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Bistable gradient networks. I. Attractors and pattern retrieval at low loading
in the thermodynamic limit
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We examine the large-network, low-loading behavior of an attractor neural network, the so-called bistable
gradient network(BGN), and compare it with that of the Hopfield netwofN). We use analytical and
numerical methods to characterize the attractor states of the network and their basins of attraction. The energy
landscape of BGN is more complex than that of the HN and depends on the strength of the coupling among
units. At weak coupling, the BGN acts as a highly selective associative memory; the input must be close to the
one of the stored patterns in order to be recognized. A category of spurious attractors occurs which is not
present in the HN. Stronger coupling results in a transition to a more Hopfield-like regime with large basins of
attraction. The basins of attraction for spurious attractors are noticeably suppressed compared to the Hopfield
case, even though the Hebbian synaptic structure is the same and there is no stochastic noise.
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. INTRODUCTION X2 by x*-x2=(1N)=N.  x!x?. The first term in the Hamil-
tonian represents a local double-well potential for each node,
Many neural network modelgl,2], in addition to their making each node individually bistable. This local potential

potential applications to computation, robotics and artificialconstitutes the main difference between the BGN and the

intelligence, constitute intriguing dynamical systems in theirHopfield model. The classical Hopfield netwdiN), which

own right, showing unusual manifestations of the statisticalve consider by way of comparison, is described by the

mechanics phenomena of order, disorder and frustration. Thgamiltonian

connection between neural networks and statistical mechan-

ics became especially clear with the introduction of the

Hopfield[3,4] model, which furnishes a model of associative Hun=—

memory, or the recall of a memorized pattern from an incom-

plete stimulus. This model has a well-defined energy func- here th di testat iabl tricted to th
tion and is closely related to the Sherrington-Kirkpatrick spinW ere thex; aré nowdiscretestate variables restricted fo the

glass model5,6] values*+1. Although continuous versions of the HN have
In this pap,er we consider a Hopfield-like network Nf also been studied, these generally lack the bistability prop-

bistable elements, the bistable gradient network or BGNEMY: and their behavior is essentially similar to that of the
previously introduced in Ref[7]. A closely related model discrete ve_rsmrﬁlO,l]}.

was also discussed i8] and suggested as a model for the The Va”?‘b'e-‘xi can be thought of as _the OUtpUt.S of proc-
so-called “bistability of perception” in the interpretation of ceitsmg units or neurons. Their dynamical equations can be
ambiguous visual stimuli9]. The network’s dynamics con- written as
sists of a continuous gradient descent described by the

N
2 WX, )
ij=1

N -

dXi

coupled differential equations d_:Xi_Xi3+ h; (4)
t )
dXi JH
at a_x, D where hiEyEJN:lwijxi is the input to the neuron from its

connections with other nodes. By analogy with Ising spin
wherex; (1=<i=<N) are continuous-valued real state vari- systems, we also refer th; as a “magnetic field.” The
ables associated with thd nodes of the network and the steady-state output for a given input is a solution of the

Hamiltonian or energy function is given by fixed-point equation
N 4 2 N 3
Xi X 1 Xi—x +h;=0. 5
H=Ho+Hin= > (—I——I)——V.Z wiiXiXj. (2) S ©
1= 4 2 2 i,j=1

Whenh=0, there are stable fixed pointsxat +1 and an
The quantitiesw;; are a symmetric matrix of coupling unstable fixed point at=0. An applied field shifts the posi-
strengths.y is a control parameter determining the strengthtions of the fixed points. A saddle-node bifurcation occurs
of the internode couplings relative to the local terms. For thavhen|h|=h.=2/3/9~0.385 so that for larger values of the
purposes of this paper, we do not include any external inputield there is only one equilibrium, aligned with the field (
or linear “bias” terms. The variableg; can be viewed as andh have the same signx is, in principle, unbounded; the
components of ailN-dimensional state vector. We define a  output does not truly saturate when the input is large. The
normalized inner product between two state vectdrand  double valuedness and the lack of saturation are the principal
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differences between the input-output relation for the BGNand we say that the network has recognized or retrieved the
and that of the Hopfield model, including its continuous ver-pattern. In this paper we follow the HN literature in consid-
sions. ering the case where the patterns are random and uncorre-
Numerous experimental studies have been made on irated strings of+1's and —1's. We read the output of the
triguing chemical analogs of the BGNsee, e.g., Refs. network according to theignsof the x;. Thus we say that
[12,13). These studies involved networks of bistable chemi-the network has recalled pattern 1, for example, if ggn(
cal reactors coupled either electrically or through mass ex= &' for all i. Although variations in the magnitude ®f can
change. Previous computational work on small BGN'$  be important to the dynamics, we will for the moment ignore
suggested that under some conditions the network might pethem for the purpose of reading the output. As we will see
mit the storage of a larger number of patterns than in a HN obelow, the retrieval states in general do not hiye=1 even
the same size, without any modification of the basic Heblihough the patterns hayé;|=1. We focus here on the lim-
learning rule. It was noted, however, that the stability of aiting case N—w, p/N<1, or large networks with low
particular attractor can depend on the control parameter memory loading.(Strictly speaking, we takéN to infinity
Some dependence of pattern stability on the couplingyhile p remains finite. In this case the inner product of a
strength had a_Iso been noted in the experiments on the massair of patternsg”- &= (1IN)3;£¢! behaves as a Gaussian
coupled chemical networKs.3]. _ _ random variable with zero mean and variancgN/ so that
In this paper we focus on the behavior of the network injy the N < [imit the pattern vectors are nearly orthogonal

the case where the number of nodes is large and the nUMDgJ g4ch other and form a basis fopalimensional subspace
of memorized patterns is small. Using both analytical tech¢ ine N-dimensional configuration space.

niques and numerical simulatiohsye examine the retrieval As in the HN, we construct the coupling matrix from the

of stored patterns and classify the attractors that occur. Wegi5,eq patterns according to the He] learning rule
find that there are three types of attractors. In addition to '

memoryor retrieval states there are spurious attractors in 1P P
which no pattern is fully recognized. These include thie- Wi =+ > EHE— =8 (6)
ture or spin glass statefamiliar from HN studies, as well as N ;=1 N

an additional category specific to the BGN which we refer to o .
as uncondensed state¥Ve examine how the attractors and The term—(p/N)&;; is included to make all diagonal ele-
their basins of attraction change as the control parameter Ments of the coupling matrix zero. Non;gro diagonal entries
changed. Throughout the paper, we compare our model witW0U|d h_ave the effect of_ adding an addltlor_lal quadra_tlc self-
the zero-temperature or deterministic discrete Hopfieldnteraction term. Following the usual practice we omit them
model. It is hoped that these results can shed more light ohere S that the quadratic term is contained only in the local
the behavior of the BGN and clarify its relation to the HN. Potential. For the casp/N—0, however, the effect of the
The behavior of the BGN under higher memory loading anod_lagonal eIer_nents is negligible and we can substitute the
the question of its maximum storage capacity will be ad-Simpler learning rule
dressed in a companion pagés]. 1P

Il. STORAGE AND RETRIEVAL OF BINARY PATTERNS

A useful set of order parameters are the overlaps,

Avhich are inner products of the network’s state with each of
the stored patterns,

As in previous work on Hopfield networks,14,2, we
define the task of associative memory as follows. We ar
given a set ofp distinct N-dimensional vectors omemory
patterns £€* (ne{1, ... p}), which are to be recognized by N
the network. The patterns should correspond to attractors of M, =£r x= 1 S e, ®
the network’s dynamics. We will refer to these attractors as m N <> 7
retrieval stateslnput is given by imposing a particular initial
condition on the network. If that initial condition is suffi- For the discrete HN, these variables take valueb<m,
ciently close to one of the memorized patterns, then the net<1, while for the BGN any real values are possible. It will
work’s state should converge to the correct nearby attractobe useful to define another set of variables, which we will

call “bit overlaps,” by
ISimulations were conducted by integrating the differential equa- 1 N
tions numerically using a fourth-order Runge-Kutta algorithm with b,= N z & sgn(x;). (9
adaptive step size. The system was judged to have converged to a 1=0

fixed point if the magnitudes of all derivativégH/ax;| fell below ] o ] ]

a convergence criterion that for most examples was taken as 0.001 € bit overlap is simply related to the Hamming distance by
Our HN simulations, which were used for comparisons, were perP,=(1/2N)[N—2d(x,£#)], where the Hamming distance
formed using asynchronous updating in random order. Unless otf(X,y) between two vectors is defined as the number of el-
erwise indicated, all simulations were done orNaa 1000 network ~ €ments for which their signs differ, or the number of posi-
with p=5 stored memory patterns. tionsi such tha;y;<0. Unlikem,, the bit overlaps always
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obey —1<b,<1. They encode information about sign In the last step, we have used the fact that & when &

agreements but not about magnitudes of the outputs =+1 and then divided out the common factor&f Solu-
The definitions of the overlap variables allow us to re-tions to this condition are an unstable equilibrilvin=0 and

write the Hamiltonian and the dynamical equations in usefutwo stable equilibria

forms[2]. In particular, if the synaptic matriw is given by

the simplified Hebb rul€?), then the interaction term of the M=m,==* 1+ . (15

Hamiltonian can be rewritten in terms of,, as follows: ) )
The two stable solutions represent perfect retrieval of pattern

p v and its mirror state, respectively. The doubled state is a
2 Xifi"ff‘xj consequence of thé, symmetry in the Hamiltonian. Since
tw=t the overlapm, is equal toM and all other overlaps vanish in
p the thermodynamic limit, the energy of this retrieval state is
=—NZ > (mﬂ)z, (10)  easily calculated using expressi¢hO) for the energy in
2 4= terms of the overlap variables, giving

N
y y
Hin=—5 i,-2=1 Wi XiX; == 5

M =z

i

and the net input to a given node from the other nodes is (Xi4 Xi2 y , M4 M2\ 5 ,
iven b E= S 2 m2=N|—— — |- <M
g y 4 2 2 % " ( 4 2 ) 2
N N p
Hin 4 u 1 2
hi IXi ngl WiXiTN jgl ,Zl e, =N| - 224 Z) (16)

P . L : .
B E " 11 Note that this energy expression is exteng®portional to
- 7M:1 &My (1D N) and a monotonically decreasing function pf

Having identified the state

A. Retrieval states at low memory loading X’= 1+ . y& (17)

To show that the network functions properly as an asso- o ] -
ciative memory, we exhibit the attractor states correspondingS @n equilibrium state, we now demonstrate its stability us-
to the stored patterns, demonstrate their stability, and sho?d @ linear stability analysis of the dynamical equations
that a pattern can be retrieved from an initial condition which dx
lies close to the pattern but differs from it by one or more i}
incorrect signs. dt

Consider the state=M§&”, whereM is a scalar and” is ) ] ] )
a particular one of the stored patterns. We will show that fofEvaluating the Jacobiasy;/dx; at the fixed point(17) we
a suitable value o/ this state represents a stable fixed pointoPtain
of the dynamics and is therefore the retrieval state we seek.

In this state,m,=M, b,=1, and all other overlaps are l=(1—3xi2)5ij+ywij=[1—3(y+ 1)]8;+ yw;;
small. The field acting on théth node can be written as IX;

follows: =(—2-3y)8;+ W, (19)

ZYiEXi—Xi?”FYEj: WijXj - (18

hi=y&/M+y >, EmH. (120  whereg;; is the Kronecker delta. The fixed point is linearly
u#v stable if and only if the Jacobian has no eigenvalues with
) positive real part. This depends in turn on the eigenvalues of
The sum over patterng# v is called the crosstalk term. For o synaptic connection matrix. But in the limit where all
the overlaps with these other patterns we have of the stored patterng* are mutually orthogonal, the stored
1 1 patterns are themselves eigenvectors spanning a degene_rate
mé=— > xEl=M— > & (p#v). (19 subspace with eigenvalue 1, while the complement of this
N N 5 subspace has eigenvalue[The Hebb rulg(7) itself gives a
spectral decomposition ofv.] Since the maximum eigen-
Since the patterns are random, each of these overlaps is gjue ofw is 1, we see that the Jacobian at the retrieval fixed
order M/\/N. The number of patterns remains finite Ms  point has no positive eigenvalues and so the retrieval state is
—c0 , so the sum in the crosstalk term vanishes in this limitlinearly stable for any value of. In fact, all eigenvalues
andh;~ y&'M. A stationary state must satisfy the fixed-point become more negative asincreases. We reiterate that this
condition(5) for each node, which leads to a self-consistencyresult is valid in the ideal limit of largé and low loading

condition onM, where the stored patterns are orthogonal. For finite-sized net-
works with finite overlaps among the patterns, it is possible
0=x"—x—hi=(M&)*—(1+y)(M&), for the memory states to be destabilized by the crosstalk
terms. This issue will be examined in the companion paper
0=M3—(1+vy)M. (14  [16].
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Numerical results for a network with= 1000 nodes and . SPURIOUS ATTRACTORS: SPIN GLASS STATES
p=5 random patterns agree excellently with the above de-
scription. To study a retrieval state numerically, we initial-
ized the network to the state= £ (arbitrarily choosing the
first pattern. Starting aty=0, we increaseg by small steps
to y=6. At each step, we integrated the dynamical equation
until they converged. This procedure allows us to examin
the evolution of a state under quasistatic changes in the ¢
trol parametery. We verified thatb,; remained equal to 1
over the whole range € y=<6, indicating that the retrieval
state is stable. The measured valuemgfandE were within
1% of the theoretical expressiofkb) and(16), respectively.

In the case of the HN, the Hebb learning rule results in a
large number of “spurious” attractors in addition to the re-
trieval states. The energy function defines a rugged land-
scape, and a trajectory that does not start sufficiently close to
Bne of the stored patterns may become trapped in one of the
OGSpurious local minima instead of one corresponding to a re-
Lalled pattern. It is possible to suppress the spurious minima
by introducing thermal noise that allows trajectories to jump
out of the shallower basins of attraction into deeper ones.
At low levels of loading, the HN possesses spurious at-
tractors that are nonlinear combinations of the stored pat-

terns. There is a hierarchy of symmetniixture state®f the
B. Error correction and basins of attraction form [14,2]

Linear stability analysis has shown that the retrieval states
are stable againsgtfinitesimalperturbations for any value of X = SQ{£M gh2 . . .+ ghn) 21)
v, but this does not guarantee their stability against the flip- ! e T T
ping of signs of one or more nodes. In order to function as an
aSﬁociativetmempry, a netWV?/fr']( must be :Jadpalf_’:ﬁ of Qynatm;fhese states overlap equally withdifferent patternsm?,
cally correcting sign errors. When presented with an input a . .
y 9 sig P putal 2 _ ...m2 <1. For the HN, only the mixtures with

a small, nonzero Hamming distance from one of the stored = #2 i
patterns(i.e., differing from it by a few reversed signg ~ 0ddn are stable. The=3 mixtures have the lowest energy
must be able to flip the reversed signs and restore the correlt this category, and the energies increase wjtasymptoti-
pattern. We will now show that there is a critical valyyg ~ C@lly approaching-1/m. As the number of stored patterps

=1 above which the correction of sign-flip errors can occur.ncreases, these spurious states proliferate exponentially;
For smaller values of the BGN does not correct sign errors their number is of order 3 There are also nonsymmetric
and thus does not truly function as an associative memorynixtures. The proliferation pf spurious states is gssomated
but asy increases abové the retrieval states develop in- With spin glass type behavior in the HN. Accordingly, we
creasingly large basins of attraction. also refer to these mixed states somewhat looselgpas

Consider a state of the network which is a slightly cor-glass states _
rupted retrieval state: all node variables have the vajyes Ve will show here that the BGN possesses mixiure states

=M &= 1+ y&" with the exception of one or possibly analogous to those of the HN, but their structure is slightly
somel number<lN of nodes which may be misaligned. In more complex. Let us focus on time=3 symmetric mixture

such a state the few misaligned nodes make only a smafi
contribution to the overlap sums, so we have~M and
m,~0(u#v). The field acting on each node is therefore X = iSEsgr(§{L1+§ixtz+§ifts)_ (22)
hi~yM¢. The misaligned bits experience a field opposite
to their signs. If the field becomes larger than the critical
value 2/3/9, then there is only one stable equilibrium for This state is stable against individual sign flips because each
each node, and the misaligned nodes will flip to conformnode is subject to a nonzero magnetic field that maintains its
with the stored pattern. Error correction therefore occurs if alignment. To see this, note that there are two possibilities
for each bit. Either all three patterns agree at that particular
site (¢/'*=¢/?= &) or one of the patterns has the opposite
sign from the other two, for example“t=&*2=—¢fs.
. ) When all three agree, we say that tith bit is a “unami-
The critical value oceurs when the equalityV1+y  moys” bit. If the patterns are random, then eaghis =1
=21/3/9 holds, or aty.=s. o with equal probability, giving a probability of that a given

If the pattern is more strongly corrupté@ significant  p; js unanimous. The mixture state has equal overlaps with

number of bits misaligngcthen the situation is more com- | three of the patterns. Since for a givithere is a prob-
plicated, because the presence of a larger number of mis-

aligned bits may reduce the value wf, and thus the mag-

nitude of the field. The misaligned bits have a significant 2,6 precisely, the mixture states *melt” into spin glass states
back reaction on the ones with the correct sign. The CormeGynen the number of memorized patterns becomes higher. With
tion of larger numbers of sign errors requires higher valuegjgher numbers of patterns, there is a distinction between mixture
of y. We will return to this point later; the basic result is that states that overlap with a small set of the memory patterns and spin
when y is only slightly above the threshold of, the glass states that overlap with nearly all, but that distinction is not
memory states have rather small basins of attraction, bualient for the cases we consider with very few pattdsee Ref.
these basins grow ag increases. [14].)

tate with positive signs. For the HN, this state is given by

23
[hi|~yM~yy1+ 7>$~0.385. (20)
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ability of § that £°=¢[*, we havem, =(1N)=}L, &P EAD)=S Xi4_X|2 _N S m2
=%—%=3, and likewisem, =m, =3. The field acting at (AD)= ~ |7 2] 274 M
theith site is N A4 A2 +3N D4 D2
“4\a 27 ala 2
1 2
n=3 mreg(giegeegs. @9 -l za0)

A* 3D* A? 3D?

6716 8 8

(Consistent with the low-loading, largédimit, we ignore all
other overlaps that are of orderyM.) This givesh,=3¢°
for unanimous bits and;= %gis for the others. In any case,
each node of the HN experiences a field that stabilizes its
alignment. ; ; ; )
We will now show that the BGN, like the HN, possesses a\s/\tlﬁcfe%nf;?:q?ll; 8; ;l;‘ezSp:Parigtﬁ;:éggyféra\g?n on the re
mixture state in which the sign of is given by the majority A necessary condition for the mixture sta@5) to be a
vote of three of the stored patterns, fixed point is thatdE/dJA=JE/dD=0. This gives us two
self-consistency conditions for the paramet&randD,

—t+—+

3A%2 3D2 3AD
32 32 16

-y : (27)

S— By gh2 g ghs A> A 3
sgnX;= sgr(£11+ &2+ £9) (24) n_n_ 2y -
4 2 1eATPI=0
This state has a more complicated structure, however, be- 3D° 3D ﬂ(A+D):O (28)
cause the magnitude of at a given node depends signifi- 4 4 16 '

cantly on the local field at that node. Since the field at a

unanimous bit is stronger than the field at a nonunanimoud N€se are the equations of the nuliclines of the energy func-
bit, we expect the magnitude af to be larger for a unani- tion (27). Alternatively, th_e above equations could be derived
mous bit. Therefore. we make tha@satz directly from the dynamical equations for each node and the

expressions foh; instead of using the energy function. For a
stablefixed point, (A,D) must be a local minimum of the
energy function27). The graphs of the two cubic equations
28 are plotted fory=3 in Fig. 1(a). Solutions are points
where the two nullclines intersect. Note that the slope,
dD/dA, of the first curve at the origin is—(1+4/3y)
<-—1, and for the second curvelD/dA=—1/(1+4/y

whereA andD are real numbers. The dynamical equations>_1)' These two inequalities satisfied by the slopes ensure

for the network aive a pair of self-consistency equations thaihat the curves always intersect in at least five points. The
9 P ency eq ive solutions can be classified by looking at the energy func-
can be solved numerically foA and D. First, we need an

; . ) ftion and its gradient. We see that the solutlor D=0 is an
expression for the overlap of the mlxtl_Jre s_ta?e with ON€ Olnstable nodémaximum of the energythe two solutions in
the three pattergls, say, patteuq. If the ith bit is a unani-  yhe second and fourth quadrants are saddle points, and the
mous bit, therx;” has magnitudeA and agrees in sign with o solutions in the first and third quadrants are the stable
gi"l. On the other hand, if it is a nonunanimous bit, tbéﬂ solutions we seek(There are two because of th® sign

has magnitud® and has a 2/3 probablity of agreeing in sign reversal symmetry—one is a mirror state of the other.
with £€“. The result is that The self-consistency equations farand D were solved

: numerically for a range of values using a gradient descent
algorithm. These values were, in turn, substituted into Eq.
(27) to find the energy as a function of. The results are

o | ASOEHEER) it gR= gt
| Dsgn(gt+ g2+ ¢ otherwise,

X

(29

m, = 1 > X £ = EAJF EDJF E(_ D)= E(AJr D). plotted in Fig. 2 where they are also compared with numeri-
NS 4 2 4 4 cal results from dynamical simulations of a BGN wikh
(260 =1000. We studied the mixture state numerically by initial-

izing a network to the state =sgn@!+ 2+ £°) and incre-
) _ _ mentingy beginning at 0, much as was done for the retrieval
Note that in the special cage=D =1, the above expression states. Figure () shows the magnitudes of unanimous and
reduces to the Hopfield value 1/2, as it should. Again, allnonunanimous bits in the mixture state as functionsyof
three overlaps have the same siag; =m, =m, . The to-  The solid lines show the solutions of the self-consistency
tal energy of the network in this state is given by equations foA andD. The symbols show the observed mag-
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y y - =mﬂ3:o and the net field acting on each node exactly can-
(a)y=3 stable node

ok cels. They are not stable against sign flips, and become com-
saddle point S pletely destabilized whep>2. As we will see in the fol-
| ~ === lowing section, they do not properly belong to the category
‘. unstable nod of mixture or spin glass states, but rather to another class of
~~\l.~ spurious attractors present only in the BGN at low values

- Of Y.

Here we examined only the=3 mixture state, but simi-
lar methods may be used to characterize higher-order mix-
) ] tures. In general, they are more complex as there are more
stable node saddle point possibilities for the size of the majority by which the sign is
determined. The magnitudesxfthen take a greater number
of distinct values.

IV. UNCONDENSED STATES AND THEIR COLLAPSE TO
THE PATTERN SUBSPACE

addition
stable ngdes ] In Sec. Il B, we noted that for values gfnot far above,
it is possible that a state may have a significant overlap with
one of the stored patterns but that the field acting on the
-05p S0 nodes may, nonetheless, not be strong enough to overcome
== the potential barrier and correct the sign errors. Indeedisf
afmmm =" below 1, then even a single sign error may go uncorrected.
-1.5f . This consequence of the bistability of the BGN units con-
. : , : trasts with the behavior of the HN.
A Consider first the case of the HN. A typical random initial

_ _ ) state has small but nonzero overlaps with the memorized

FIG. 1. Self-consistency equations for the=3 mixture state. patterns,mM~O(1/\/N), resulting in fieldShiIEgi"mﬂ that

(a) Stable solutions occur in the first and third quadratiisWhen re random with zero mean and variance of OI’dGJNl/

<2 two additional stabl luti in th d . . .
f}é)urth quoadaranltéona stable salufions appear n te secon anc?ypmally, for approximately half of the nodes andh; will

initially have opposite signs. Since there is no potential bar-
, , . ) rier against sign flips, those nodes will change their signs,
nitudes|x;| for 1<i=<6 in the simulated network state. TWo 44 the sign flips will continue until the field experienced by
of these flr_st six bits are unanimous while the other four ar&yery node is aligned with; . Every sign flip will increase
not. There is good agreement between the observed values @fs magnitude of one or more of the overlap variables. If, for
|x;| and the values obtained from the self-consistency €dUasxample, one overlam, is larger than all of the others, then
tions. For comparisony1+ vy is plotted as a dotted line on most nodes will experience fields that tend to align them
the same axegRecall that this is the value of alki| ina  \ith patterny. Every sign flip further increases the value of
pure retrieval statgFigure 2b) shows a corresponding com- m,, and eventuallyn, will be fully retrieved even though
parison of the observed and theoretical energies. Finally, Figne initial overlap may have been quite small. However, if
2(c) compares the=3 mixture state with the retrieval state one overlap does not clearly dominate the others, then the
by plotting the ratiosA/y1+y andD/y1+ y as well as the  trajectory may arrive at a spurious attractor that has roughly
ratio of the mixture state enerdyn to that of a retrieval equal overlaps with several patterns, instead of at a single
stateE,¢;. All three of these ratios appear to approach conone of the memory states. Even a state that is initially or-
stant asymptotic values ay increases. Asymptotically, thogonal to all of the memorized patterns can be rendered
Emix/Eret=0.7, while for the HN the corresponding ratio is unstable by changing a single sign: even a single sign flip
0.75. The strength of the field acting on each unanimous bitwill create a small but nonzero field affecting the other
ha, and that acting on the nonunanimous bitg,, both  nodes, resulting in further sign flips, and so on. In summary,
increase agy increases. The mixture state is stable againsfor the HN essentially any initial condition converges under
single sign flips of the unanimous bits whep>2./3/9 and  the dynamics to an attractor lying in or close to the
stable against any single sign flip whep>2./3/9. Thus as p-dimensional subspace of the patterns.
v increases, the mixture state begins to develop a nontrivial For the BGN, on the other hand, the situation is different
basin of attraction of its own. due to the presence of potential barriers. Just as with the HN,
It is interesting to note that at=2 a saddle-node bifur- given any state every node experiences a fieltl;, which
cation occurs and foy<2 two additional stable solutions to may be aligned with or opposed xp. However, the antipar-
the self-consistency equatiof28) appear in the second and allel local fields may not be strong enough to flip their nodes
fourth guadrants, atX,D)=(1,—1) and (—1,1) [see Fig. into the parallel direction. If mosh; are well below the
1(b)]. These are states with=—%N in which m,,=m,, threshold 2/3/9 then the flipping of one or a few nodes will

]
-
-
-l
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(a) (b)
3 *047 0 .
Unanimous $ 5 mixture
bits _ - state
25 -
-7 4
e g? §§
x 2 - 11 z
- )
7 retrieval
_8 N
15 g * state . N
Z/ Nonunanimous _10 AN
2 bits N
N
-12
0 1 2 3 4 5 6 1 2 3 4 5 6
Y ¥

ratios

FIG. 2. n=3 mixture state compared with retrieval stai@. The two solid lines represeatandD, the values ofx| for unanimous and
nonunanimous bits, respectively, obtained by numerical solution of the self-consistency equations. The symbols cbesvwbdvalues
Ixi| (1<i=<6) for a mixture state of the dynamically simulated network. The dotted lin& i5 y, which is the theoretical value of gk;|
for a retrieval state(b) EnergyE;, for the mixture state. Solid line: solution of self-consistency equations. Symbols: observed energy of
simulated mixture state. Dotted line: eneigy,, of retrieval state from Eq(16). (c) The ratiosA//1+y andD/y1+ vy (upper and lower
solid lineg andE,ix/E,¢; (dotted ling approach asymptotically constant values.

not change the field enough to cause any further flips. Thus Thus, we see that there is an absolute upper limit for the
there might be a large number of initial conditions that re-existence of stable uncondensed states. In faet2 turns
main stuck with low overlaps, far away from any of the out to be a high upper bound. The example of a state with all
patterns. We refer to such states with subthreshold fields as, equal to zero is a sort of “worst-case scenario.” For a
“uncondensed” states, because in those states none of thimite-sized network the typical random initial condition has
order paramentersn, are condensed. However, we will small but nonzero overlaps. In addition, if the patterns are
show below that states with low overlaps cannot remairtruly random then they will not be exactly orthogonal but
stable fory>2, and thus for higher values gfthe behavior

is Hopfield-like, with all trajectories collapsing toward the -o.24e8

pattern subspace. z o5t

Consider a hypothetical state that is strictly orthogonal to"
all memory patterns, so than,=0 for all . (The extra ~02%021 . . .
solutions appearing in the self-consistency equations for the -o.2s04- j ; j ' j ' :
mixture state wheny<<2 are examples of such stajetf.

m,=0 for all u, thenh;=0 for alli. In this case, the steady ¢* o __
state of each node i§==*1. Proceeding with linear stabil- §-0o2ry,
ity analysis as above, we find the relevant Jacobian T -0.04- i
Y Y 8 -o.oeféjéhé%é.\ . ® ; & . 5
0 0.5 1 1.5 2 25 3 3.5
Wi 2 _ Ll
ij—(l_:gxi)5ij+’yWij—_25ij+‘yWij. (29) § ol
T 0020y p 4 . s .
The equilibrium is unstable Hw,,,>2, wherew,,, is the §-°-°4ﬁ . . 4 . . . N
largest eigenvalue of the coupling matnix,, is at least 1. 0 05 1 15 2 25 3 a5
Therefore, ify>2, states orthogonal to the stored patterns time

are all unstable. If all of thep stored patterns are mutually FIG. 3. Trajectory of a random initial condition fop=0.5.
orthogonal (which is approximately true in the limiN  Note: in the lower two plots, five curves marked with different
—0) then fory>2 there are unstable eigenvalues. Each is symbols show overlaps with each of the five stored patterns. The
associated with one of the stored patterns, to which the urunequal time steps result from the adaptive step size control in our
condensed state can evolve if it is perturbed. integration algorithm.
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time
FIG. 4. Trajectory of the same initial conditiop=1.0. FIG. 5. Same initial conditiony=1.2.

have small overlaps and so the largest eigenvalue of the syithe others shrink away. In this case the mirror state of one of
aptic matrix will be slightly larger than unity. Because of the five patterns is retrieved. These trajectories are typical
these factors the typical uncondensed state becomes unstableamples representing descent on a rugged energy landscape.
at values ofy lower than 2. In numerical simulations we Different initial conditions lead to different attractors, of
found that for the cas®&=1000, p=5 most uncondensed which some are memory states and some are mixtures. Fre-

states become unstable betweenl and 1.5. quently the trajectory lingers at one or several states before
Figures 3—6 show numerical results for the fate of a typi-settling at its asymptotic attractor.
cal random initial condition of the BGN witiN= 1000, p Figures 3 and 4 illustrated that for sufficiently small val-

=5, demonstrating the trapping of a typical trajectory in anues ofy, the dynamics amplifies small initial overlaps with-
uncondensed state and the destabilization of that state aut flipping the sign of any node. For more insight into this
higher values ofy. Figures 3—5 show the dynamical evolu- phenomenon, consider an initial state in whichxalare =1

tion of the same initial condition, at different values #f  but somewhat more nodes are aligned parallel with one par-
The initial condition was a random string afl values. We ticular patterné than are antiparallel. In other words, is

plot the energy per node, all five overlap variabies, and  nonzero but less than unity. For simplicity let us neglect all
all five bit overlap variable®,, as functions of time. Recall other overlaps. Initially, each node experiences a small field
thatb,, contain information about sign agreements only. Forgiven by h;=ym,&'=yb, & . This field will pushx; to
y=0.5 (Fig. 3 the state changes very little before conver-larger magnitudes* 1) for those nodes that are aligned with
gence occurs. The energy per node remains very close tgatterng!’, and it will push the others to smaller magnitudes
—0.25, as expected for a state with no large overlaps. The
overlapsm,, increase slightly in magnitudEhut the bit over-
laps do not change at all, indicating that no sign flips occur.  -o.2s}
The evolution is thus trapped in an uncondensed state. FoZ o5y
vy=1 (Fig. 4) the trajectory is similar, except that the small -1t
initial overlaps are amplified to a greater extdmate will
explain this effect below. The bit overlaps still do not
change. Whery=1.2, however, the trajectory changes quali- . 4|
tatively (Fig. 5 and does not remain in an uncondensed
state. The magnitudes of the overlapg grow slowly until
att~7 the resulting field becomes strong enough to begin
flipping some signs. At this point the bit overlaps begin to
change, the energy drops significantly and the trajectorygi 0.251
moves close to the pattern subspace. After some further evcg onl
lution, the system converges to a mixture state that overlap:g -osf
with several patterns. A different random initial condition, £ 7%
followed again aty=1.2, leads instead to a memory state o 2 4 & 8 10 12 14 16 18 20
(Fig. 6). Here one of the five overlaps becomes dominant ana time

overlaps m

15k

FIG. 6. Ay=1.2 trajectory with a different random initial con-
dition. In this case, one of the bit overlaps reachek, while the
3Note that negative overlaps with a pattern can be viewed as posbthers become small. This indicates that the mirror state of one of
tive overlaps with the corresponding mirror state. the stored patterns has been retrieved.
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1. =],
- (a) y=1.0 BGN | - _{b) y=1.25 BGN
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= :gg:d““md s states FIG. 7. Energy per node for at-
§ 1ol § %0 tractors reached from random ini-
E sl retriaval = spin glass tial conditions, showing a clear
g i T states . ;
3 states 5%‘: glass 3 50 ; separation among different types.
g 50 / oo 8 P4 (@) For y=1, three types of at-
i'r I _h___ tractors are clearly present. Un-
® 1 0808 -07-06-050403-02 O 37 1 08 0B 04 -02 condensed states show up as a
E/M E/N peak nealE= —0.25N. (b) For y
(¢) y=2.0 BGN (d) Hopfield n K :l.25{ the uncondensed state
400 T y o 390 y y peak is smaller but occurs at
© S a0l nearly the same energy, whereas
z o the other two peaks are at differ-
o M g 25 t ies(c) For y=2, onl
g retriaval b3 _ en engrgles(c or y=2, only
states = retfrigval the retrieval and spin glass states
= o 200 tate - s
w 200 4 - @ Sl are obtained(d) HN behavior is
§ spin glass @ 140 ~ spin glass qualitatively similar to the BGN
2 100 states a ioof states with y=2.
g S
8 ' 50 '
0 i e— |
-22 -2 -18 18 14 05 -046 -04 036 -03
EM E/M

X;<1. This adjustment in turn increases the valuengf, we “seeded” the network with 500 random initial conditions
until an equilibrium is reached witim,>b,,. We might think  (taken with several different realizations of the five random
of this as a kind of “subliminal” recognition of the pattern. patterns, integrated the dynamical equations until they con-
The effect becomes stronger @asncreases. Clearly, it has a verged, and constructed a histogram of the final energies
nonlinear dependence on bothand b,. When the field (Fig. 7). For the case/=1 [Fig. 7(a)], there are three clearly
becomes large enough it will exceed the threshold for sigzeparated clusters of attractors. Those with the lowest ener-
flips and the state will be attracted toward the pattern regies are retrieval states, while the states clusteres/ Nt=

trieval state. The largey is, the smaller the initiab, thatis  _( 25 are the uncondensed states, and those in the interme-
necessary to fully retrieve the patteffi. In other words, the  gjate range are the glassy states. The picture is qualitatively
basins of attraction of the patterns expandyascreases. similar at the slightly larger value=1.25 [Fig. 7(b)], but
the peak aE/N= —0.25 has shrunk relative to the other two.
V. BASINS OF ATTRACTION AND THE ENERGY Note that the energies of the retrieval and spin glass states
LANDSCAPE change withy, while the uncondensed states remain at

In this section, we provide numerical support for the nearly the same energy because their dynamics is dominated

three-way classification of attractors into retrieval, spin glassby tgetrllocall psteg"’/‘h _Fo_ryo=225 [Flg.b7(c)2, ontr:he other
and uncondensed states and we show how the respective Q?nbl' ec ug er d t_t .Th 'sr? tsen an ere I?rre no
tractor basins change with the control parameteiVe ob- 53 € uncotr:l erlf]et fs atheS.BGl\? 'Its (igzrarg or af Fz
serve an interpolation between two different regimes. As We7.( )] resempies that for e BN wi #=2. One quantita-
showed above, fory=2 there are no stable uncondensedt'\_le difference is tha’g the retrle\{al state peak is slightly
states. For lower values of, on the other hand, uncon- higher for_ the BGN withy=2, while the glassy states are
densed states are numerous. Recall that uncondensed stat8 paratl;/ely sgp;ﬂressed. . t at f val f
are characterized by local fields too weak to overcome th ”e per orrtr;]e | IS ?;.‘Petf'me”f at ? range o Iva u;es/.o th
potential barriers against sign flips, and so their dynamics i all cases he classitication 0f states was clear from the
dominated by the local potential. In the extreme cased, energy spectrum and was verified by examining the final

there are of course no magnetic fields at all and only the Ioca\falues ofb, . Figure 8 shows the probabilities of conver-
potential is present. gence to each of the three types of attractors from a random

initial condition as functions of. At y=0.5 the landscape is
dominated by the uncondensed states. Even thougl.5
lies above the threshold of and the retrieval states have
nontrivial basins of attraction, these basins still occupy a
The classification of attractors is very clearly reflected invery small fraction of the total configuration space volume.
the energy spectrum. To explore attractors and their basinghe patterns can be retrieved only if the initial overlaps are

A. Statistics of attractors reached from random
initial conditions
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relatively high, and the probability of eandominitial con- patternsé* (u# v), (c) a spin glass spurious state, (dj an

dition being sufficiently close is very low. The retrieval prob- yncondensed state. In this case, we classified a state as un-
ability becomes significant only ag approaches 1. Ay  condensed if no sign flips occured during the dynamical evo-
increases from 1 to 1.5, basins for the memory and spin glaggtion. The probabilities of each of these four outcomes were
states grow at the expense of of the uncondensed states unf{leraged over several realizations of the random patterns and
the latter disappear. The retrieval state basins grow fasn?ﬂotted as functions of the initial bit overldp, .

thf%f.‘ those Of.the spin glass states. BeygrdL.5, the prob- . Consider first the HN data from Fig(d. A pattern can
ability of retrieving a memory state saturates at approxi-

mately a 10% higher value than in the Hopfield case, and thewdently be retrieved even if the initial overlap is fairly

§mall; the probability is close to unity ib;,;;=0.1. If the
HH i H H H _ ' init~4Y-+-
mgl?/algl\j\lgr of falling into a spin glass state is correspond target pattern is not retrieved, then either a spurious attractor

or one of the other patterns may be retrieved. There is a
range ofb;,;; over which all three probabilities are signifi-
cant, indicating that the basins for the memory states border
In an attempt to map the attractor basins in more detailpn each other as well as those of spurious states. Fd¥ an
we generated configurations at specified initial Hamming= 1000 network, the expected magnitude of the overlap of a
distances from particular memory patterns. This was done bysandom state with any given one of the stored patterns is
starting with a patterg” and flipping the signs of a specified 1/\/N~0.03, which is not much smaller than the apparent
number of randomly chosen bits. Using an ensemble of sucthreshold ofb;,,;;=~0.1. This is consistent with the view that
initial conditions, we measured the probability of retrieval of for the HN, a pattern is likely to be retrieved as long as the
the target patterg” as a function of the initial distance from initial overlap with that pattern is significantly larger than all
it. As a rule, the probability of recognizing the pattern is highof the other overlaps. Theg=2 BGN [Fig. 9c)] shares the
if only a few signs are flipped, but drops sharply if a certainqualitative features of the HN. Note, however, that the prob-
threshold Hamming distance is exceeded. We are interestebility of becoming trapped in a spurious state is smaller for
in learning where this threshold lies, and thus answering théhe BGN, consistent with the results in Fig. 8.
question of how close an initial condition must be to a pat- A contrasting case is thg=0.5 BGN[Fig. ¥a)]. In this
tern in order to be attracted to it. We are also interested in thease retrieval of the target pattern requires an initial overlap
fate of states lying just outside the boundaries of a basin o6f more than 0.5. Although this represents a significant basin,
attraction. In other words, does the basin share a boundaiyis highly unlikely that arandominitial condition will have
with the basins of other patterns, or only with spurious at-such a large overlap, thus explaining why random initial con-
tractors? The results are presented in Fig. 9 for a BGN wittditions almost never flow to a memory state. The basins of
N=1000 ando=5, for the three valuey=0.5,1.0, and 2.0, the memory states are bordered only by spurious states, not
and also for the HN. In each of these cases, we generated &y other memory states. Interestingly, the states that lie ad-
ensemble of initial conditions at a particular initial value of jacent to the basin of a memory pattern are not all
b, for some pattern. Each initial condition was allowed to uncondensed—some are spurious states of the mixture or
evolve under the dynamics and the resulting attractor waspin glass type. Examination of the states retrieved near the
classified as(a) the target patterg”, (b) one of the other boundary shows that these are typicalymmetrianixture

B. Mapping the boundaries of basins of attraction
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states with one large overlap and two or more smdbeit  orthant ofN-dimensional space. These are represented in the
greater than randopnoverlaps. Finally, fory=1 [Fig. 9b)], diagram by a series of shallow pits. The basins of attraction
the basins of the memory state are almost as large as in ttier the retrieval and mixture states form isolated depressions
HN case, and near the boundaries there is a small but noim this pitted plateau. They occupy nontrivial volumes but do
zero probability of retrieving one of the other memory pat-not lie adjacent to each othéwith the exception of certain
terns, indicating that the basins of different memory statespin glass states that lie near the retrieval siafgsnterme-

almost touch each other. diate valuesy~1, the basins of attraction of the retrieval
states are much larger and in some places almost touch each
C. Qualitative picture of the energy landscape other, but significant islands of uncondensed states remain.

Taken together. the above result est a qualitati By y=2, however, the uncondensed states have disappeared
9 ’ N Sults suggest a qualitalivey, 4o hasins of attraction for the other two types of states

schematic picture of the energy landscape illustrated in Figs . :
10-12. The representation of the configuration space by M&?&ugc}]hitﬁenrme energy landscape and share boundaries

dimensions is not to be taken literally, since it is of couxse
dimensional. At low values ofy, such as 0.5, the energy
landscape is dominated by uncondensed states, which form a
series of shallow basins, each limited to roughly a single we have studied the behavior of the bistable gradient net-
work in the thermodynamic low-loading limitd—o, p/N

< 1. We described and classified the attractors of the dynam-

VI. CONCLUSIONS

g

o
\\X///

FIG. 10. Schematic illustration showing qualitative features of
the energy landscape for low values ¢f The numerous small
depressions represent uncondensed states. The retrieval states andFIG. 11. Energy landscape for intermediate valuegoflL. The
mixture states occupy isolated valleys. Retrieval states are repreetrieval states and mixture states have large basins of attraction that
sented by the deeper valleys. almost touch, but significant islands of uncondensed states remain.
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the expense of the spin glass states, so that the latter can be
noticeably suppressed compared to the deterministic
Hopfield case. This suppression of the spurious states occurs
without thermal noise or a modification of the Hebb learning
rule.

The uncondensed states represent a phase that is neither
“ferromagnetic” (i.e., strongly ordered and correlated with
one patterhnor “glassy” in the sense that frustration is an
important effect, yet they cannot properly be described as
“paramagnetic,” as paramagnetism is characterized by spins
that are able to flip freely from one orientation to the other.

A few words on the application of such networks to prac-
tical problems of associative memory are in order. The goal

FIG. 12. Energy landscape for large There are no uncon- Of associative memory is to reconstruct a pattern from a more
densed states, and large basins of attraction occupy the whole landr less corrupted version or from a fragment of the pattern,
scape. without becoming trapped in a spurious local minimum.

From this point of view, it appears that increasingim-
ics and also observed the effectiveness of pattern retrieval ggoves the performance of the network—expanding the ba-
a function of the coupling parametgr We found that states sins of attraction for the retrieval states and suppressing the
corresponding to perfect retrieval of the stored patterns argpurious states. The low+egime, on the other hand, may be
linearly stable at all values of, and have an energy that Suited to applications where the goal iselectiveassociative
decreases monotonically with increase jn Above the memory, one which only recognizes a pattern from a fairly
thresholdy= % the retrieval states become stable against sigi¢lose approximation and thus avoids false recognition. In the
flips of one or more nodes, and the network begins to funclow-y regime, if the input is not close to one of the stored
tion as an associative memory. ¥ is not far above this patterns, then the network is likely to remain in an uncon-
threshold, then the basins of attraction of the retrieval statedensed state. These can, in general, be distinguished clearly
are small and input must be very close in Hamming distanc&om other stategespecially retrieval statgsy their rela-
to a pattern for recognition to occur. The basins of attractiorfively high energy E/N~—0.25) or by the fact that the
of the retrieval states grow agincreases. magnitudes of al|x;| remain close to 1. The magnitudes of

There are two regimes of behavior, distinguished by théhe outputs can therefore be read as a signal of whether rec-
types of attractors that occur. At low the configuration —ognition has occurred. Persistence in an uncondensed state
space is dominated by the uncondensed states, or statesd@rresponds to an “I do not know” or nonrecognition re-
which no node experiences a field strong enough to oversponse.
come its potential barrier. In these statps| remains close In a subsequent publication, we will examine the behavior
to 1 for all nodes, and the energy remains close-@.25.  of the BGN when the loading level'N is of order unity, and
Each of these states occupies a basin of attraction confined Y¢¢ Will demonstrate another performance trade off. Specifi-
approximately a single orthant. In the limit=0 there are »  cally, we will show that the maximum storage capacity of the
such states, all degenerate in energy.)ARicreases above network decreases asincreases. For a low-regime, it is
the thresholdy.= 3, the retrieval states and the mixture or Possible to stabilize more memorized patterns than in the
spin glass states at first occupy small isolated basins amorfgopfield case, while at highey, even though the low-
the many uncondensed states. Howeverychreages fur- Ioading fault tolerance is increased, the storage capacity de-
ther, these basins grow until they lie adjacent to each othefreases.
At some value ofy (observed to lie between 1 and }..the
uncondensed states disappear and there is a transition to a
Hopfield-like regime where the basins of attraction for re-
trieval and spin glass states cover the whole configuration This work was supported by Materials and Manufacturing
space. Asy increases still further, the retrieval basins grow atOntario(MMO), a provincial center of excellence.
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