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Bistable gradient networks. Il. Storage capacity and behavior near saturation
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We examine numerically the storage capacity and the behavior near saturation of an attractor neural network
consisting of bistable elements with an adjustable coupling strength, the bistable gradient network. For strong
coupling, we find evidence of a first-order “memory blackout” phase transition, as in the Hopfield network.
For weak coupling, on the other hand, there is no evidence of such a transition and memorized patterns can be
stable even at high levels of loading. The enhanced storage capacity comes, however, at the cost of imperfect
retrieval of the patterns from corrupted versions.
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[. INTRODUCTION The interaction ternid;,; furnishes an input to each node
given byh;= yEfFlwijxj so that the dynamical equation for
In this paper we consider the behavior at high memoryeach node is given by
loading of a Hopfield-like attractor network df bistable
elements, the bistable gradient network or BENLZ]. This %_
is a sequel to an earlier pagé& that considered the BGN at dt
low loading. We compare the BGN with the deterministic
Hopfield network(HN) [3—9], examining the storage capac- The input may also be referred to as a “magnetic field” by
ity and other key properties. analogy with Ising spin systems. In the absence of input each
To begin, we review the BGN model and establish someode has two stable fixed points atl, but a nonzero field
notation. The BGN is described by the coupled differentialshifts the two fixed points. If the critical magnitude,

Xi_Xi3+ hi . (4)

equations =2./3/9~0.38 is exceeded then the field is strong enough to
overcome the potential barrier in the quartic potential and
dx; IH there is then only one fixed point.
= 19_Xi’ (1) We define two sets of order parameters andb,, by
N
wherex; areN continuous-valued real variablésr compo- m,=§"-x=5 240 &' )

nents of anN-dimensional state vectot) representing the
outputs of theN nodes of the network, anid is the Hamil-  gng
tonian

N
;0 &l'sgnx;). (6)

Z|r

Norxtox 1 X b=
- §7i221 WiiXiX;. (2
m,, are inner products or overlaps of the state vector with the
- . __memorized patterns, whilb,,, the “bit overlaps,” encode
The quantitiesv;; are the elements of a symmetric matrix of jnformation about sign agreements between the state vector
connection strengths angis a control parameter determin- and the stored patterns. For the purposes of this paper, we
ing the overall strength of the coupling among nodes. As inyill for the most part be more interested fir than inm,, ,
the Hopfield model[3,4], the connections or synaptic so where there is little risk of confusion we will drop the
weights are determined by the Hebb learning fule] word “bit” and simply refer tob, as an “overlap.”
The degree of loading of the network’s memory can be
1P p parametrized by the ratie=p/N. In the companion paper
Wi =y > - N i (3)  [2] we examined the behavior of the BGN in the low-loading
n=l limit «<<1. It was shown that the network can function as an
associative memory and correct sign-flip errors in a stored
where theN-dimensional vectorg” represent a set gf dis-  pattern as long ag>3. We found that the attractors of the
tinct memory patternso be recognized by the network. We BGN'’s dynamics are readily classified into three categories
take these patterns to consist of binary elemenfs only, that are separated from each other in energy. The lowest-
and we assign them random values, thus introducingnergy states are theemoryor retrieval states each of
quenched disorder. The BGN'’s key difference from the HNwhich corresponds to one of the memorized patterns. In ad-
and from most of its continuous-valued relatifé4] lies in  dition to these there are higher-energy spurious attractors of
the presence of the local quartic potential teftg in the  two types. Themixtureor spin glass statekave partial over-
Hamiltonian, which renders each node bistable. laps with several patterns and thus lie close to the subspace
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spanned by the memory patterkicondensed statewhich  small-network result§l,12] and those we have obtained for
have no counterpart in the HN, are states in which none ofarger networks. We conclude with some discussion of the
the fields acting on the nodes are strong enough to cause sigN results and possible directions for further study. We
flips and the dynamics is therefore dominated by the locamake some conjectures concerning the performance of the
potential. They have energies per node close-@25. The BGN in the presence of stochastic noise.
spin glass states are intermediate in energy between the
memory states and the uncondensed states. In the range Il. PATTERN RETRIEVAL AND CROSSTALK
<vy=<1, pattern recognition by the network was found to be
highly selective; the input must be close to the stored pattern In a given state, the input to théth node of the network
in order for the pattern to be fully restored. The uncondensegan be expressed as
states are numerousf order 2V) and fill most of the con-
figuration space. The memorized patterns and their basins of N P p
attraction occupy isolated valleys among these states, but hi=vy>, W=y >, §f‘mﬂ—7NXi, (7)
these valleys expand asincreases. Foy=1, on the other =1 u=1
hand, the behavior resembles that of the HN: there are no o
uncondensed states, and the memory states have large basisind the Hebb rul¢3) and the definitior(S) of m,, . In Ref.
of attraction. [2], we showed that whemr<1 there are stable retrieval

In this paper we turn to the case wheséN is of order sta.tes in Whichb,,=1_for one particularv. For a state_ in
unity. We are interested in the maximum storage capacity, ophich thevth overlap is large, we can decompose the field as
the maximum number of patterns that can be successfull{pllows:
stored and retrieved, as well as changes in the network’s
performance as this limit is approached. Earlier work with p
small networkg 12] suggested that at least under certain con- i~ 7 gfmy+gy &rme— in) - 7’( SHC=g%i/-
ditions the BGN could store many more patterns than the HN (8)
while possessing few spurious attractors. It is known that the

Hopfield storage limit op~0.14N memory patterns can be e refer to the first termS,, as the “signal” term and the
exceeded if a more complicated learning algorithm is usedgcong termC;, as the “crosstalk” term. In the limip/N
[9], but in the BGN case improved capacity is achieved with 5 ' the mutual overlaps between different patterns is small,
the familiar Hebb rule. Since the previous resfitsl2l were ¢4 thatm <1(v# ), and the last two terms in E¢8) can
_ott)talnetd( with I\r|1et5\gv)orks much too small ;[0 be of E)racicalbe neglected. The signal term is then dominant and there is a
interest (€.g., N=»), We now examine larger Neworks, qiapje retrieval state given by=1+y& with m
mainly through numerical simulationgat the end of the  _ J1+ 5. We expect this solution to be approximately valid
paper we will return briefly to the small-network caswle for small but nonzero values @fN. For this case, the over-
find that the high-loading behavior, like that at low loading, L ’ .
lapsm, (u# v) behave as Gaussian distributed random vari-

depends strongly on. For y=1, a Hopfield-like first-order ! . .
phase transition results in the destabilization of all memor)f’ibles with zero mean and variance/Bl. Accordingly, the

L= MMM g i
states at a critical value @f. For y=2 this transition occurs crosstalk terrrCl—_E## v& M in Eq. (.8)’ b(_amg a sum op
at a.~0.1, compared tar.~0.14 for the HN. Fory=0.5, such quantities, is a random quantity with zero mean and
on the other hand, we find that it is possible for the stored@@ncevp/N. The third term, which arises from the sub-
patterns to remain stable even at loading factorsref0.3  traction of the diagonal elements, is of org&N and thus is
and higher. Furthermore, there is no sudden blackout; ingenerally smaller than the crosstalk term. We will neglect it
stead, the performance degrades graduallyrascreases. [of the moment.

The price of this high capacity is that the retrieval of the . N the absence of crosstalk, a retrieval state is not only
patterns from corrupted versions may be imperfect. linearly stable(i.e., stable against small perturbatiprmsit,

The remainder of the paper is organized as follows. ifor Y>3, itis alsc_) stablg against in.dividual sign flips. Thg
Sec. Il we discuss in general terms the effects of crosstalk, dftter means that if a retrieval state is corrupted by changing
interference between different stored patterns. It is crosstal{'€ Sign of one or a small numbetN of nodes, then the
that is responsible for limitations on storage capacity. wedynamics will reverse the flipped sign and restore the pat-
compare the effects of crosstalk in the BGN and the HN tern. This hgppens bgcause, in the absence of crosstalk, each
This discussion provides a framework for interpreting ournode experiences a fieldS;= y£7m, that has the same sign
numerical results. In Sec. Ill we examine numerically theas & and fory>3 that field is strong enough to overcome
stability of memory patterns as a function ef We find the potential barrier of the individual node. Now consider a
evidence of a first-order memory blackout phase transition if§iven node(say, theith node in the presence of crosstalk.
the BGN at highy, but not at lowy. In Sec. IV, we examine The crosstalk field acting on thigh node may be either
the effects of high loading on the basins of attraction for thealigned with or opposed tg; . If it is aligned, then its effect
memory states and on their retrieval from corrupted inputon that node is to increase the magnitudexaf making it
We see that increasing the loading markedly alters the enerdgrger thany1+ . If it is opposed tox;, then its effect is to
landscape. In Sec. V we comment briefly on the behavior oflecreasethe equilibrium magnitude ox;. If the crosstalk
smaller networks and on the relation between the previouterm is large enough, then it may be sufficient to overcome
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FIG. 1. A series of remanent overlap histograms for a HN With2000 nodes, at different values of the loading fractieap/N. When
the critical loadinge.=0.148 is exceeded, the strong pealbat 0.95 decays and another peak appeais a0.3.

the local potential barrier and reverse the signxpf thus  the crosstalk will not be strong enough to reverse the sign of
introducing a sign error into the pattern. This will occur only x; if initially x; is correctly aligned with;", but it will none-

if theless destroy the stability against a sign flip. In other
words, ifx; is initially misaligned, it will not be corrected.
23 We may say that the node isistabilized but not destabi-

Ci+5i<_W- lized. (Such an effect cannot occur in the HN where the

nodes are not individually bistableSince the crosstalk is
By contrast, in the Hopfield model a sign error is introducedrandom, it will in general bistabilize some nodes and not
if others, with the result that the memory state will be stable
against sign flips of certain nodes but not of others. Thus,
C/+S<O0. even though a memory state may be linearly stable, the dy-
namics may only be able to correct some sign errors, not all.
Thus the relative strength of crosstalk required to introducé his contrasts with the low-loading case where crosstalk is
sign errors is greater for the BGN than for the HN, and thenegligible and there is a single threshold coupling strength,
discrepancy is greatest for small values pf One might ¥=3, above which any single sign error can be corrected. In
expect that this would make the BGN less vulnerable togeneral, crosstalk results in nonuniform behavior among
crosstalk(and the memory states more stablean the HN, nodes, including different magnitudes xffor differenti.
especially at lowy, but this is not a foregone conclusion as
the BGN’'s dynamics include mechanisms that tend to am-
plify small initial overlaps[2] and could conceivably also lll. STABILITY OF THE MEMORY STATES AND
amplify crosstalk. Our numerical results confirm that the REMANENT OVERLAP
BGN is in fact less prone to crosstalk-induced errors at low To examine the Stabmty of the memory states, we fol-
values ofy, but not at high values. lowed a procedure similar to that of R¢f]. Using an en-
semble of realizations of the random patterns, we made a
If number of trials in which the network was initialized to the
statex= &” for some pattern.. The initial bit overlapb, was
-~ @<C-+Si<& thus equal to 1. We then allowed the state to evolve until an
9y : 9y’ attractor was reached. In each case we measured the final
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FIG. 2. Remanent overlap histograms for the Hopfield network below the critical lodlifigcolumn and above(right column,
showing finite-size effects. The transition becomes sharpél iasreases.
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FIG. 3. Remanent overlap histograms for the BGN wjth 2 show evidence of a first-order transition at €8,<0.11. Note the
similarity with Fig. 2.
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energy as well as the bit overlap between the initial and final (a)-22 ' ' ' ' ' ' —
states, to which we refer as themanentoit overlapb, . We . d
then constructed histograms showing the probabilFigs,) 24r W |
for b, falling in intervals of width 0.05. Each of the histo- 26k . |
grams discussed in this section represents an ensemble of at § Lok
least 200 initial conditions. If the memory state is entirely 28l . §.;}‘E al
stable, as is the case at very low loading, then after the dy- ;.*gt’;-ﬁ?-' L
namics converges the final bit overlap will still be equal to 1. N
For higher loading, however, the crosstalk fields may intro- )
duce sign errors so that <1. B o o7 o5 o8 o7 o8 o3 1
b
A. HN and BGN with high y (b) -1 .
First consider the case of the HN. Figure 1 shows a series -9} T
of P(b,) histograms for the HN at different values aof -11r P
=p/N. (The data here are our own, but the results are com-  -1.15} PR M
parable to those given in RgB]. We include them for com- Z 12 L BT T
parison with BGN results. At lower levels of loading, _1.25} " "‘ ‘:,:" ;
crosstalk introduces few errors, bg>0.95 in the large ma- 1l PR
jority of cases. However, ag increases beyond the critical sk 2% % oz
value @.~0.148, the highb, peak of the distribution begins ’ .
to vanish and a second, broader peak begins to grow in the %4 05 06 07 08 09 1
vicinity of b,~0.3. The states in the second peak are spin b,

glass states. As shown in Fig. 2, this transition becomes ] )
sharper with increasing network size, and finite-size scalin _FIG. 4 Scattt_ar plots of final energies and remanent overlap_s for
analysis shows behavior characteristic of a first-order phasgPectories starting from memory patterns, for BGN above critical

transition in the thermodynamic limi{t9]. In the limit N loading. (a) BGN with N=2000, y=2, anda=p/N=0.11. Note
- . ... _that the overlap is strongly correlated with the energy and there is a
—oo the associative memory fails suddenly as the critical

ap in energy between the high- and lbystates. This gap repre-

loading is exceeded—the remanent overlap drops abrlthlgents the latent heat of the phase transiti). BGN with N

from near 1 to 0._3_. This nonzero value of 'Fhe remanent over= 550 y=1, anda=0.2. As in they=2 case, the energy is
lap above the critical loading was noted in REd] and at-  gyongly correlated witth, , but the high and low groups overlap
tributed to replica symmetry breaking, as the replica symynq the energy difference is smaller.
metric theory predicts thdi, should drop to zero above the
phase transition. This phenomenon is related to the nonzero )
remanent magnetization of a spin gl44§]. with few errors even up to high Ieyels o_f storages-0.3. _
In the BGN with y=2, a similar transition evidently oc- Second, there is no evidence of a discontinuous memory fail-
curs ata~0.1. As evidence, in Fig. 3 we show two series of Ure; rather, the retrieval quality as measuredpgpppears to
histograms at increasinly, one below the suspected transi- degrade continuously as increases. No second peak ap-
tion and one above. As in the HN case, the transition grow®ears in the histograms; instead, the higheak first spreads
sharper with increasing network size. Below the critical load-and then begins to drift downward as errors accumulate.
ing, the highb peak remains robust & increases, while ~ Atan intermediate valug=1 theP(b,) histogramdFig.
above the critical loading the high-peak shrinks with in- 6) suggest a first-order transition, although the evidence is
creasing network size and the Idwpeak grows. Two quan- €SS pronounced than in the=2 case. A second peak ap-
titative differences are that the critical loading is lower in ~ Pears above the transition, and the highpeak shows clear
the BGN caseg.~0.1, while the average remanent overlap Signs of shrinking as\ increases, but the tails of the two
above the critical loading is higher, near 0.45. peaks overlap substantially. The greater overlap between the
The first-order nature of the transition is confirmed byPeaks comes about for two reasons. First, the higpeak
examining the energies of the final states. These energies aAfove the critical loading is broader than in the-2 case.
the overlaps are shown in a scatter plot in Fig)4The spin ~ Second, the remanent magnetization is much higrer the
glass states associated with the Ibwpeak are clustered at drop inb, at the critical point is much smallerThe latent
energies below those of the retrieval states. The gap in edleat is also much smaller, as can be seen from the scatter plot

ergy between these two clusters corresponds to the lateff the energy[Fig. 4b)]. The critical loading, or storage
heat of the phase transition. capacity, is approximately 0.17, higher than fp=2 and

higher than for the HN.

B. BGN at low y
IV. ATTRACTORS, BASINS, AND THE ENERGY

For y=0.5, in contrast toy=2, the BG_N’s behaviqr dif- LANDSCAPE AT HIGH LOADING
fers markedly from that of the HN. A series Bf(b,) histo-
grams for different values gb/N is shown in Fig. 5. Two In the preceding section, we examined the trajectories of

features are evident. First, the stored patterns remain stabiitial conditions corresponding to memorized patterns and
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FIG. 5. Remanent bit overlap histograms for the BGN whith- 1000 andy=0.5, at a series of increasing values of the loading factor
a. Few errors occur even at=0.3, and the memory degrades gradually rather than abruptly with increasing
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FIG. 6. Remanent overlap histograms for BGN wijtk 1 are consistent with a first-order transition at 6:16,<<0.18.
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FIG. 7. Energy histograms d&#(E/N) for attractors reached from random initial states of the HN Wth 1000 nodes. As the number
p of stored patterns increases, the peak/d= —0.5 corresponding to the retrieval states shriféded also spreads slighilyvhile the spin
glass states drift downward in energy until they are lower than the retrieval state energies.

determined whether these trajectories remain close to the pagven to be local minima and therefore become unst@lée
tern or move away from it. Such experiments, however,The drop in energy from the memory states to the spin glass
probe only one aspect of network performance. We are interstates at, is the latent heat. One way to observe the evo-
ested not only in the stability of memory states but also injution of the energy landscape is to examine the attractors
the sizes of their basins of attraction. The function of assoreached from an ensemble of random initial conditions
ciative memory depends on the ability of the dynamics towhich effectively samples the configuration space. Figures
correct partially corrupted patterns. More generally, we arez—9 show histograms for the energies of attractors sampled
interested in the evolution of the energy landscape with inin this manner. In each case, we sampled a total of at least
creasinge. To address these issues, we performed two addi?00 random initial conditions with several realizations of the
tional sets of numerical experiments. First, we examined theandom patterng”. In Fig. 7, for the HN, we can see that at
attractors reached from a large numberafdominitial con-  |Jow loading the attractors are separated into two groups, the
ditions to obtain a uniform sampling of the phase space angetrieval states @/N=—0.5 and spurious states at a range
a broad picture of the energy landscape. Second, we exangf higher energies. The probability of retrieving a memory
ined the fate of initial conditions at specified Hamming dis- state from a random initial condition is high. With increasing
tances from memory patterns. The latter set of experimentg, the spurious states move to lower energies until they are
probes the landscape in the vicinity of the memory statespelow the memory states. At the same time, their basins of
Results of similar experiments were given in Ref] for the  attraction take up a larger portion of the configuration space,
case of low loading. as is apparent from the growing size of the spin glass peak in
the histogram and the shrinking size of the retrieval state
peak. Figure 8 shows that for the BGN with=2 the evo-
lution is qualitatively similar. In Fig. 9, fory=0.75, we ob-
serve that an additional effect of high loading is to destabi-
In the case of the HN, it is known that in the thermody- lize the uncondensed states. At low loading, the uncondensed
namic limit the memory states are the lowest-energy statestates dominate the configuration space—almost all random
for «<<0.05, while for higher values of spin glass states
arise which have lower energies. Up i®.~0.148 the
memory states remain local minima of the energy even lFor a schematic illustration of the evolution of the energy land-
though they are not the global minima. Aboxg they cease scape, see Fig. 2.18 of R¢T].

A. Evolution of the energy landscape: attractors reached from
random initial states
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FIG. 8. Attractor energies from random initial conditions for BGN wjtk 2. Qualitative behavior resembles that of the HN as shown
in Fig. 7. One difference is that the spreading of the retrieval state energies with increasing loading is more pronounced.

initial conditions land on an uncondensed state, as was notadrn, resulting in a signal, and random overlaps with the
in Ref.[2]. The other two types of state begin to show theirother memory patterns, resulting in crosstalk.
presence as the loading is increased, while the uncondensed Consider now the HN. At low loading, there is very little
states eventually disappear. crosstalk. The crosstalk term is typically of ordép/N. If
the HN is set in an initial condition whose overlap with the
B. Retrieval of patterns from corrupted versions target patterr is b;,i;> /p/N, then most nodes experience a

To obtain information about the landscape in the vicinity net field that is aligned with the target pattern. Nodes that are
of the memory states and about the shapes of their basins fitially misaligned with the target states= — &;) will tend
attraction, we examined the fates of initial conditions thatto change their signs and align with. Each node that re-
were not random but rather at specified initial overlaps withaligns in this way increases the valuelo&nd thus increases
particular stored patterns. As in R¢2], these initial con- the strength of the signal acting on the remaining nodes. As a
figurations were generated by starting with a particularresult, even if in the initial state some fraction of the nodes
“target” pattern and flipping the signs of a specified numberexperience a net field opposed&q eventually the growing
of randomly chosen nodes. For each value of the initial oversignal may overcome the crosstalk and correct those nodes as
lap b;,i;, we generated an ensemble of initial conditions forwell. Therefore for low loading, as long as the initial state
several different realizations of the random set of memonyhasb;,i;> \/p/N, the probability of completely retrieving the
patterns. We then evolved these states until the dynamidarget pattern is close to unity. As the loading ragioin-
converged, and evaluatdy;,, , the final overlap with the creases, however, the typical crosstalk becomes stronger, and
target pattern, for each trajectory.bf;,, =1, this signifies a higher signal is required to overcome the crosstalk noise.
that all signs that were initially flipped have been correctedTherefore sign errors are not likely to be corrected unless the
and the target pattern has been retrieved perfectlp;}f  initial overlap is above a threshold, which grows higher with
<bysina<1, then the pattern has been retrieved imperfectlyincreasinge. If the crosstalk is too large, then some signs
The final state is closer to the stored pattern, but not all errorthat are initially aligned with the pattern may be flipped, and
have been corrected. If,,;;>bsinal,» then the trajectory has the state may move away from the target pattern instead of
moved farther away from the stored pattern. As discussed itoward it. Each node that flips out of alignment with the
Sec. I, the ability of the network to correct sign errors de-target pattern reduces the size of the overlap and hence of the
pends on the competition among the signal, the crosstallsignal, which makes other nodes more susceptible to
and the local potential. The initial states currently discussedrosstalk-induced errors, and a cascade of errors can occur.
have at least a moderately large overlap with the target paffFhe critical loadingx,. is the level at which even a state with
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FIG. 9. Attractor energies from random initial conditions for BGN with- 1000 andy=0.75. For low loading, the uncondensed states
(with energyE/N~ —0.25) fill most of the configuration space. The other two peaks in the histogram are very small. As the loading
increases, however, the uncondensed states disappear. As in all cases, the “spin glass” peak grows larger with incaedssiifts
downward in energy.

binit=1 becomes unstable against such a cascade of errorthan away from it, but only some of the sign errors are cor-
Figure 1@a) shows a scatter plot df;;,, Vs b, for a  rected, not all.
HN slightly below critical loading. There is a threshold over-  In the case of the BGN withy=0.5, the local potential
lap for retrieval. Ifb;,;;>0.5 the signal is strong enough to barriers are important, and interesting dynamics results from
correct errors and the majority of trajectories flow towardsthe competition among the signal from the target pattern, the
the target pattern. Fds;,;;<0.5 the majority of trajectories crosstalk from pther patterns, and the local potgntlal. !n the
move instead away from the target pattern. déncreases, @<1 cas€2], sign errors can be corrected only if the signal
the threshold value df,,,; for retrieval increases until at. is strong enough_to overcome the local potentlal_barrlers, and
it reaches 1. The plot in Fig. 18 is for a network withN the_refo_re there is a threshold value of the initial overlap
—2000; experiments with networks of different sizes revealVich is much larger thaq/p/N. For the case\=1000, p

that the retrieval threshold becomes sharpel ascreases. =5, for example, we find that th|s_threshold IS approxi-
In the BGN, on the other hand, the dynamics of errorMatelybiny=0.5. Forbjy;>0.5 there is a large probability

o . . that the target pattern is retrieved perfectly, while Egg;;
correction is more complicated due to the local potential. At<0_5 there is a large probability that the network will be

L . . . . .
strong couplingy=1, the potential barriers against sign flips stuck in an uncondensed state Wit =b;y; . In the in-

are Ie_ss |_mport_ant than at \{veak coupling. AS_ a result th‘%ermediate range 0<b;,;;<0.6, there is also a significant
BGN in this regime behaves in many respects like the HN. It 0 ijity that the trajectory is attracted to an asymmetric
is not surprising, then, that the scatter plotpf,a) VS binit  gpurious state in which;;,, is large but not unity and there
for a BGN with y=2 slightly below its critical loadingFig.  gre larger than random overlaps with one or more other
10(b)] appears qualitatively similar to the corresponding Fig.memory patterns. This behavior is illustrated by the scatter
10(a) for the HN. There is a threshol@pproximatelybi,ii  plot of Fig. 1Xa). As the loading increaselFigs. 11a)—
=0.6) below which the probability of fully retrieving the 11(d)], something surprising happens: at first, the basins of
target pattern drops sharply. Above this threshold, the signaittraction of the memory statexpandslightly, contrary to

is evidently strong enough to correct most sign errors. A keywhat one would expect from the HN. The frontier of the
difference, however, is that even below this threshold theincondensed states is pushed back to lower valubs,of
averagebyina IS larger thanb;,;; . This means that the ma- For p=50, or «=0.05 [Fig. 11(d)], almost all states with
jority of trajectories move toward the target pattern ratherb;,;;>0.1 undergo some motion toward the target pattern,

016119-9



PATRICK McGRAW AND MICHAEL MENZINGER PHYSICAL REVIEW E67, 016119 (2003

@ 1F

0.8

0.6

final

a o4}

0.2r

08
06

Qo 041

0.2f

FIG. 11. Scatter plots showing pattern retrieval by the BGN
b ) with N=1000, y=0.5. As in Fig. 10, the solid curve shows the
average value ob;;,, - Uncondensed states lie on the libg,
FIG. 10. Scatter plots 0bfjng VS bjyi; for networks slightly  =p,;, : no sign flips occur and maintains exactly its initial value.
below critical loading. Points shoty;;,, for an ensemble of initial  (a) p=5, (b) p=10, (c) p=20, and(d) p=50.
conditions with specified;,;; . The average oby;,, is shown by
the solid curve. The dotted diagonal libg,,;=bj,;; is drawn for L . .
comparison: points above the line havg, > b;.. . (@ HN with there are many local minima which may t.rap the trajectory
N=2000, p=260. (b) BGN with N=2000, y=2, andp=170. In befqre it r_eac_hes the retrieval state. This is illustrated sche-
both cases, the retrieval quality as measuretfy,, drops sharply matlcally in F'gj 12. Funnel-shaped energy !andscape; were
for by,;;<0.6. For the BGN, however, the averagg, ., is always  fIrSt suggested in the context of protein folding dynamics.
greater tharb;;; .
V. ACOMMENT ON SMALL NETWORKS

even if the pattern is not retrieved perfectly. psncreases So far, this paper and the companion paj&rhave fo-
further, thebying Vs bjn plot preserves the approximate cused mainly on large networks bf= 1000 or more. How-
shape of Fig. 1(d). ever, some applications of neural network algorithms to ro-

The dynamics of retrieval and error correction for thebotics and other areas make use of networks of only 20 or
BGN with weak coupling and high loading is evidently quite 100 nodes. Experimental studies of BGN-like chemical reac-
different from that of the HN. In thex=0.05 case of Fig. tor networks[14,15 used fewer than ten nodes. The current
11(d), bsina is always 1 ifb;,;=1, which means that the work on the BGN was inspired in part by results suggesting
memory state is stable. However, it is retrieved only imperthat the BGN could store many more patterns than the HN,
fectly when sign errors are introduced:bf,;; <1 thenb;,;
<bina<1l. This indicates that some nodes remain bistable
and cannot be corrected. If the initial state is close to the
target pattern, then the majority of errors are corrected, but
that fraction decreases with decreasing; . Such a partial
correction of errors does not often occur in the HN case. In
the latter case, an initial condition either flows all the way to
the retrieval state or moves away from it toward another
attractor. The retrieval state may itself have a small number
of errors due to crosstalk, but the presence of these errors
does not depend on the initial state. The energy landscape of
the HN in the neighborhood of a memory state apparently

has the shape of a smooth basin—once the basin is entered, \\x\ //%/ ‘
the trajectory usually runs without obstruction to the attractor T P
at the bottom. For the weakly coupled BGN, on the other -

hand, the landscape appears to have the structure of a “fun- Fig. 12. Schematic picture of a funnel, or bumpy basin. Most
nel,” [16-18, i.e., a sequence of local minima at decreasingrajectories travel some distance toward the global mininttep-
energies, with low potential barriers separating each statgsenting, for example, a memory sbakeit become trapped in a

from the next. There is a region of configuration space thatocal minimum(a state with some errorefore reaching the bot-
has an overall tilt toward the retrieval state, but in whichtom.
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TABLE |. Properties of small networks.

N=5, p=5 N=10, p=5 N=10, p=10 N=15, p=10
a Vspur fstable Vspur fstable Vspur fstable Vspur fstable
0.25 0.38 0.87 0.96 1.00 0.85 0.92 0.97 0.97
0.5 0.10 0.68 0.64 0.91 0.61 0.51 0.86 0.65
0.75 0.06 0.49 0.51 0.75 0.56 0.32 0.83 0.37
1.0 0.05 0.37 0.49 0.62 0.53 0.23 0.82 0.23
15 0.08 0.37 0.51 0.47 0.53 0.16 0.80 0.15
2 0.6 0.34 0.43 0.40 0.51 0.15 0.85 0.11
(HN) 0.03 0.34 0.38 0.48 0.50 0.16 0.75 0.15

N=20, p=5 N=20, p=10 N=50, p=5 N=100, p=5
o Vspur fstable Vspur fstable Vspur fstable Vspur fstable
0.25 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
0.5 0.92 0.99 0.95 0.74 0.99 1.00 1.00 1.00
0.75 0.78 0.93 0.92 0.44 0.78 1.00 0.84 1.00
1.0 0.71 0.86 0.92 0.26 0.61 1.00 0.55 1.00
15 0.71 0.71 0.91 0.16 0.57 0.98 0.46 1.00
2 0.74 0.62 0.93 0.11 0.57 0.97 0.46 1.00
(HN) 0.47 0.78 0.91 0.20 0.34 1.00 0.34 1.00

with fewer spurious attractorfsl2]. The latter results were ous attractors dmot generically occupy much less configu-
inferred from a few selected cases using very small netration space in the BGN than in the H\ fact, they nor-
works, and so we attempted to test the genericness of theseally occupy more, especially at low values@f. However,
results for a variety of small networks as well as for largerfor the most part the percentage of memory patterns that are
networks. stable is larger in the BGN than in the HN as long s

It should be noted that with very small networks, there are<1. As with larger networks, the BGN becomes most simi-
great fluctuations in properties depending on the particulalar to the HN wheny>1, while lower y leads to increased
set of memory patterns chosen, as it is impossible to ignorgattern stability. The increased pattern stability at Ipvis
the mutual correlations among patterns. Results for the maxassociated, however, with smaller basins of attraction for the
mum storage capacity of a network are well defined only inmemory states and therefore with a greater volume of phase
the thermodynamic limiN—o, and for smalN even an HN  space occupied by spurious states.
may in particular cases be able to store more thanND.14
stable patterns. For these reasons one cannot draw strong VI. DISCUSSION

general conclusions about storage capacity based on small ) ) )
networks alone, but it is nonetheless instructive to make We have studied the properties of the BGN at high

some comparative studies of pattern stability in small netmemory loadinge. Our results can be summarized as fol-
works. For several small values df and p, we generated lows: For hlgh values Ofy, such as 2, there is a first-order
random sets of stored patterns and tested their stability, usirffgansition similar to that of a HN. Foy=2, the transition

the HN and the BGN at several different valuesjof We  occurs at a critical loading..~0.1, which is lower than the
counted the average fraction of memory patterns that wereritical loading ofa~0.148 for the HN. Asy decreases, the
stable,fqapie.2 IN addition, we estimated the fraction of con- critical loading increases and the phase transition evidently
figuration space/,,,, occupied by spurious attractors by fol- becomes weaker and eventually disappears. ¥t the
lowing the trajectories of random initial conditions inside thecritical loading is apparentlyr.~0.17 (higher than for the
hypercube x;|<2. These results are collected in Table I. In HN) and the phase transition is much less pronounced for the
all cases the results were averaged over at least 100 sets fgfite-size networks we have studied. Fp+0.5 there is no
randomly generated patterns. In generating random sets gvidence of a phase transition at all and patterns are stable
patterns, we did not eliminate cases in which two or morewith very few errors up tax~0.3.

patterns are identical. The results show that, contrary to the A phenomenon that occurs in the BGN much more than in

selected examples discussed in Rgf$.and[12], the spuri- the HN is the partial retrieval of a pattern, whereby the dy-
namics corrects some sign errors in a pattern without correct-

ing all of them. This is especially noticeable in the case of

2y the thermodynamic limit there is an approximate permutationlow ¥ and higha. This phenomenon suggests that in this
symmetry among the memory patterns, so that, in general, either sfase the energy landscape in the vicinity of a stored pattern
will be stable or none will be. By contrast, in small networks it is has the shape of a funnel rather than a smooth basin of at-
not unusual for some memorized patterns to remain stable whiléraction. By a smooth basin of attraction, we mean a con-
others are not. nected neighborhood that is sloped toward an attractor and in
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which there are few local minima that might obstruct a tra-finite temperaturecould improve pattern retrieval by allow-
jectory once it has begun to flow toward the attractor. By aing trajectories to jump over the comparatively small poten-
funnel we mean a region with an overall average slope totial barriers into lower-energy minima, just as in the protein
ward an attractor, which, however, contains many other locatase. The effect of stochastic noise could be a fruitful subject
minima in which the trajectory might become stuck beforefor further study. An interesting question is whether there is
reaching the bottom. The presence of these local minima ian optimum level of noise which would improve the pattern
due to the bistability of the individual nodes and the localretrieval ability of the BGN with lowy while at the same
potential barriers against spin flips. These same potential batime maintaining the larger storage capacity. Intriguing ques-
riers are also responsible for stabilizing the patterns. Theyions remain concerning the dynamics of the BGN at tpw
reduce the likelihood of crosstalk noise inducing an error inThe apparent initial expansion of the basins of attraction of
a pattern, but they can also inhibit the correction of an errothe memory states with increasing loading is counterintui-
that is present initially. Funnel-shaped landscapes were firsive, and the patterns visible in Fig. 11 hint at some dynamics
examined in the context of protein folding dynamfd$,17].  that is not yet fully understood.

It was suggested that at a finite temperature such a landscape

Would_ gllow the protein _dyna_mics efficiently to find the glo- ACKNOWLEDGMENTS

bal minimum of energy in spite of the presence of numerous
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