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Bistable gradient networks. I. Attractors and pattern retrieval at low loading
in the thermodynamic limit

Patrick N. McGraw and Michael Menzinger
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

~Received 26 March 2002; published 30 January 2003!

We examine the large-network, low-loading behavior of an attractor neural network, the so-called bistable
gradient network~BGN!, and compare it with that of the Hopfield network~HN!. We use analytical and
numerical methods to characterize the attractor states of the network and their basins of attraction. The energy
landscape of BGN is more complex than that of the HN and depends on the strength of the coupling among
units. At weak coupling, the BGN acts as a highly selective associative memory; the input must be close to the
one of the stored patterns in order to be recognized. A category of spurious attractors occurs which is not
present in the HN. Stronger coupling results in a transition to a more Hopfield-like regime with large basins of
attraction. The basins of attraction for spurious attractors are noticeably suppressed compared to the Hopfield
case, even though the Hebbian synaptic structure is the same and there is no stochastic noise.

DOI: 10.1103/PhysRevE.67.016118 PACS number~s!: 84.35.1i, 07.05.Mh, 87.18.Sn
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I. INTRODUCTION

Many neural network models@1,2#, in addition to their
potential applications to computation, robotics and artific
intelligence, constitute intriguing dynamical systems in th
own right, showing unusual manifestations of the statisti
mechanics phenomena of order, disorder and frustration.
connection between neural networks and statistical mec
ics became especially clear with the introduction of t
Hopfield @3,4# model, which furnishes a model of associati
memory, or the recall of a memorized pattern from an inco
plete stimulus. This model has a well-defined energy fu
tion and is closely related to the Sherrington-Kirkpatrick sp
glass model@5,6#.

In this paper we consider a Hopfield-like network ofN
bistable elements, the bistable gradient network or BG
previously introduced in Ref.@7#. A closely related mode
was also discussed in@8# and suggested as a model for t
so-called ‘‘bistability of perception’’ in the interpretation o
ambiguous visual stimuli@9#. The network’s dynamics con
sists of a continuous gradient descent described by
coupled differential equations

dxi

dt
52

]H

]xi
, ~1!

where xi (1< i<N) are continuous-valued real state va
ables associated with theN nodes of the network and th
Hamiltonian or energy function is given by

H5H01Hint5(
i 51

N S xi
4

4
2

xi
2

2 D 2
1

2
g (

i , j 51

N

wi j xixj . ~2!

The quantitieswi j are a symmetric matrix of coupling
strengths.g is a control parameter determining the streng
of the internode couplings relative to the local terms. For
purposes of this paper, we do not include any external inp
or linear ‘‘bias’’ terms. The variablesxi can be viewed as
components of anN-dimensional state vectorx. We define a
normalized inner product between two state vectorsx1 and
1063-651X/2003/67~1!/016118~13!/$20.00 67 0161
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x2 by x1
•x2[(1/N)( i 51

N xi
1xi

2 . The first term in the Hamil-
tonian represents a local double-well potential for each no
making each node individually bistable. This local potent
constitutes the main difference between the BGN and
Hopfield model. The classical Hopfield network~HN!, which
we consider by way of comparison, is described by
Hamiltonian

HHN52
1

2 (
i , j 51

N

wi j xixj , ~3!

where thexi are nowdiscretestate variables restricted to th
values61. Although continuous versions of the HN hav
also been studied, these generally lack the bistability pr
erty, and their behavior is essentially similar to that of t
discrete version@10,11#.

The variablesxi can be thought of as the outputs of pro
cessing units or neurons. Their dynamical equations can
written as

dxi

dt
5xi2xi

31hi , ~4!

where hi[g( j 51
N wi j xi is the input to the neuron from its

connections with other nodes. By analogy with Ising sp
systems, we also refer tohi as a ‘‘magnetic field.’’ The
steady-state output for a given input is a solution of t
fixed-point equation

xi2xi
31hi50. ~5!

When h50, there are stable fixed points atx561 and an
unstable fixed point atx50. An applied field shifts the posi
tions of the fixed points. A saddle-node bifurcation occu
whenuhu5hc52A3/9'0.385 so that for larger values of th
field there is only one equilibrium, aligned with the field (x
andh have the same sign!. x is, in principle, unbounded; the
output does not truly saturate when the input is large. T
double valuedness and the lack of saturation are the princ
©2003 The American Physical Society18-1
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differences between the input-output relation for the BG
and that of the Hopfield model, including its continuous v
sions.

Numerous experimental studies have been made on
triguing chemical analogs of the BGN~see, e.g., Refs
@12,13#!. These studies involved networks of bistable chem
cal reactors coupled either electrically or through mass
change. Previous computational work on small BGN’s@7#
suggested that under some conditions the network might
mit the storage of a larger number of patterns than in a HN
the same size, without any modification of the basic He
learning rule. It was noted, however, that the stability o
particular attractor can depend on the control parameteg.
Some dependence of pattern stability on the coup
strength had also been noted in the experiments on the m
coupled chemical networks@13#.

In this paper we focus on the behavior of the network
the case where the number of nodes is large and the num
of memorized patterns is small. Using both analytical te
niques and numerical simulations,1 we examine the retrieva
of stored patterns and classify the attractors that occur.
find that there are three types of attractors. In addition
memoryor retrieval states, there are spurious attractors
which no pattern is fully recognized. These include themix-
ture or spin glass statesfamiliar from HN studies, as well as
an additional category specific to the BGN which we refer
as uncondensed states. We examine how the attractors an
their basins of attraction change as the control parameterg is
changed. Throughout the paper, we compare our model
the zero-temperature or deterministic discrete Hopfi
model. It is hoped that these results can shed more ligh
the behavior of the BGN and clarify its relation to the HN
The behavior of the BGN under higher memory loading a
the question of its maximum storage capacity will be a
dressed in a companion paper@16#.

II. STORAGE AND RETRIEVAL OF BINARY PATTERNS

As in previous work on Hopfield networks@3,14,2#, we
define the task of associative memory as follows. We
given a set ofp distinct N-dimensional vectors ormemory
patterns j m (mP$1, . . . ,p%), which are to be recognized b
the network. The patterns should correspond to attractor
the network’s dynamics. We will refer to these attractors
retrieval states. Input is given by imposing a particular initia
condition on the network. If that initial condition is suffi
ciently close to one of the memorized patterns, then the
work’s state should converge to the correct nearby attrac

1Simulations were conducted by integrating the differential eq
tions numerically using a fourth-order Runge-Kutta algorithm w
adaptive step size. The system was judged to have converged
fixed point if the magnitudes of all derivativesu]H/]xi u fell below
a convergence criterion that for most examples was taken as 0
Our HN simulations, which were used for comparisons, were p
formed using asynchronous updating in random order. Unless
erwise indicated, all simulations were done on anN51000 network
with p55 stored memory patterns.
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and we say that the network has recognized or retrieved
pattern. In this paper we follow the HN literature in consi
ering the case where the patterns are random and unc
lated strings of11’s and21’s. We read the output of the
network according to thesignsof the xi . Thus we say that
the network has recalled pattern 1, for example, if sgn(xi)
5j i

1 for all i. Although variations in the magnitude ofxi can
be important to the dynamics, we will for the moment igno
them for the purpose of reading the output. As we will s
below, the retrieval states in general do not haveuxi u51 even
though the patterns haveuj i u51. We focus here on the lim
iting case N→`, p/N!1, or large networks with low
memory loading.~Strictly speaking, we takeN to infinity
while p remains finite.! In this case the inner product of
pair of patternsjm

•jn5(1/N)( ij i
mj i

n behaves as a Gaussia
random variable with zero mean and variance 1/AN, so that
in the N→` limit the pattern vectors are nearly orthogon
to each other and form a basis for ap-dimensional subspac
of the N-dimensional configuration space.

As in the HN, we construct the coupling matrix from th
stored patterns according to the Hebb@15# learning rule,

wi j 5
1

N (
m51

p

j i
mj j

m2
p

N
d i j . ~6!

The term2(p/N)d i j is included to make all diagonal ele
ments of the coupling matrix zero. Nonzero diagonal entr
would have the effect of adding an additional quadratic s
interaction term. Following the usual practice we omit the
here so that the quadratic term is contained only in the lo
potential. For the casep/N→0, however, the effect of the
diagonal elements is negligible and we can substitute
simpler learning rule

wi j 5
1

N (
m51

p

j i
mj j

m . ~7!

A useful set of order parameters are the overlapsmm ,
which are inner products of the network’s state with each
the stored patterns,

mm[j m
•x5

1

N (
i 50

N

j i
mxi . ~8!

For the discrete HN, these variables take values21<mm
<1, while for the BGN any real values are possible. It w
be useful to define another set of variables, which we w
call ‘‘bit overlaps,’’ by

bm[
1

N (
i 50

N

j i
m sgn~xi !. ~9!

The bit overlap is simply related to the Hamming distance
bm5(1/2N)@N22d(x,j m)#, where the Hamming distanc
d(x,y) between two vectors is defined as the number of
ements for which their signs differ, or the number of po
tions i such thatxiyi,0. Unlikemm , the bit overlaps always

-
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BISTABLE GRADIENT NETWORKS. I. ATTRACTORS . . . PHYSICAL REVIEW E 67, 016118 ~2003!
obey 21<bm<1. They encode information about sig
agreements but not about magnitudes of the outputsxi .

The definitions of the overlap variables allow us to r
write the Hamiltonian and the dynamical equations in use
forms @2#. In particular, if the synaptic matrixw is given by
the simplified Hebb rule~7!, then the interaction term of th
Hamiltonian can be rewritten in terms ofmm as follows:

Hint52
g

2 (
i , j 51

N

wi j xixj52
g

2N (
i , j 51

N

(
m51

p

xij i
mj j

mxj

52N
g

2 (
m51

p

~mm!2, ~10!

and the net input to a given node from the other node
given by

hi[2
]Hint

]xi
5g(

j 51

N

wi j xj5
g

N (
j 51

N

(
m51

p

j i
mj j

mxj

5g (
m51

p

j i
mmm . ~11!

A. Retrieval states at low memory loading

To show that the network functions properly as an as
ciative memory, we exhibit the attractor states correspond
to the stored patterns, demonstrate their stability, and s
that a pattern can be retrieved from an initial condition wh
lies close to the pattern but differs from it by one or mo
incorrect signs.

Consider the statex5Mjn, whereM is a scalar andjn is
a particular one of the stored patterns. We will show that
a suitable value ofM this state represents a stable fixed po
of the dynamics and is therefore the retrieval state we s
In this state,mn5M , bn51, and all other overlaps ar
small. The field acting on thei th node can be written a
follows:

hi5gj i
nM1g (

mÞn
j i

mmm. ~12!

The sum over patternsmÞn is called the crosstalk term. Fo
the overlaps with these other patterns we have

mm5
1

N (
i

xij i
m5M

1

N (
i

j i
nj i

m ~mÞn!. ~13!

Since the patterns are random, each of these overlaps
order M /AN. The number of patterns remains finite asN
→` , so the sum in the crosstalk term vanishes in this lim
andhi'gj i

1M . A stationary state must satisfy the fixed-poi
condition~5! for each node, which leads to a self-consisten
condition onM,

05xi
32xi2hi5~Mj i

n!32~11g!~Mj i
n!,

05M32~11g!M . ~14!
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In the last step, we have used the fact thatj i
35j i when j i

561 and then divided out the common factor ofj i . Solu-
tions to this condition are an unstable equilibriumM50 and
two stable equilibria

M5mn56A11g. ~15!

The two stable solutions represent perfect retrieval of pat
n and its mirror state, respectively. The doubled state i
consequence of theZ2 symmetry in the Hamiltonian. Since
the overlapmn is equal toM and all other overlaps vanish i
the thermodynamic limit, the energy of this retrieval state
easily calculated using expression~10! for the energy in
terms of the overlap variables, giving

E5(
i

S xi
4

4
2

xi
2

2 D 2
g

2 (
m

mm
2 5NS M4

4
2

M2

2 D2
g

2
M2

5NS 2
1

4
2

g

4
2

g2

4 D . ~16!

Note that this energy expression is extensive~proportional to
N) and a monotonically decreasing function ofg.

Having identified the state

xn5A11gjn ~17!

as an equilibrium state, we now demonstrate its stability
ing a linear stability analysis of the dynamical equations

dxi

dt
5yi[xi2xi

31g(
j

wi j xj . ~18!

Evaluating the Jacobian]yi /]xj at the fixed point~17! we
obtain

]yi

]xj
5~123xi

2!d i j 1gwi j 5@123~g11!#d i j 1gwi j

5~2223g!d i j 1gwi j , ~19!

whered i j is the Kronecker delta. The fixed point is linear
stable if and only if the Jacobian has no eigenvalues w
positive real part. This depends in turn on the eigenvalue
the synaptic connection matrixw. But in the limit where all
of the stored patternsjm are mutually orthogonal, the store
patterns are themselves eigenvectors spanning a degen
subspace with eigenvalue 1, while the complement of t
subspace has eigenvalue 0.@The Hebb rule~7! itself gives a
spectral decomposition ofw.# Since the maximum eigen
value ofw is 1, we see that the Jacobian at the retrieval fix
point has no positive eigenvalues and so the retrieval sta
linearly stable for any value ofg. In fact, all eigenvalues
become more negative asg increases. We reiterate that th
result is valid in the ideal limit of largeN and low loading
where the stored patterns are orthogonal. For finite-sized
works with finite overlaps among the patterns, it is possi
for the memory states to be destabilized by the cross
terms. This issue will be examined in the companion pa
@16#.
8-3
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P. N. McGRAW AND M. MENZINGER PHYSICAL REVIEW E67, 016118 ~2003!
Numerical results for a network withN51000 nodes and
p55 random patterns agree excellently with the above
scription. To study a retrieval state numerically, we initia
ized the network to the statex5j1 ~arbitrarily choosing the
first pattern!. Starting atg50, we increasedg by small steps
to g56. At each step, we integrated the dynamical equati
until they converged. This procedure allows us to exam
the evolution of a state under quasistatic changes in the
trol parameterg. We verified thatb1 remained equal to 1
over the whole range 0<g<6, indicating that the retrieva
state is stable. The measured values ofm1 andE were within
1% of the theoretical expressions~15! and~16!, respectively.

B. Error correction and basins of attraction

Linear stability analysis has shown that the retrieval sta
are stable againstinfinitesimalperturbations for any value o
g, but this does not guarantee their stability against the fl
ping of signs of one or more nodes. In order to function as
associative memory, a network must be capable of dyna
cally correcting sign errors. When presented with an inpu
a small, nonzero Hamming distance from one of the sto
patterns~i.e., differing from it by a few reversed signs! it
must be able to flip the reversed signs and restore the co
pattern. We will now show that there is a critical valuegc
5 1

3 above which the correction of sign-flip errors can occ
For smaller values ofg the BGN does not correct sign erro
and thus does not truly function as an associative mem
but asg increases above13 the retrieval states develop in
creasingly large basins of attraction.

Consider a state of the network which is a slightly co
rupted retrieval state: all node variables have the valuexi

5Mj i
n5A11gj i

n with the exception of one or possibl
some number!N of nodes which may be misaligned. I
such a state the few misaligned nodes make only a s
contribution to the overlap sums, so we havemn'M and
mm'0(mÞn). The field acting on each node is therefo
hi'gMj i

n . The misaligned bits experience a field oppos
to their signs. If the field becomes larger than the criti
value 2A3/9, then there is only one stable equilibrium f
each node, and the misaligned nodes will flip to confo
with the stored pattern. Error correction therefore occurs

uhi u'gM'gA11g.
2A3

9
'0.385. ~20!

The critical value occurs when the equalitygA11g
52A3/9 holds, or atgc5 1

3 .
If the pattern is more strongly corrupted~a significant

number of bits misaligned! then the situation is more com
plicated, because the presence of a larger number of
aligned bits may reduce the value ofmn and thus the mag
nitude of the field. The misaligned bits have a significa
back reaction on the ones with the correct sign. The cor
tion of larger numbers of sign errors requires higher val
of g. We will return to this point later; the basic result is th
when g is only slightly above the threshold of13 , the
memory states have rather small basins of attraction,
these basins grow asg increases.
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III. SPURIOUS ATTRACTORS: SPIN GLASS STATES

In the case of the HN, the Hebb learning rule results i
large number of ‘‘spurious’’ attractors in addition to the r
trieval states. The energy function defines a rugged la
scape, and a trajectory that does not start sufficiently clos
one of the stored patterns may become trapped in one o
spurious local minima instead of one corresponding to a
called pattern. It is possible to suppress the spurious min
by introducing thermal noise that allows trajectories to jum
out of the shallower basins of attraction into deeper ones

At low levels of loading, the HN possesses spurious
tractors that are nonlinear combinations of the stored p
terns. There is a hierarchy of symmetricmixture statesof the
form @14,2#

xi5sgn~j i
m16j i

m26•••6j i
mn! . ~21!

These states overlap equally withn different patterns:mm1

2

5mm2

2 5 . . . mmn

2 ,1. For the HN, only the mixtures with

odd n are stable. Then53 mixtures have the lowest energ
in this category, and the energies increase withn, asymptoti-
cally approaching21/p. As the number of stored patternsp
increases, these spurious states proliferate exponenti
their number is of order 3p. There are also nonsymmetri
mixtures. The proliferation of spurious states is associa
with spin glass type behavior in the HN. Accordingly, w
also refer to these mixed states somewhat loosely asspin
glass states.2

We will show here that the BGN possesses mixture sta
analogous to those of the HN, but their structure is sligh
more complex. Let us focus on then53 symmetric mixture
state with positive signs. For the HN, this state is given b

xi5j i
S[sgn~j i

m11j i
m21j i

m3!. ~22!

This state is stable against individual sign flips because e
node is subject to a nonzero magnetic field that maintains
alignment. To see this, note that there are two possibili
for each bit. Either all three patterns agree at that particu
site (j i

m15j i
m25j i

m3) or one of the patterns has the oppos

sign from the other two, for example,j i
m15j i

m252j i
m3 .

When all three agree, we say that thei th bit is a ‘‘unami-
mous’’ bit. If the patterns are random, then eachj i

m is 61
with equal probability, giving a probability of14 that a given
bit is unanimous. The mixture state has equal overlaps w
all three of the patterns. Since for a giveni there is a prob-

2More precisely, the mixture states ‘‘melt’’ into spin glass stat
when the number of memorized patterns becomes higher. W
higher numbers of patterns, there is a distinction between mix
states that overlap with a small set of the memory patterns and
glass states that overlap with nearly all, but that distinction is
salient for the cases we consider with very few patterns~see Ref.
@14#.!
8-4
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BISTABLE GRADIENT NETWORKS. I. ATTRACTORS . . . PHYSICAL REVIEW E 67, 016118 ~2003!
ability of 3
4 that j i

S5j i
m1 , we havemm1

5(1/N)( i 51
N j i

Sj i
m1

5 3
4 2 1

4 5 1
2 , and likewisemm2

5mm3
5 1

2 . The field acting at

the i th site is

hi5(
m

mmj i
m5

1

2
~j i

m11j i
m21j i

m3!. ~23!

~Consistent with the low-loading, large-N limit, we ignore all
other overlaps that are of order 1/AN.! This giveshi5

3
2 j i

S

for unanimous bits andhi5
1
2 j i

S for the others. In any case
each node of the HN experiences a field that stabilizes
alignment.

We will now show that the BGN, like the HN, possesse
mixture state in which the sign ofxi is given by the majority
vote of three of the stored patterns,

sgnxi
S5sgn~j i

m11j i
m21j i

m3! . ~24!

This state has a more complicated structure, however,
cause the magnitude ofxi at a given node depends signifi
cantly on the local field at that node. Since the field a
unanimous bit is stronger than the field at a nonunanim
bit, we expect the magnitude ofxi to be larger for a unani-
mous bit. Therefore, we make theansatz

xi
S5H Asgn~j i

m11j i
m21j i

m3! if j i
m15j i

m25j i
m3

D sgn~j i
m11j i

m21j i
m3! otherwise,

~25!

whereA and D are real numbers. The dynamical equatio
for the network give a pair of self-consistency equations t
can be solved numerically forA and D. First, we need an
expression for the overlap of the mixture state with one
the three patterns, say, patternm1. If the i th bit is a unani-
mous bit, thenxi

S has magnitudeA and agrees in sign with

j i
m1 . On the other hand, if it is a nonunanimous bit, thenxi

S

has magnitudeD and has a 2/3 probablity of agreeing in sig
with j i

m1 . The result is that

mm1
5

1

N (
i

xij i
m15

1

4
A1

1

2
D1

1

4
~2D !5

1

4
~A1D !.

~26!

Note that in the special caseA5D51, the above expressio
reduces to the Hopfield value 1/2 , as it should. Again,
three overlaps have the same size:mm1

5mm2
5mm3

. The to-
tal energy of the network in this state is given by
01611
ts

a

e-

a
s

s
t

f

ll

E~A,D !5(
i

S xi
4

4
2

xi
2

2 D 2
N

2
g(

m
mm

2

5
N

4 S A4

4
2

A2

2 D1
3N

4 S D4

4
2

D2

2 D
2

3N

2
gS 1

4
~A1D ! D 2

5NFA4

16
1

3D4

16
2

A2

8
2

3D2

8

2gS 3A2

32
1

3D2

32
1

3AD

16 D G . ~27!

We can think of this as an an energy function on the
stricted family of states parametrized by Eq.~25!.

A necessary condition for the mixture state~25! to be a
fixed point is that]E/]A5]E/]D50. This gives us two
self-consistency conditions for the parametersA andD,

A3

4
2

A

4
2

3g

16
~A1D !50,

3D3

4
2

3D

4
2

3g

16
~A1D !50. ~28!

These are the equations of the nullclines of the energy fu
tion ~27!. Alternatively, the above equations could be deriv
directly from the dynamical equations for each node and
expressions forhi instead of using the energy function. For
stablefixed point, (A,D) must be a local minimum of the
energy function~27!. The graphs of the two cubic equation
28 are plotted forg53 in Fig. 1~a!. Solutions are points
where the two nullclines intersect. Note that the slo
dD/dA, of the first curve at the origin is2(114/3g)
,21, and for the second curvedD/dA521/(114/g
.21). These two inequalities satisfied by the slopes ens
that the curves always intersect in at least five points. T
five solutions can be classified by looking at the energy fu
tion and its gradient. We see that the solutionA5D50 is an
unstable node~maximum of the energy!, the two solutions in
the second and fourth quadrants are saddle points, and
two solutions in the first and third quadrants are the sta
solutions we seek.~There are two because of theZ2 sign
reversal symmetry—one is a mirror state of the other.!

The self-consistency equations forA and D were solved
numerically for a range ofg values using a gradient desce
algorithm. These values were, in turn, substituted into
~27! to find the energy as a function ofg. The results are
plotted in Fig. 2 where they are also compared with nume
cal results from dynamical simulations of a BGN withN
51000. We studied the mixture state numerically by initia
izing a network to the statexi5sgn(j i

11j i
21j i

3) and incre-
mentingg beginning at 0, much as was done for the retrie
states. Figure 2~a! shows the magnitudes of unanimous a
nonunanimous bits in the mixture state as functions ofg.
The solid lines show the solutions of the self-consisten
equations forA andD. The symbols show the observed ma
8-5
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nitudesuxi u for 1< i<6 in the simulated network state. Tw
of these first six bits are unanimous while the other four
not. There is good agreement between the observed valu
uxi u and the values obtained from the self-consistency eq
tions. For comparison,A11g is plotted as a dotted line o
the same axes.~Recall that this is the value of alluxi u in a
pure retrieval state.! Figure 2~b! shows a corresponding com
parison of the observed and theoretical energies. Finally,
2~c! compares then53 mixture state with the retrieval stat
by plotting the ratiosA/A11g andD/A11g as well as the
ratio of the mixture state energyEmix to that of a retrieval
stateEret . All three of these ratios appear to approach co
stant asymptotic values asg increases. Asymptotically
Emix /Eret'0.7, while for the HN the corresponding ratio
0.75. The strength of the field acting on each unanimous
hA , and that acting on the nonunanimous bits,hD , both
increase asg increases. The mixture state is stable aga
single sign flips of the unanimous bits whenhA.2A3/9 and
stable against any single sign flip whenhD.2A3/9. Thus as
g increases, the mixture state begins to develop a nontr
basin of attraction of its own.

It is interesting to note that atg52 a saddle-node bifur
cation occurs and forg,2 two additional stable solutions t
the self-consistency equations~28! appear in the second an
fourth quadrants, at (A,D)5(1,21) and (21,1) @see Fig.
1~b!#. These are states withE52 1

4 N in which mm1
5mm2

FIG. 1. Self-consistency equations for then53 mixture state.
~a! Stable solutions occur in the first and third quadrants.~b! When
g,2 two additional stable solutions appear in the second
fourth quadrants.
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50 and the net field acting on each node exactly c

cels. They are not stable against sign flips, and become c
pletely destabilized wheng.2. As we will see in the fol-
lowing section, they do not properly belong to the catego
of mixture or spin glass states, but rather to another clas
spurious attractors present only in the BGN at low valu
of g.

Here we examined only then53 mixture state, but simi-
lar methods may be used to characterize higher-order m
tures. In general, they are more complex as there are m
possibilities for the size of the majority by which the sign
determined. The magnitudes ofxi then take a greater numbe
of distinct values.

IV. UNCONDENSED STATES AND THEIR COLLAPSE TO
THE PATTERN SUBSPACE

In Sec. II B, we noted that for values ofg not far above1
3 ,

it is possible that a state may have a significant overlap w
one of the stored patterns but that the field acting on
nodes may, nonetheless, not be strong enough to overc
the potential barrier and correct the sign errors. Indeed ifg is
below 1

3 , then even a single sign error may go uncorrect
This consequence of the bistability of the BGN units co
trasts with the behavior of the HN.

Consider first the case of the HN. A typical random initi
state has small but nonzero overlaps with the memori
patterns,mm;O(1/AN), resulting in fieldshi5(j i

mmm that
are random with zero mean and variance of order 1/AN.
Typically, for approximately half of the nodesxi andhi will
initially have opposite signs. Since there is no potential b
rier against sign flips, those nodes will change their sig
and the sign flips will continue until the field experienced
every node is aligned withxi . Every sign flip will increase
the magnitude of one or more of the overlap variables. If,
example, one overlapmn is larger than all of the others, the
most nodes will experience fields that tend to align th
with patternn. Every sign flip further increases the value
mn , and eventuallymn will be fully retrieved even though
the initial overlap may have been quite small. However
one overlap does not clearly dominate the others, then
trajectory may arrive at a spurious attractor that has roug
equal overlaps with several patterns, instead of at a sin
one of the memory states. Even a state that is initially
thogonal to all of the memorized patterns can be rende
unstable by changing a single sign: even a single sign
will create a small but nonzero field affecting the oth
nodes, resulting in further sign flips, and so on. In summa
for the HN essentially any initial condition converges und
the dynamics to an attractor lying in or close to t
p-dimensional subspace of the patterns.

For the BGN, on the other hand, the situation is differe
due to the presence of potential barriers. Just as with the
given any statex every nodei experiences a fieldhi , which
may be aligned with or opposed toxi . However, the antipar-
allel local fields may not be strong enough to flip their nod
into the parallel direction. If mosthi are well below the
threshold 2A3/9 then the flipping of one or a few nodes w

d

8-6
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FIG. 2. n53 mixture state compared with retrieval state.~a! The two solid lines representA andD, the values ofuxu for unanimous and
nonunanimous bits, respectively, obtained by numerical solution of the self-consistency equations. The symbols show theobservedvalues
uxi u (1< i<6) for a mixture state of the dynamically simulated network. The dotted line isA11g, which is the theoretical value of alluxi u
for a retrieval state.~b! EnergyEmix for the mixture state. Solid line: solution of self-consistency equations. Symbols: observed ene
simulated mixture state. Dotted line: energyEret of retrieval state from Eq.~16!. ~c! The ratiosA/A11g andD/A11g ~upper and lower
solid lines! andEmix /Eret ~dotted line! approach asymptotically constant values.
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not change the field enough to cause any further flips. T
there might be a large number of initial conditions that
main stuck with low overlaps, far away from any of th
patterns. We refer to such states with subthreshold field
‘‘uncondensed’’ states, because in those states none o
order paramentersmm are condensed. However, we w
show below that states with low overlaps cannot rem
stable forg.2, and thus for higher values ofg the behavior
is Hopfield-like, with all trajectories collapsing toward th
pattern subspace.

Consider a hypothetical state that is strictly orthogona
all memory patterns, so thatmm50 for all m. ~The extra
solutions appearing in the self-consistency equations for
mixture state wheng,2 are examples of such states.! If
mm50 for all m, thenhi50 for all i. In this case, the stead
state of each node isxi561. Proceeding with linear stabil
ity analysis as above, we find the relevant Jacobian

]yi

]xj
5~123xi

2!d i j 1gwi j 522d i j 1gwi j . ~29!

The equilibrium is unstable ifgwmax.2, wherewmax is the
largest eigenvalue of the coupling matrix.wmax is at least 1.
Therefore, ifg.2, states orthogonal to the stored patte
are all unstable. If all of thep stored patterns are mutuall
orthogonal ~which is approximately true in the limitN
→`) then forg.2 there arep unstable eigenvalues. Each
associated with one of the stored patterns, to which the
condensed state can evolve if it is perturbed.
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Thus, we see that there is an absolute upper limit for
existence of stable uncondensed states. In fact,g52 turns
out to be a high upper bound. The example of a state with
mm equal to zero is a sort of ‘‘worst-case scenario.’’ For
finite-sized network the typical random initial condition h
small but nonzero overlaps. In addition, if the patterns
truly random then they will not be exactly orthogonal b

FIG. 3. Trajectory of a random initial condition forg50.5.
Note: in the lower two plots, five curves marked with differe
symbols show overlaps with each of the five stored patterns.
unequal time steps result from the adaptive step size control in
integration algorithm.
8-7
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P. N. McGRAW AND M. MENZINGER PHYSICAL REVIEW E67, 016118 ~2003!
have small overlaps and so the largest eigenvalue of the
aptic matrix will be slightly larger than unity. Because
these factors the typical uncondensed state becomes uns
at values ofg lower than 2. In numerical simulations w
found that for the caseN51000, p55 most uncondense
states become unstable betweeng51 and 1.5.

Figures 3–6 show numerical results for the fate of a ty
cal random initial condition of the BGN withN51000, p
55, demonstrating the trapping of a typical trajectory in
uncondensed state and the destabilization of that stat
higher values ofg. Figures 3–5 show the dynamical evol
tion of the same initial condition, at different values ofg.
The initial condition was a random string of61 values. We
plot the energy per node, all five overlap variablesmm , and
all five bit overlap variablesbm as functions of time. Recal
that bm contain information about sign agreements only. F
g50.5 ~Fig. 3! the state changes very little before conve
gence occurs. The energy per node remains very close
20.25, as expected for a state with no large overlaps.
overlapsmm increase slightly in magnitude,3 but the bit over-
laps do not change at all, indicating that no sign flips occ
The evolution is thus trapped in an uncondensed state.
g51 ~Fig. 4! the trajectory is similar, except that the sma
initial overlaps are amplified to a greater extent~we will
explain this effect below.! The bit overlaps still do not
change. Wheng51.2, however, the trajectory changes qua
tatively ~Fig. 5! and does not remain in an uncondens
state. The magnitudes of the overlapsmm grow slowly until
at t;7 the resulting field becomes strong enough to be
flipping some signs. At this point the bit overlaps begin
change, the energy drops significantly and the traject
moves close to the pattern subspace. After some further
lution, the system converges to a mixture state that over
with several patterns. A different random initial conditio
followed again atg51.2, leads instead to a memory sta
~Fig. 6!. Here one of the five overlaps becomes dominant

3Note that negative overlaps with a pattern can be viewed as p
tive overlaps with the corresponding mirror state.

FIG. 4. Trajectory of the same initial condition,g51.0.
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the others shrink away. In this case the mirror state of one
the five patterns is retrieved. These trajectories are typ
examples representing descent on a rugged energy lands
Different initial conditions lead to different attractors, o
which some are memory states and some are mixtures.
quently the trajectory lingers at one or several states be
settling at its asymptotic attractor.

Figures 3 and 4 illustrated that for sufficiently small va
ues ofg, the dynamics amplifies small initial overlaps with
out flipping the sign of any node. For more insight into th
phenomenon, consider an initial state in which allxi are61
but somewhat more nodes are aligned parallel with one
ticular patternj i

n than are antiparallel. In other words,bn is
nonzero but less than unity. For simplicity let us neglect
other overlaps. Initially, each node experiences a small fi
given by hi5gmnj i

n5gbnj i
n . This field will push xi to

larger magnitudes (.1) for those nodes that are aligned wi
patternj i

n , and it will push the others to smaller magnitud

si-

FIG. 5. Same initial condition,g51.2.

FIG. 6. A g51.2 trajectory with a different random initial con
dition. In this case, one of the bit overlaps reaches21, while the
others become small. This indicates that the mirror state of on
the stored patterns has been retrieved.
8-8
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FIG. 7. Energy per node for at
tractors reached from random in
tial conditions, showing a clea
separation among different types
~a! For g51, three types of at-
tractors are clearly present. Un
condensed states show up as
peak nearE520.25N. ~b! For g
51.25, the uncondensed sta
peak is smaller but occurs a
nearly the same energy, wherea
the other two peaks are at differ
ent energies.~c! For g52, only
the retrieval and spin glass state
are obtained.~d! HN behavior is
qualitatively similar to the BGN
with g52.
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xi,1. This adjustment in turn increases the value ofmn ,
until an equilibrium is reached withmn.bn . We might think
of this as a kind of ‘‘subliminal’’ recognition of the pattern
The effect becomes stronger asg increases. Clearly, it has
nonlinear dependence on bothg and bn . When the field
becomes large enough it will exceed the threshold for s
flips and the state will be attracted toward the pattern
trieval state. The largerg is, the smaller the initialbn that is
necessary to fully retrieve the patternj i

n . In other words, the
basins of attraction of the patterns expand asg increases.

V. BASINS OF ATTRACTION AND THE ENERGY
LANDSCAPE

In this section, we provide numerical support for t
three-way classification of attractors into retrieval, spin gla
and uncondensed states and we show how the respectiv
tractor basins change with the control parameterg. We ob-
serve an interpolation between two different regimes. As
showed above, forg*2 there are no stable uncondens
states. For lower values ofg, on the other hand, uncon
densed states are numerous. Recall that uncondensed
are characterized by local fields too weak to overcome
potential barriers against sign flips, and so their dynamic
dominated by the local potential. In the extreme caseg50,
there are of course no magnetic fields at all and only the lo
potential is present.

A. Statistics of attractors reached from random
initial conditions

The classification of attractors is very clearly reflected
the energy spectrum. To explore attractors and their bas
01611
n
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we ‘‘seeded’’ the network with 500 random initial condition
~taken with several different realizations of the five rando
patterns!, integrated the dynamical equations until they co
verged, and constructed a histogram of the final energ
~Fig. 7!. For the caseg51 @Fig. 7~a!#, there are three clearly
separated clusters of attractors. Those with the lowest e
gies are retrieval states, while the states clustered atE/N5
20.25 are the uncondensed states, and those in the inte
diate range are the glassy states. The picture is qualitati
similar at the slightly larger valueg51.25 @Fig. 7~b!#, but
the peak atE/N520.25 has shrunk relative to the other tw
Note that the energies of the retrieval and spin glass st
change withg, while the uncondensed states remain
nearly the same energy because their dynamics is domin
by the local potential. Forg52 @Fig. 7~c!#, on the other
hand, the cluster atE/N520.25 is absent as there are n
stable uncondensed states. The histogram for a HN@Fig.
7~d!# resembles that for the BGN withg52. One quantita-
tive difference is that the retrieval state peak is sligh
higher for the BGN withg52, while the glassy states ar
comparatively suppressed.

We performed this experiment at a range of values ofg.
In all cases the classification of states was clear from
energy spectrum and was verified by examining the fi
values ofbm . Figure 8 shows the probabilities of conve
gence to each of the three types of attractors from a rand
initial condition as functions ofg. At g50.5 the landscape is
dominated by the uncondensed states. Even thoughg50.5
lies above the threshold of13 and the retrieval states hav
nontrivial basins of attraction, these basins still occupy
very small fraction of the total configuration space volum
The patterns can be retrieved only if the initial overlaps
8-9
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FIG. 8. Probability of convergence of a ran
dom initial condition to each of the three types
attractors, plotted as functions ofg. Hopfield val-
ues are shown for comparison.
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relatively high, and the probability of arandom initial con-
dition being sufficiently close is very low. The retrieval pro
ability becomes significant only asg approaches 1. Asg
increases from 1 to 1.5, basins for the memory and spin g
states grow at the expense of of the uncondensed states
the latter disappear. The retrieval state basins grow fa
than those of the spin glass states. Beyondg51.5, the prob-
ability of retrieving a memory state saturates at appro
mately a 10% higher value than in the Hopfield case, and
probability of falling into a spin glass state is correspon
ingly lower.

B. Mapping the boundaries of basins of attraction

In an attempt to map the attractor basins in more de
we generated configurations at specified initial Hamm
distances from particular memory patterns. This was done
starting with a patternjn and flipping the signs of a specifie
number of randomly chosen bits. Using an ensemble of s
initial conditions, we measured the probability of retrieval
the target patternjn as a function of the initial distance from
it. As a rule, the probability of recognizing the pattern is hi
if only a few signs are flipped, but drops sharply if a certa
threshold Hamming distance is exceeded. We are intere
in learning where this threshold lies, and thus answering
question of how close an initial condition must be to a p
tern in order to be attracted to it. We are also interested in
fate of states lying just outside the boundaries of a basin
attraction. In other words, does the basin share a boun
with the basins of other patterns, or only with spurious
tractors? The results are presented in Fig. 9 for a BGN w
N51000 andp55, for the three valuesg50.5,1.0, and 2.0,
and also for the HN. In each of these cases, we generate
ensemble of initial conditions at a particular initial value
bn for some pattern. Each initial condition was allowed
evolve under the dynamics and the resulting attractor
classified as:~a! the target patternj n, ~b! one of the other
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patternsj m (mÞn), ~c! a spin glass spurious state, or~d! an
uncondensed state. In this case, we classified a state a
condensed if no sign flips occured during the dynamical e
lution. The probabilities of each of these four outcomes w
averaged over several realizations of the random patterns
plotted as functions of the initial bit overlapbn .

Consider first the HN data from Fig. 9~d!. A pattern can
evidently be retrieved even if the initial overlap is fair
small; the probability is close to unity ifbinit*0.1. If the
target pattern is not retrieved, then either a spurious attra
or one of the other patterns may be retrieved. There i
range ofbinit over which all three probabilities are signifi
cant, indicating that the basins for the memory states bo
on each other as well as those of spurious states. For aN
51000 network, the expected magnitude of the overlap o
random state with any given one of the stored pattern
1/AN'0.03, which is not much smaller than the appare
threshold ofbinit'0.1. This is consistent with the view tha
for the HN, a pattern is likely to be retrieved as long as t
initial overlap with that pattern is significantly larger than a
of the other overlaps. Theg52 BGN @Fig. 9~c!# shares the
qualitative features of the HN. Note, however, that the pro
ability of becoming trapped in a spurious state is smaller
the BGN, consistent with the results in Fig. 8.

A contrasting case is theg50.5 BGN @Fig. 9~a!#. In this
case retrieval of the target pattern requires an initial over
of more than 0.5. Although this represents a significant ba
it is highly unlikely that arandominitial condition will have
such a large overlap, thus explaining why random initial co
ditions almost never flow to a memory state. The basins
the memory states are bordered only by spurious states
by other memory states. Interestingly, the states that lie
jacent to the basin of a memory pattern are not
uncondensed—some are spurious states of the mixtur
spin glass type. Examination of the states retrieved near
boundary shows that these are typicallyasymmetricmixture
8-10
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FIG. 9. Attractors retrieved from states with
specified initial overlap with a target pattern
Plots show probability of retrieving the target pa
tern ~solid circles!, one of the other memory pat
terns~squares!, an uncondensed state~triangles!,
or a spin glass spurious state~stars!.
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states with one large overlap and two or more smaller~but
greater than random! overlaps. Finally, forg51 @Fig. 9~b!#,
the basins of the memory state are almost as large as in
HN case, and near the boundaries there is a small but
zero probability of retrieving one of the other memory p
terns, indicating that the basins of different memory sta
almost touch each other.

C. Qualitative picture of the energy landscape

Taken together, the above results suggest a qualita
schematic picture of the energy landscape illustrated in F
10–12. The representation of the configuration space by
dimensions is not to be taken literally, since it is of courseN
dimensional. At low values ofg, such as 0.5, the energ
landscape is dominated by uncondensed states, which fo
series of shallow basins, each limited to roughly a sin

FIG. 10. Schematic illustration showing qualitative features
the energy landscape for low values ofg. The numerous smal
depressions represent uncondensed states. The retrieval state
mixture states occupy isolated valleys. Retrieval states are re
sented by the deeper valleys.
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orthant ofN-dimensional space. These are represented in
diagram by a series of shallow pits. The basins of attract
for the retrieval and mixture states form isolated depressi
in this pitted plateau. They occupy nontrivial volumes but
not lie adjacent to each other~with the exception of certain
spin glass states that lie near the retrieval states!. At interme-
diate valuesg'1, the basins of attraction of the retriev
states are much larger and in some places almost touch
other, but significant islands of uncondensed states rem
By g52, however, the uncondensed states have disappe
and the basins of attraction for the other two types of sta
occupy the entire energy landscape and share bound
with each other.

VI. CONCLUSIONS

We have studied the behavior of the bistable gradient n
work in the thermodynamic low-loading limitsN→`, p/N
!1. We described and classified the attractors of the dyn

f

and
re-

FIG. 11. Energy landscape for intermediate values ofg;1. The
retrieval states and mixture states have large basins of attraction
almost touch, but significant islands of uncondensed states rem
8-11
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ics and also observed the effectiveness of pattern retriev
a function of the coupling parameterg. We found that states
corresponding to perfect retrieval of the stored patterns
linearly stable at all values ofg, and have an energy tha
decreases monotonically with increase ing. Above the
thresholdg5 1

3 the retrieval states become stable against s
flips of one or more nodes, and the network begins to fu
tion as an associative memory. Ifg is not far above this
threshold, then the basins of attraction of the retrieval sta
are small and input must be very close in Hamming dista
to a pattern for recognition to occur. The basins of attract
of the retrieval states grow asg increases.

There are two regimes of behavior, distinguished by
types of attractors that occur. At lowg the configuration
space is dominated by the uncondensed states, or stat
which no node experiences a field strong enough to o
come its potential barrier. In these states,uxi u remains close
to 1 for all nodes, and the energy remains close to20.25.
Each of these states occupies a basin of attraction confine
approximately a single orthant. In the limitg50 there are 2N

such states, all degenerate in energy. Asg increases above
the thresholdgc5 1

3 , the retrieval states and the mixture
spin glass states at first occupy small isolated basins am
the many uncondensed states. However, asg increases fur-
ther, these basins grow until they lie adjacent to each ot
At some value ofg ~observed to lie between 1 and 1.5!, the
uncondensed states disappear and there is a transition
Hopfield-like regime where the basins of attraction for
trieval and spin glass states cover the whole configura
space. Asg increases still further, the retrieval basins grow

FIG. 12. Energy landscape for largeg. There are no uncon
densed states, and large basins of attraction occupy the whole
scape.
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the expense of the spin glass states, so that the latter ca
noticeably suppressed compared to the determini
Hopfield case. This suppression of the spurious states oc
without thermal noise or a modification of the Hebb learni
rule.

The uncondensed states represent a phase that is ne
‘‘ferromagnetic’’ ~i.e., strongly ordered and correlated wi
one pattern! nor ‘‘glassy’’ in the sense that frustration is a
important effect, yet they cannot properly be described
‘‘paramagnetic,’’ as paramagnetism is characterized by sp
that are able to flip freely from one orientation to the oth

A few words on the application of such networks to pra
tical problems of associative memory are in order. The g
of associative memory is to reconstruct a pattern from a m
or less corrupted version or from a fragment of the patte
without becoming trapped in a spurious local minimu
From this point of view, it appears that increasingg im-
proves the performance of the network—expanding the
sins of attraction for the retrieval states and suppressing
spurious states. The low-g regime, on the other hand, may b
suited to applications where the goal is aselectiveassociative
memory, one which only recognizes a pattern from a fai
close approximation and thus avoids false recognition. In
low-g regime, if the input is not close to one of the stor
patterns, then the network is likely to remain in an unco
densed state. These can, in general, be distinguished cl
from other states~especially retrieval states! by their rela-
tively high energy (E/N'20.25) or by the fact that the
magnitudes of alluxi u remain close to 1. The magnitudes
the outputs can therefore be read as a signal of whether
ognition has occurred. Persistence in an uncondensed
corresponds to an ‘‘I do not know’’ or nonrecognition re
sponse.

In a subsequent publication, we will examine the behav
of the BGN when the loading levelp/N is of order unity, and
we will demonstrate another performance trade off. Spec
cally, we will show that the maximum storage capacity of t
network decreases asg increases. For a low-g regime, it is
possible to stabilize more memorized patterns than in
Hopfield case, while at higherg, even though the low-
loading fault tolerance is increased, the storage capacity
creases.
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