to the threshold “height,”
the AT amplitude and the observation ting, and discuss with A beingsupréahreshold. In addition, the replacement of
the optimal bias signal for given target amplitude, back-the dynamicg1) and(9) by the simple static threshold de-
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scriptions that lead to the deterministic resuyt®) and(13)
are predicated on a bias signal amplitude thauisrethresh-
old. To get an analytical estimate of the SNR.), we resort
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in terms of the definition§25) and(26). The standard devia-
tion in the denominator of Eq21) is computed via the sec-
ond moment ot;,

to our simple ST model described in Sec. Il. We assume the

noise floor to be smallcompared to the threshold setting o, ~\2((tHhin— (t)i) =207,
and to manifest itself in a fluctuating threshold with mean
valueb; the fluctuations are assumed to be Gaussian,

(28)

and the remaining term in the denominator of the square root
factor in Eq.(21) is replaced by the difference in the mean

p{ ({— b)z] crossing times.
= [

1
P(y)= 5 > ex

mo

(22 The integrals above must be computed numerically, in
general. We then readily observe that in the limit of small
noise variance and large bias amplitude, the averaged quan-

Let us first consider the case of sinusoidal bias signal. ASgities are well approximated by their deterministic counter-
suming that we start dt&= 0, the firstt,, to the upper thresh- parts(defined in Sec. )|

old (at +b) is now a random variable; its probability may be
readily computed16] via a change of variables, wherein the (t1 Dth=t1 20,
mean crossing time is well approximated by the determinis- ' '
where the deterministic residence-time difference is given in
Eq. (4). We may also, in the regime of validity of the corre-

tic crossing time as derived in Sec. I,
WA A2 _ spondence$29), approximately evaluate the integra25)
P(ty)= \/:ZCOSwtlex ——2(Slnwtl—Slﬂwtm)2 : and (26) using a second-order Laplace expansj8f], in
2mo 20 @3 which we retain terms upt®(o?) only. We then obtain

(AT)in~ATsm, (29

2
which is normalized to unity over the intervakQ,<T/4, () in~tig+ — secotyGiotyo) +h.o.t
. . X . . th 10 2 1010\ 10 by
which contains the first crossing to the upper threshold, since A
the signal is welsuprahreshold. Note thaP(t;) =0 outside

this interval. In an analogous manner, we obtain the first o

crossing time probability for the lower threshold, (to)in~togt Esec:wtzoGzo(tzo)th.o.t., (30
2
P(ty) = w—ACOSwtzeXp| _ A—(sinwtz—sinwtzo)z where h.o.t. denotes higher-order terms. For the variafﬁlce
V2ma? 207 we obtain
(24)
0_2
normalized to unity inTy/2<t<3Ty/4. Note that these den- crt21~ — secwt;o{ Ga(ty0) = 2t10G1d(t10)}, (3D
sity functions tacitly assume a determinstic threshold cross- A
ing picture of the form described in Sec. Il. The bias signal h h defined
must be wellsuprahreshold and the noise intensityf also where we have detined,
should be small compared to the threshold height. In(E8). @) (4) (1) £(3)
and (24), the deterministic crossing timesg,, are given by Gugti)= — fi (tyo) + f107 (ty) + fié1 (t10)
Eq. (3). _ _ 24 8[4{?]? 2[ P17
In terms of the density function®3) and (24), we may
write formal expressions for the mean crossing tirigs, 5, #3712
and (t,),, the subscript denoting the theoretid@h this _W(tlo)v (32)
case, approximateguantity, 1
(2) (4) (1) 4(3)
Tol4 fy f107 fi’¢3
t ZJ P(t,)t,dt 25 Gaoltao) = — (tao) + (tao) + (t20)
(t1)in . (tptydty (25 269 8[ D2 2 P2
5457
and - (ty), (33
24 ¢
J‘3T0/4
t = P(ty)t,dt,. 26
(t2)th - (to)tdt, (26) (2 e e
Ga(tio)=— 2¢‘2>(th)+8[¢(2)]2(t10)+ 2[¢(2)]2(t10)
The theoretical difference in residence times is then, 1 1 1
5f {17
(AT)in=(T )th— (T )tn=2(t2)th—(t)tn) — To, - W(tlo)a (34)
(27 24 ¢1”']
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and
1Aw AT
(S ded L1 NN 39
fi(t)=tcoswt, f,(t)=tcoswt, T NTo—ATsn
1 It is instructive to repeat the theoretical calculations using
¢1(t)=—E(sinwt—sinwtlo)z, wave form (6) as the bias signal. One may compute the

residence-time density function in a manner analogous to the
above. Starting with expressi@@2) for the noise probability
1 density function, we may obtain the crossing times density
— 1 ol 2 )

$2(1) = — 5 (sinwi=—siNwiy)®. (39 fynctions via a simple change of variables,

In the above expressions, the superscriptg., »(™) denote (i) _ 1 () +() \2

the mth time derivative. P(t12)= Wex _2_2_2“1,241,20) . (40

The mean crossing timg80) agree very wellin the limit ! :
of small o/A) with the values obtained by numerically which is also normalized to unity of—,=]. Here, we

evaluating the integral$25) and (26). Good agreement is have introduced, as we did for the sinusoidal bias case

also obtained between the standard deviatipnand its nu-  ghoye, the “dressed” variance paramelf= m20% w?k2.

merically obtained counterpart. In fact, a glance at E88)  Denoting byT{"=t{’—t{" the residence time in the up state,

shows that at large signal amplitudend/or small noise in-  one obtains its density function in a manner analogous to that
tensity, the crossing times approach their deterministic val-ysed above for E¢(39),

uest; oo, in turn, these behave asAlfor large A. In this

regime of operation, the residence-time density functions _ 1 1 _ o
(23) and(24) collapse into Gaussians having the form P(TY)= —=exp — — (TP -t +t5)? 1,
V47T§’i 42,
1 (41)
P(ty)~ expl — —— (ti—t10)?{, 36 I : , i :
W 2m32 225( 1™t B8 which is Gaussian having meaff) —t{) and variance 2?

=2m%0% w?k5. We readily observe thatAT®")—0 and
which is normalized to unity off —o,] and where32  t§}—t{}—To/2 whens —0, as expected. The separation be-
=0?IA’w?, a “dressed” variance that is seen to decreaseween the peaks in the residence-time density function is
rapidly with decreasingr and/or increasingd; the simula-  given by Eq.(8), exactly as predicted for the noise-free case.
tions of Sec. IV have already shown this behavior. A corre-The SNR(21) may now readily be estimated for this wave
sponding expression is obtained #@(t,). Note that simple form. We find
differentiation of the densitieg23) and (24) shows the .
modes approaching the mean values in the ldxge limit. 1 k0 ATO
Of course we have already obsenjéft]. (30)] that the av- 2 no ﬁ\/-r_ob
erage crossing times approach their deterministic counter- 0

parts in this limit. , , _ The similar structure of Eq$39) and(42) should be noted.
In the Gaussian limit, we can find a theoretical expression\qte also. that the SNR behaves likéo for the sinusoidal
for the SNR. We start by computing the residence-time deng, 5, e form, and likex, /o for the alternate wave forr6).
sity function for the up state for which individual residence fjonce  one obtains a performance enhancement with de-
times are denoted by,=t,—t;, t;, being the individual  ¢reasing noise intensity for both signal wave forms, as might
crossing times. The density function of the residence times i§g expected. For the sinusoidal bias signal, one can increase
obtained via the convolution the SNR further, by increasing the bias amplitudliehow-
. ever, this must be weighed against the requirement of lower
P(T ):J' Py(T,—t,) Py(t,)dt, (37) power consumption as well as the resolvability (@T).
Y T ’ With increasingA, (AT) decreases and the lobes of the RTD
converge to a single sharp peakTgf2. For wave form(6)

(42)

which after some manipulations yields the situation is more complex, as seen in Fig. 5; given a
noise floor, the response might be expected to increase with
1 increasingk,, peaking at the critical value of,.~3(A—b
P(Ty = ZEXP‘ ———(Tu—tittn?(. (38  —¢), and then decreasing. The SNR in both cases is propor-
4 4% tional to \T,y; increasingT,, leads to improved statistics,

_ although operational constraints in specific applications may
An analogous expression may be computed for thgjmit its magnitude.

residence-time density function in the down state. Then, us- | is of interest to actually find some measure of compari-

ing expressior4), settingot =235, and taking(T. )=t son between the readout schemes that employ the RTDs as
—t40 [with the deterministic crossing times defined in Eq.described in this work, and more conventional readout
(3)], we obtain the theoretical SNR as schemegsee Sec.)lbased on the output PSD. Such a com-
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parison is possible in the context of a rigorous statisticaln order to arrive at a sequence of approximations to the

analysis of the device response; we address this in the fobkolution Z to Eq. (43) the following perturbation ansatz is

lowing section. made. The solutiorZ to Eq. (45) is formally expanded in
terms of powers ofr as

VI. RESIDENCE-TIME ASYMMETRY OR POWER
SPECTRAL DENSITY? A PERFORMANCE COMPARISON
FOR DIFFERENT READOUT SCHEMES

2=2O+ozM+ ... +o*Z0+ ... (46)

and the right-hand side of E45) is, accordingly, also ex-
As shown in the previous sections, the bias signal wavéeanded in terms of powers of. If the coefficients on both

form (6) can improve the performandbased on the separa- sides of the arisen equality

tion (AT) of the mean residence timesf this readout

scheme under the appropriate conditions. We now investigat&{?)+ ¢Z("+ . . . =g4(z{9,0)
whether this is sufficient to make the RTD-based technique ) )
competitive with conventional readout schemes based on the dgs(Zi "+ oZy '+ -+, o)
" . + o
PSD. In order to carry out this comparison we must abandon do o

the (somewhat simplisticST and, instead, analyze one of the

potential system$2) or (10), together with a more general +---
performance measure. Since both potential systems behave

similarly we have used the equivalent Duffing potentik)) =05(2(”,0)+ o[ Gay(Z{” 0 Z{"

which is somewhat easier to analyze. We start with a stochas- +Ga(ZD 0]+ - - -

tic perturbation expansion of the dynamical system; this 32T e '

leads us to expressions for the probability density functiong,re then equated the following differential equations for the
of the crossing times between the stable states. Thggrection termgfunctiong emerge

residence-time-based readout scheme will be seen to be, at

least asymptotically, as good as any other readout-scheme- 7= g.,(z,0)

based on time measurements. Finally the residence time 7= Gl

based scheme and the “conventional,” i.e., based on the (1) ) W )

PSD, scheme are compared via Monte Carlo simulations. 2y =G3y(Z7,00 2+ Gl 27, 0) &, (47)

A. Stochastic perturbation expansion

We start by introducing a stochastic process  where the matrixG;; and vectorGg, are given by
=(%y, 7, %) in R%. The system described by Ed9), (10),

and(14) can then be written in the form of dit0) stochastic -7 ! 0 0
differential equatioSDE) G31(Z§0),0)= 0 0 0 ,
dZ,=g.(Z)dt+0gx(Z)dW,, Zy=z, (43) y  h'(t) a—3b(z{?)?
whereZ componentwise is defined by 1
G3(Z90=| O

d¢ - Tglgt 1 e 0

dy, | = 1 dt+o| 0| dw,.

dx, ax—bx3+ e+ h+ ¢, 0 and the initial conditions ar&{")=z,,z{"'=0, . ... The de-

(44)  tails for the higher-order correctiongor k=2) are easily
calculated, see Ref36]. It turns out that all higher correc-

Hereo is assumed to be a small noise standard deviation ant®"S arekllqe_ar '(r?,) and it (f,f;"?wf’) ther((ajf%re that _t:e vector
the second equation only expresses time as a state variabff0cessZ™ ~=(Z*7, ... .Z™) " obtained by considering si-
The asymptotic properties far— 0 of equations such as Eq. multaneously thek+ 1 first corrections in Eq(47) repre-

(43) have been analyzed in R¢86]. If £ now is used as the sents, formglly, an SDE. In Theorem 2.2 of RE36] it is.
formal time derivative of the Brownian motiow, Eq. (43 ~ Shown that if the components gj,g, have bounded partial
can be written as derivatives up to K+ 1)th order(inclusive), then the SDE

for Z“*1is in fact well defined with a strong solution and the
componentzk_,0*Z® is an approximation t& for which

Zi=05(Z;,0&),  Zo=2o, 49 the error is asymptotically small in mean squarecas 0.
Therefore &th order expansion like E@46) will henceforth

where be denoted as
ga(U,00) =gy (U)+ ogy(U)v, UeR3veR. 2=+ oZM+ - - +0"2¥+0(0), (49
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where the remainder term is primarily to be interpreted as 0.5
asymptotically small in a mean squared sense.
0.4
B. First-order approximation

From Eq.(47) it is seen that the zero-order approximation 03
is simply the deterministic ordinary differential equation that _
would be obtained by setting=0 in Eq. (43), and that the ~
first-order approximation is obtained by linearizing E4_3) 0.2
around the nominal deterministic trajectory obtained from
the order zero approximation. We now study the first-order
approximation and suppose that E48) holds fork=1 and 01
thatz, is an interior point of a domaib in R® such that the
first exit timet, of the procesigo) from D is finite. Suppose 0
further that the boundary is differentiablez{f’, letn be the 0 01 02 03 04 05 06 07

. . N lized Ti YT

exterior normal to the boundary & 8) and denote the first ormalized Time (VT,)

exit time of the procesg; from D by r,. Then if (Z{,n) FIG. 6. The elementd; 5(ty,t) vst/T, for =0, 62=0.01, A
=0.8, y=1, T,=100, start time=0, and the parameteesb for

>

0 we have{36] the equivalent Duffing potential are computed via Etl), for c

(Z(l) F) =4 in the mean field potentigP).

t 1

O(0), (49

To= t0+ UT +

(271 7= ['ex —te(ﬂmmm zO)dw,
O (oA 92(Z4”) :

where the remainder term should be interpreted in the sense

used in Eq(48). Hence the first passage time problem for theand Eq.(50) therefore becomes

time varying potential with colored noise can be formulated

as the problem of determining, in Eq. (49) when xg
<Xjimit » Wherex;;mit is a barrier for the variable. In this

case n becomes simpIyF:(O,O,l)T and the condition
(2{?,n)>0 in Eq.(49) reduces to”>0 wherex(® is the

last component in the solution to the first equation in Eq.

(47).

to —
. n'®(to,r)gx(Z) g2 D (1, r)ndr
V(7,)=0?

(x{)?

to
fo [@34(to.r)]?dr

Since W is a Gaussian process, so is the first-order ap- =g? (52

proximationx?), and the first passage time is therefore a
Gaussian variable with medp and a variance

E(x{))?

(x{gh?

V(7,)=0? (50

Further, the(unique solution to the second equation in Eq.
(47) is well known to be(see, e.g., Ref.36]),

t
20~ [ @t zaw,. (5

whered(t,s) is the transition matrix from timeto t for the
flow (smooth vector fieldon R® defined by

ZV=G4y(2{?,0z{".
In this case the transfer matrik is given by

¢@n=w%—feﬂﬁ%mm)

Hence Eq(51) can be written as

(x{h?

where @3 5(to,r) is the third row, first column element of
®(tg,r). This element is plotted against the normalized time
t/Ty in Fig. 6.

Since we have assumed a cleaslyprahreshold bias sig-
nal, the previous crossing time, i.e., the start time, will be in
[0,T/2]. For all such starting times numerical calculations
show that the next deterministic crossing titgeis reason-
ably independent of the starting tirh&8]. Further, as seen in
Fig. 6, the function®;, is close to zero for alt e[0,T/2]
and therefore the integral in E452) will also be almost
independent of the starting time. Hence all crossing times
will be approximately independent and Gaussian distributed
with means and variance given by E¢9) and(52), respec-
tively. This has, of course, already been observed in our
crude(Schmidt trigger model of the preceding section in the
large A/ o limit, when A is well suprahreshold.

C. Analysis of time-based readout

The approximate crossing times distributions calculated in
the preceding section are important when evaluating perfor-
mance measures for “time-based” devices. Since we also
want to compare the performance of these devices with the
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one obtained under different readout schemes, we have to 1/ n

abandon the SNR in E421) and move on to a more general AT= —( > (di—up)—2, (ui+1—di)) .

performance measure. There exist several possible ways to nii=1 =1

define such a measure, however, since the expected value ﬂfwe variance of the residence-time-based estimator will then
the estimations is correct it seems natural to apply the class%:e
MMSE [38] (minimum-mean-squared-error estimadidor-
malism, and consider the estimator with the lowest variance
of the result to be the best. Note, though, that the variance
associated with all the estimators will decrease towards zero
when the observation time increases. Therefore, a finite Obv'vhereV(AT)=V[(1/n)2i”:1(2di—ui—uiH)], which, with
servation timeT,, is used, and the goodness criterion of the "

sensors is defined as the variance of the estimation, givetltm1e definitionY; =2d; —u; — ;,, becomes
this observation time.

For residence-time-based devices there willn§& .,
switches between the stable states during the observation
time. As previously shown, all crossing times will be ap-
proximately Gaussian distributed with a mean that depends
on the target signal and a variance as in 6Q). The depen-
dence between the separation of the mean crossing times and
the target signal is linear for small asymmetrizing target sig-which by straightforward calculations can be shown to be
nals, i.e.,

— AT\ ¢f
V(eres) :V( C T) = 1_6V(AT)1

S|k

n 1 n
> <Yi>)=—2(2 V(Y))
i=1 n i=1

V(AT)=V(

+2 > Cov(Yi,Y,o),
i#] j=1

2 2
Tcross 20—cross

n2

e=uc, (53) V(AT) =

where i is the change of crossing time awgd a constant. ) ) ) )
This has already been mentioned in an earlier section, and Hence, the residence-time-based estimator has the variance
can be confirmed by a numerical simulation of the system. ) ) ) _ ) 5
The crossing times independence therefore affords the possiy, — . _ & 80¢ross  20%ross _ C1%ross_ CI%%ross
bility of extracting the optimal achievable limit for any kind fresd ™ 16 n n2 2n 8n2

of estimator based on crossing times. Let us definendd;
as u;=u;—uy mod(Ty) and d;=d;—dy mod(Ty), i=1,

whereu; andd; are the two(differeny crossing times, from

one state to the other, and from the second back to the firsyMPtotically) for largen and is much easier to implement in
Hereu, andd, are the first crossing times in the noise-free @ €xperiment. In most cases the residence-time-based read-

system in the absence of the dc target signal. It is readil ut can, therefore, be considered to be the optimal time

obtained thatu¢,oss= mu= — g [Where u,=E(u;) and ugy ased readout.
=E(d))] and ogress=0y=0g4 [Where o2=V(u;) and o3
=V(d;)]. The set{u;,u,, ... Uysq,—dq,—dy, ... ,—d,}
will then consist of 2+1 independent identically distrib-
uted Gaussian variables with mean.,,ss and variance
02,05 1N this case it is known from Ed53) that the mini-
mum variance estimator of is given by

which is slightly worse than the optimal time based estima-
tor, Eq. (54), although the performance is comparakde-

D. Comparison of different readouts

In the preceding section we illustrated the advantage of
applying the residence-time-based readout scheme, if only
sensors involving time measurements were considered. How-
ever, it is also instructive to analyze how this readout per-
forms compared to other, more conventional, readout
schemes, and to determine the optimal amplitude of the bias
signal. Such an investigation is likely to be quite exhaustive,
and beyond the scope of the current paper. However, a good

n+l_ n o
2 u—2 d
i=1 i=1

€opt™ 2n+1 € starting point is to compare the residence-time-based readout
. _ scheme with a “conventional(PSD-basedreadout, when a
with a variance time-sinusoidal bias signal is applied in each case. This com-
2 2 putation will just show the most appropriate amplitude of the
V(s _ G %ross sinusoidal bias, with the frequency kept fixed for both de-
(Sopt)_—v (54 : e P :
2n+1 vices. This investigation can later easily be expanded to en-

which is easily proved by, e.g., the information equalBY].

compass larger signal families.
To compare the readoutsg;,,, output trajectories,t

In the previously described approach that measures the (0T ,] are calculated for each amplitude of the driving

mean difference in residence timéAT), a displacement

signal. Based on these trajectories,,, estimates of the tar-

Kerossfor the crossing times results in a mean residence-timget signale are calculated with both the residence-time tech-
difference of 4ucross. The estimate of the target signal there- nique and the conventionéPSD-baseltechnique, for each

fore becomes_resz(c|/4)AT, where

amplitude. The variances of these estimates which, according
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to the preceding subsection, could be used as performance x 1078
measures, are then used to establish the best bias signal am 1.00 -
plitude for each method. However, it is also of interest to
know how close the sensors are to thy@imal performance
limit. The optimal performance is given by the MMSE esti-
mator ofe based on observations gf over[0,T,,]. In case 075k
the target signat is a zero mean Gaussian random variable,
independent of both the initial conditio, and the driving
noise, the optimal performance is easy to calculate if the
noise is white. Therefore, if we instead of adding the colored
noise process; to the state incrementx; in Eq. (44) add a
(scaled Brownian motion increment,,,dW; , we obtain the
following (“white noise”) model on SDE form:

Variance
o
o1
=)

dx=[F(x) +&+h]dt+ o, dW,

025}

where the functiorf represents the Duffing potentidi(x)

=ax—bx3. The MMSEz¢ of ¢ based orx,,t [0,T,] for a

system of this type is well knowfSec. 17.7 of Ref[39) | ~— — — — = —-—-—-—"—"— =" 7

and given by 0 . . . . . .

2.0 25 3.0 35 4.0 45
Tob Normalized Bias Amplitude (A / AUdO)
XTob_XO_f [f(x;)+h]dt
= 0 (55) FIG. 7. The variance of the estimations vs the sinusoidal bias

U&vg ' signal amplitude for the residence-time-bagedlid ling), PSD-
—2+Tob based (dashed ling and MLE-based(bottom dash-dotted line
O, method. Here the parameteaish, and w are as in Fig. 6,y=1,

5. ) ) Top=3000, and the white noise intensity dg,q= 2% 10°°C.
whereo; is the variance of the zero mean Gaussian random
variablee. Wheno?— the formula(55) becomes identical els of Sec. Il that we use to describe our sensors, may not be
to that for the maximum likelihoo@VL ) estimate ofs (Sec.  good enough. In this context it should be noted that in real
17.7 of Ref.[39)]). Thus, the ML estimator, which is well sensors involving, e.g., ferromagnetic cores, the noise floor is
defined also whea is considered as an unknown constant, isusually dependent on the driving signal. This is also indi-
a limiting case of the optimal MMSE estimator in EG5  cated by the experimental results shown in Fig. 10. In addi-
which is obtained when?— (i.e., whens becomes “com- tion, the driving signal, if applied at a sufficiently high fre-
pletely unknown’). The variance of the ML estimator there- quency, can lead to frequency-dependent hysteresis behavior
fore provides a lower bound on the achievable performancen the device, behavior that has not been covered by our
of any estimator ok whene is an unknown constant. phenomenological description. Clearly, an investigation of
In Fig. 7 the variance of the estimates versus driving sigthese issues should precede a rigorous investigfieyond
nal amplitude is shown for the two different kinds of readoutthe relatively simple discussions, in this paper, of the system
schemesgresidence times, and PSD bapadd the MLE. As  response to nonsinusoidal wave forms, exemplified by the
seen, the residence-time-based readout is nearly as good signal(6)] into the optimal signal wave form for a particular
the PSD-based case, although the sinusoidal bias signal magadout scheme. However, despite these unresolved issues,
not be optimal for this sensdat least under the parameters we can at least conclude that the time series of the output
considered hepe A triangular wave, or the wave forrt6)  voltage from the fluxgate probe seems to contain more infor-
should improve the results; as already discussed, these waweation about the target signal than that which can be ex-
forms provide local linearity where the wave form crossestracted via conventionalPSD-based and residence-time-
the threshold. Clearly though, both devices perform mucltbased readouts.
worse than the MLE, and it is obvious that both measuring
techniques are nonoptimal. From these data it therefore
would appear that a MLE-based readout, or a residence-time-
based readout with a carefully selected driving signal, would In order to reconcile some of the ideas of this paper to
be preferable compared to a PSD-based readout. Howevexxperimental data some preliminary experiments were per-
one very surprising result indicates that care should be takeformed on a test device, a very simple laboratory realization
when interpreting the data. The variance of the estimatesf a residence-time-based fluxgate magnetometer. A premag-
decreasesvhen the bias amplitude decreases, implying that anetizing coil with 50 turns and a pick-up coil with 135 turns
weak bias amplitude might be preferable. For the PSD-basedere wound in a transformerlike configuration on a multido-
readout this is a counterintuitive result since in practical scemain ferromagnetic strip-wound ring core characterized by a
narios these sensors are normally driven with a large amplicoercivity of less than 3 A/m. The diameter and the cross-
tude bias signal. It is therefore possible that the simple modsectional area of the ring were 26 mm and X128 mnf,

VII. EXPERIMENTS
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respectively. A ring core probe used in this configuration is 0.2
not expected to possess full directional sensitivity and re-
sponse to external field&]. It can, however, serve the pur-
pose of demonstrating the basic principle, without making ;N ;N
any claims on living up to the possible operational perfor- o1t |, JEERY
mance of a fluxgate magnetometer of this type. Note that
new, improved probes based on straight rod cores are under / \ / \
fabrication, and the results for these devices will be pub- _ \ JM \
lished later. \
A function generator producing a triangular wave with D‘é Or W W / w /
\
\
\
\
\
v

(v

variable amplitudeA and frequency was connected to the
input of the device. A frequency of 100 Hz was used for all
measurements. This allows one to use a non-frequency-basec
description of the crossing dynamics, since frequency- _541
dependent hysteresis in the core response is very small and
also the bias signal has a minimal effect on the noise floor.
The noise floor is assumed to be Gaussian bandlimited,
which is a good assumption for the new genre of “single-
domain” ferromagnetic probes; non-Gaussiari.e., -02
Barkhausennoise may in fact be present in these cores, but
it is significantly smallerin rms amplitude than the gauss- Normalized Time (¢'T )
ian noise. The 100 Hz driving frequency also ensures that the
bias signal does not fall into the low-frequency noise riser.  FIG. 8. Output voltage from the pickup coil for four different
The time evolution of the input current and the outputamp“tudes of the bias field. From left to right= 20, 3.3, 2.0, and
voltage were measured with a 16-BitD converter using a 1.4 A/m. Bias periodT,=0.01 s. The dashed curve is a guide for
sampling rate of 40 kHz. Alternatively, the pick-up coil was the eyes, and indicates the phase of the bias field.
connected to a universal counter for measuring the residence
times T, and T_. The bias field was estimated from the from the pick-up coil. For each set of data the unknown
input current by applying Ampere’s law on the ring geom- integration constant was assigned a value in order to make
etry. the times series oB centered around zero. The results for
The zero target measurements were performed inside o amplitudes of the bias signah&2 and 20 A/m, corre-
shielded cage consisting of concentrically arranged lid-  sponding to nearly saturated and saturated cores, respec-
ded cylindrical shells made ofx metal and copper. The tively) are shown as solid curves in Fig. 9. Due to hysteresis
measurements with target signal were performed in the preffects(irreversible magnetizatiorchanges in the magnetic
ence of the geomagnetic field, which served as the targeflux B in the core “lag behind” changes in the magnetizing
They were made after maximizing the effective targetbias fieldH. In Fig. 9 this can be observed as a distortion of
strength by simply rotating the device until a maximum dif- B from the triangular form of the bias signal and the appear-
ference betweeT ) and(T_) was found. At the location ance of hysteresis loops in the magnetization curves. For the
of the experiment this corresponded to a field strength ofaturated casgight panel$ B has nearly a rectangular wave
about 50u.T (the magnitude of the geomagnetic field form and long tails develop in the magnetization curves.
Figure 8 shows the output voltage from the pick-up coil In order to study the ability of the mean field model with
for four different amplitudes—twaosukthreshold and two the “soft” potential [Eq. (2)] to reproduce the experimental
suprahreshold—of the bias signal resulting in nonsaturatedetails of the ferromagnetic behavior of the core, simulations
and saturated magnetization, respectively. These measuref B versus time and hysteresis loops were made. In these
ments were performed without target field. The output volt-calculations a dimensionless temperatlire1/1.4 (c=1.4)
age (this is our experimental observaplavhich is propor- was used. The results are shown as dashed curves in Fig. 9.
tional to the derivative of the magnetic flux in the core, For the saturated cageight panels the experimental data
consists of a number of successive spikes corresponding &re quite well described by this model. For the nonsaturated
switches between positive and negative magnetizdtiela- case(left panel$, however, only the time evolution dB
tive to the magnetic state when the bias signal was appliedseems to be fairly well matched. For even lower bias ampli-
A shift of the spike positions from the extrema towards thetudes the model is unable to reproduce either the time series
zero crossings of the bias signal can be observed as the cooe the hysteresis loops. Also the equivalent quartic model is
material is gradually driven deeper into saturation. For theunable to reproduce the salient features of the time series and
highest bias amplitude the saturated flux density is rapidlfthe hysteresis loops at very lo@ukthreshold bias ampli-
reached and thésharp spikes nearly coincide with the zero tudes. This model also fails at extremely higlery suprah-
crossings of the bias signal. reshold bias amplitudes. Note, however, that despite these
The time evolution of the magnetic flux densByin the  discrepancies, both models can reproduce, to a very good
core material and the magnetization curves were calculatedpproximation, the qualitative behavior in, e.gAT) also
from the experimental data by integrating the output voltagdor very highsuprahreshold bias signals.
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05t | bl
data. l\" \

0.498 0.499  0.500 0.501 0.502
Residence times T+ and T_ (t/TO)

Figure 10 shows th&Gaussian-likgresidence-time distri-
butions for three different bias amplitud@s The data were

compensated for offsetén the range of about 0.5 to 30s, FIG. 10. Residence-time distributions for three different ampli-
with the larger value corresponding to the case of the weakydes 41,20, and 4.1 A/m, from top to bottom panetsf the
est bias signalwhich were obtained from zero-field mea- triangular bias signal. The data have been normalized to the period
surements inside the shielded cage. In all cases, the centgf=10 ms. Dashed curves: zero target case. Solid curves: effective
RTD corresponds to the case of zero target signal. In thearget field of about 5Q.T. The data have been compensated for
presence of a target signal the residence tifnesndT_ are  offsets. The effect of decreasing the bias amplitude is twofold. For
different, and consequently the quantityAT)=(T,)  a fixed target field the separati¢AT) grows with decreasing bias
—(T_) can be used as a measure of the asymmetryamplitudes, at which point the fluctuations due to the noise back-
producing target field. Within our experimental precision aground also manifest themselves in the density function.
linear relationship between the target signal 4Ad’) was
found. This is in good agreement with expectations for aRTDs, i.e., the gained response to external target fields seems
pulse-position-based readout technid@g Such a relation- to be larger than the cost due to a wider spread in the resi-
ship should be expecteths already discussedrom the  dence times. However, further lowering the bias amplitude
RTD-based readout whea is small; it has already been down to 4.1 A/m(where the core material is only weakly
theoretically computed in the limiting case of zero bias sig-saturatefl a much larger spread in the residence times is
nal[9]. From the slope of a linear fit to the data a response obbserved, and the background noise makes its presence
about 7 nsiT for our simple test device was found, when it clearly known in the density function for smail
was driven with a 10 kHz bias frequency. Note that this There may be many reasons for this large dispersion at
result is not expected to be representative for a well designeldw bias amplitudes. One possible explanation could be that
device(currently under construction due to the less saturated core matef@ald possible memory

In Fig. 10 it can readily be seen that the effect of loweringeffects caused by “noncomplete” magnetic domain align-
the bias amplitude is twofold. First of all there is an increasement along the bias fieldhe magnetic hysteresis loop is not
in (AT) for a given target signal strength, and second it leadsvell defined. This could, then, lead to varying residence
to a wider spread in the residence times. For example, lowtimes because different paths around the hysteresis loop may
ering the bias amplitude from 41 to 20 A/m appears to resulbe taken for each cycle. Even in this situation, however, one
in a performance improvement which can be observed as abserves a well-defined\T) which, in an experiment, may
larger increase iKAT) as compared to the dispersion of the readily be computed using the arithmetic mean of a large
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numberN of observed crossing events. We reiterate that, irHence, one must also consider the tradeoff between sensitiv-
practical scenarios, a computation of the average residendsy and power when designing a sensor aimed at a particular
times via the arithmetic mean is sufficient; it is not necessarylass of target signals. Noise effects become more important
to compute a density function and then compute the meangs the bias signal amplitude approaches the threshold; the
via integration. Hence, the accuracy of the measurement @8TD is no longer Gaussian, it develops tails and its mean and
(AT) depends on the magnitude Nf Of course, the magni- mode separate.
tude of N is constrained by the observation time as already A theoretical computation dfAT) has been carried out in
discussed in Sec. V. the regime of largesuprahreshold bias signal and small
Despite the crudeness of the setup, the experimental finthojse; in this(Gaussianlimit, the dynamical system is well
ings do qualitatively agree with the results of the SimU|ati0n%pproximated by a nondynamica| dual-threshold representa-
shown in Fig. 4. This, in turn, has led to titeurrently on-  tion. For small target signals one easily obtaiisT)oe.
going construction of a fluxgate magnetometer utilizing theThe separatiofAT) is, further, very weakly dependent on
residence-time-based readout scheme. One important tagke noise in the largd/o limit (the Gaussian limit that has
when optimizing the bias signal for a real device would thenfeatured so prominently in our discussjoi this limit, the
be to find the optimum balance between the gain in respomgise statistics also, do not have a significant effect on
§|V|ty and the increase in the noise level of the reS|denchT>. For sulthreshold bias signals, the theory of this paper
times. breaks down. In practical operation, however, one can still
compute{AT) by simple averaging as done for theprah-
reshold bias case; in this case, however, the mean value sepa-
ration is noise-dependent and one may optimize it using the
In this work we have presented an alternative to quantiSR scenariq6]. The RTD forsulthreshold bias signals can
fying the output of a nonlinear dynamic system via thebe multimodal(depending on the noise variance, signal am-
power spectral density. The residence-time-based techniqumitude, and potential barrier heighhowever, in the optimal
is relatively simple to implement in practical scenarios; allcase it collapses into a single near-Gaussian pealk/&t
that is required is for the detection/processing electronics td@his case underpins the interpretation of SR dmna fide
keep track of threshold crossing events and maintain a rurresonancg?]. Note that for thesukthreshold bias signal case,
ning average, the arithmetic mean, of the residence times iane may comput¢13] the residence times in th&/oc<1
each stable state. Then the quanfityT) provides a measure limit (the often-discussed SR regiinéhe case of strong
of the unknown target signal that created the asymmetry andbut still sulthreshold bias signals and weak noise, i.e.,
therefore, a nonzer¢AT). While the target signal in this A/o>1 has recently been analyzed in some ddil]. In
work is taken to be dc, it is clear that a modification of thethis regime, one obtains a near-exponential dependence of
residence-time-based readout scheme could be effected fOAT) on the asymmetrizing signal indicating that optimal
more complex signals. It is also clear that the choice of thesensitivity in this technique might be achievable for bias sig-
bias signal wave form is important to the issue of overallnal amplitudes hovering around the threshold of the energy
sensitivity defined, roughly, as the ability to discriminate thebarrier. Assuming prior knowledge of the sensor characteris-
means of the residence-time densities in the presence oftes, it is reasonable to expect that one could determine the
small asymmetrizing target signal. The bias signal amplitudenergy barrier height in practical applications, thereby af-
does not need to be extremely large. In fact, our results, anfibrding a convenient route to setting the known bias ampli-
those of our earlier publicatiof], indicate that the best tude.
response to the target signal is obtained for zero bias signal, The bias frequency does not figure prominently into the
in theory, at least. In this scenario the level crossing eventsrossing statistics when we work in the nondynamical limit;
are solely controlled by the background noise. In practicehowever, in the general case, the frequency must be carefully
however, unless the noise level is high enough to induce aselected. In some ferromagnetic cores, employed, for in-
acceptabldspontaneoyscrossing rate, one must impose the stance, in the simple magnetometer used in our experiments,
bias signal to control the crossings. In this case the noisthe (non-GaussianBarkhausen noise floor depends on the
leads to a spread in the crossing rate about its deterministigias frequency, through its effect on the slip dynamics of the
value, when the bias signal suprahreshold. Clearly, in domain walls; usually there existqimaterial-dependenop-
such a situation, it would be preferable to adjust the systertimal frequency at which these effects are negligif26].
parameter$e.g., the constart in the potential energy func- Also, for the case of a soft ferromagnetic core the width of
tion (2)] so that the energy barrier is lowered when weakthe hysteresis loop, which determines the energy dissipated
target signals are to be detected in a noise floor. In the atper cycle, can depend on the frequency and amplitude of the
sence of such a control, however, adjusting the bias amplibias signal.
tudeA, or the triangular signal amplitude, when we use the Keeping the bias signal amplitude and frequency as low
bias wave form(6), effectively raises or lowers the energy as possible can lead to significantly reduced on-board power;
barrier. With a large background noise floor, the densityin a real device, this can be an important consideration.
functions tend to merge, leading to inaccuracies in the comHowever, clearly, the tradeoff between on-board power and
puted(AT) unless a large numbéi of observations can be the observation tim&,,—which determines the accuracy of
made. Increasing enables one to better resolve the densitythe experimental estimate of the quanttyT)—eventually
functions, even as it leads to a greater power requirementlictates how the sensor is operated.

VIIl. CONCLUSIONS
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The proposed technique is part of the genre of systemplanar device, developed in PCB technology, and boasts di-
operated based on their level crossing dynamics. It should beensions small enough to fit comfortalfiyinus the readout
readily applicable to a large class of dynamic sensors that amectronic$ into a small cigarette pack. The instrument em-
operated as detectors of very small target signals, particularlgloys a triangular bias wave form and a very simple digital
when the detection scheme and the sensor dynamics lermdunter to keep track of the crossing eves]. The labo-
themselves to operation under a known bias signal whoseatory device(excluding the readout electronjososts about
wave form must be carefully selected for optimal sensitivity.$1, and has an amorphous metat metallic glass alloy,

In this context we reiterate that the time-sinusoidal bias sigMetglas$ core. Current experiments, ongoing at the Univer-
nal is not necessarily the wave form that yields the best outsity of Catnaia, Italy, are aimed at enhancing its sensitivity/
put sensitivity(or resolution. The rigorous analysis of Sec. resolution by incorporating this device into a coupled array,
VI indicates, in fact, that with the time-sinusoidal bias wave-with the ultimate goal of constructing a network of fluxgates
form one might expect the RTD-based approach to yield sendasing MeMs technology.

sitivity comparable to convention@PSD-basedtechniques. It is worth pointing out that the idea of threshold crossing
However, we hasten to point out that, while the analysis ofvents leading to a quantification of external signals is
Sec. VI was carried out in the context of a sinusoidal biasdeeply rooted in the computational neuroscience repertoire
wave form, one would usually use a triangular wave form, oilwherein one analyzes the response of a single neuron, or
wave form(6) in practice. Both these wave forms outperform even a small network, to a stimulus by examining the statis-
the sinusoidal wave form, and they also enable the RTDtics of the point process generated by successive threshold
based approach to outperform conventional processing. larossings or “firings.” This point has already been touched
addition, one must take into account the inherent simplicityon in Sec. I, but it is important enough to reiterate in this
of the RTD approach, particularly with regard to the readoutsection: our proposed mode of operation actually leads to an
electronics and processing. Typically, a simple counting cirimplementation of these sensors as “neural”-like devices.
cuit is required, in contrast to the feedback electronics that Subsequent work must fociamong other issug¢®n the

are usually a part of readout schemes; more complicatedetermination of the optimal bias signal wave form in terms
electronics usually add more noise to the already preserf specific sensor and operational parameters. Clearly, there
noise floor. By contrast, in our simple experiments on thecould be other wave forms besides the sinusoidal bias and
prototype nonlinear dynamic sensfhe fluxgate magneto- wave form(6) that might be optimal under different condi-
mete) described in the preceding section, one can implemertions. Continued investigations into thé&on-Gaussian

the RTD readout with just one excitation coil and one detecmaterial-dependent noise floor are also important, although,
tion coil without the need for implementing a differential as exploited in this work, this noise may effectively be char-
structure(usually done to cancel out steady ambient mag-acterized as Gaussian bandlimited noise subject to the appro-
netic fields. Most importantly, the RTD approach can be priate fabrication, materials, and geometry constraints.
implemented with low-amplitude and low-frequency bias

signals which result in significantly reduced on-board power ACKNOWLEDGMENTS
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