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Adsorption of reactive particles on a random catalytic chain: An exact solution
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We study equilibrium properties of a catalytically activated annihilathenA— 0 reaction taking place on
a one-dimensional chain of length(N— ) in which some segmentglaced at random, with mean concen-
trationp) possess special, catalytic properties. Annihilation reaction takes place as soon as Arpaitvdles
land onto two vacant sites at the extremities of the catalytic segment, or wheA paiticle lands onto a
vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by
anotherA particle. Noncatalytic segments are inert with respect to reaction and here two ad&grbditles
harmlessly coexist. For both “annealed” and “quenched” disorder in placement of the catalytic segments, we
calculate exactly the disorder-averaged pressure per site. Explicit asymptotic formulas for the particle mean
density and the compressibility are also presented.
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[. INTRODUCTION plex[1]. Metallic catalysts, for instance, are often disordered
compact aggregates, the building blocks of which are imper-

In many industrial and technological processes the desigfect crystallites with broken faces, kinks and steps. Usually
of desired chemicals requires the binding of chemically in-only the steps are active in promoting the reaction and thus
active molecules, which recombine only when some thirdthe effective catalytic substrate is the geometrical pattern
substance—the catalytic substrate—is pre$ér®]. Within  formed by these steps. Another example is furnished by po-
the two past decades much effort has been put in understantbus materials with convoluted surfaces, such as, e.g., silica,
ing of the peculiarities of such catalytically activated reac-alumina, or carbons. Here the effective catalytic substrate is
tions (CARs). On one hand, much progress was made imalso only a portion of the total surface area because of the
answering the question why and how specific catalytic subselective participation of different surface sites in the
strates promote reactions between chemically inactive molreaction—closed pores or pores with very small, bottleneck
ecules(see, e.g., Ref.3]). On the other hand, considerable entrances are inaccessible to many reacting molecules. Fi-
theoretical knowledge was gained from an extensive study afially, for liquid-phase catalytically activated reactions the
a particular reaction—the CO oxidation in the presence otatalyst can consist of active groups attached to polymer
metal surfaces with catalytic propertig$| (for a recent re- chains in solution.
view see, e.g., Ref5]). While the first aspedi3] sheds light Such complex morphologies render the theoretical analy-
on catalyzation mechanisms and may allow the calculatiosis difficult. As yet, only empirical approaches have been
of Ko—the rate at which two reactants react being simulta-used to account for the impact of the geometrical complexity
neously in the vicinity of each other and of a specific cata-on the behavior of the CARs, based mostly on heuristic con-
lytic substrate, the results of Refgl] show that the mere cepts of effective reaction order or on phenomenological
knowledge ofK,, is not sufficient. As a matter of fact, Refs. generalizations of the formal-kinetic “law of mass action”
[4] have substantiated the emergence of an essentially diffefsee, e.g., Ref$1] and[2] for more details In this way the
ent behavior as compared to the predictions of the classicaharameters entering the equations describing the observables
formal-kinetics scheme and have shown that under certaifsay, the mean particle densitieme fixed by fits to experi-
conditions such collective phenomena as phase transitions arental data and can deviate from the values prescribed by
the formation of bifurcation patterns may take plded.  the stoichiometric relations of the reactions involved. The
Prior to these works on catalytic systems, anomalous behawmportant outcome of such descriptions is that they provide
ior was amply demonstrated in other scherf@sg], involv-  an evidence of the existing correlations in the morphology of
ing reactions on contact between two particles at any point othe chemically reactive environment. On the other hand,
the reaction volume(i.e., the “completely” catalytic sys- their shortcoming is that they do not explain the mechanisms
tems. It was realized 6—8] that the departure from the text- underlying the anomalous kinetic and stationary behavior. In
book, formal-kinetic predictions is due to many-particle ef-this regard, analytical studies of even somewhat idealized or
fects, associated with fluctuations in the spatial distributiorsimplified models, such as, for instance, the ones proposed in
of the reacting species. This suggests that similarly to sucRefs.[4], are already highly desirable since such studies may
“completely” catalytic reaction schemes, the behavior of theprovide an understanding of the effects of different factors on
CARs may be influenced by many-particle effects. the properties of the CARs.

Apart from the many-particle effects, behavior of the In this paper we study the properties of catalytically acti-
CARs might be affected by the very structure of the catalyticvated annihilationA+A—0 reaction in a simple, one-
substrate, which is often not well-defined geometrically, butdimensional model with random distribution of the catalyst,
must be viewed as being an assembly of mobile or localize@ppropriate to the just mentioned situation with the catalyti-
catalytic sites or islands, whose spatial distribution is com-cally activated reactions on polymer chains. More specifi-
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[ ] ® o the disorder-averaged pressure per site can be obtained very
o o directly by noticing a similarity between the expressions de-
fining the pressure in the model under study and the
Lyapunov exponent of a product of randonx2 matrices,
PY obtained by Derrida and Hilhorg20]. We also derive an
explicit expression obeyed by the averaged logarithm of the
0"0"0"® g(b) g(a) ;@ ® partition function, which is valid for any chain’s length,
‘ ‘ ‘ ' ‘ and present its largh- expansion. We show, in particular,
L2 N-I' N that the first correction to the thermodynamic limit result for
FIG. 1. One-dimensional lattice of adsorption sites in contacttN€ disorder-averaged pressure per site is proportional to the
with a reservoir. Filled circles denote hard-caeparticles. Thick  first negative power ol. Explicit asymptotic expansions for
black lines denote the segments with catalytic propert@sde- the mean particle density and for the compressibility are also
notes a “forbidden” particle configuration, which corresponds to derived. Finally, in Sec. V we conclude with a brief summary
immediate reactior(b) depicts the situation in which two neighbor- Of results and discussion.
ing A particles may harmlessly coexist.

® RESERVOIR ®
® o

Il. THE MODEL

cally, we consider here thé+A—0 reaction on a one- Consider a one-dimensional regular lattice of unit spacin
dimensional regular lattice that is brought in contact with a 9 bacing

reservoir ofA particles. Some portion of the intersite inter- E:\?mprrlswr\]g I\)laa;jisc?rgzonl Srl;[ezirll? rCO':[]itr?CthWIrtcT a péese:vow
vals (thick black lines in Fig. 1 on the regular lattice pos- apor phasgof identical, noninteracting hard-cors par-

sesses special “catalytic” properties such that they induce chIes (see, Fig. 1 The reservoir is steadily maintained at a
immediate reactiorA+A—0, as soon as twa@\ particles constant pressure.
land onto two vacant sites at the extremities of the catalytic The A parthles f.rom the vapor phase can adsorb onto
segment, or ai\ particle lands onto a vacant site while the vacant a_\dsorpt|on i'tes and de_sorb _baqk to the_ reservoir. The
site at the other extremity of the catalytic segment is alread ccupation (.)f the [-th adsorption site is described by the
occupied by anotheh particle. oolean variable;, such that

We present here an exact solution of this model in two 1, ifthe “i”th site is occupied
cases—a case when disorder in placement of the catalytic n; { ’
segments can be viewed asnealed,and a more complex
situation with aquenchedrandom distribution of the cata- .
lytic segments, and show that despite the apparent oversim- Suppo_se next that some of_the segmen'f‘s—mte_rv”als be-
plified nature of the model it exhibits an interesting non-Ween ne_lghborlng z_idsor_ptlor_] Sites possess catalytic” prop-
trivial behavior. We note finally that kinetics &+ A—0 9”'65 (th'Ck. black' lines in .F'g' Lin the sense that they
reactions involving diffusiveA particles which react upon mdu_ce an immediate reactloh+A—>O, as soon ""?_W‘
encounters on randomly placed catalytic sites has been diQ—art'Cle.S land onto two vacant sites at the extremities of the
cussed already in Reff9,10] and[11], and a rather surpris- catalytic segment, or aA partllcle lands onto a vacan'F site at
ing behavior has been found, especially in low-dimensionaP"€ &xtremety of the_ catalytic segment while the.sne at the
systems. Additionally, steady-state propertiesAof A—0 other extremity of this segment is a_Iready occupied by an-
reactions between immobild particles with long-range re- other A particle. Two reactedA particles instantaneously

action probabilities in systems with external particles inputlea\/.e the lattice(desorb back_t_o the reservpirny two A
have been presented in Reff62] and[13] and revealed non- particles adsorbgd at extremities of a noncatalytic segment
trivial ordering phenomena with anomalous input intensityhatl_mlessw. cot?]mst. ii f th talvii ¢ .
dependence of the mean particle density, which agrees wit do sptehmfy € pr?scljlons_ ol the C?ha%/ |c_seg_moen s(,jwe In-
early experimental finding§14]. For completely catalytic ' odUCc€ the quenche variabfe, so thatfo={y=0 an

0, otherwise.

one-dimensional1D) systems, kinetics oA+A—0 reac- 1, ifthei-tintervalis catalytic,i=1,2, ... N—1
tions with immobileA particles undergoing cooperative de- ;=1 "’ _ ’ "
sorption have been discussed in Rgf%,16 and[17]. Exact 0, otherwise.

solutions forA+A—0 reactions in 1D completely catalytic
systems in whichA particles perform conventional diffusive
or subdiffusive motion have been presented in Rdig8] and
[19], respectively.

Now, for a given distribution of the catalytic segments,
the partition functiorZy({) of the system under study can be
written as follows:

This paper is structured as follows. In Sec. Il we define N—1
the model and introduce l_)a5|c notations. _In Sec. Il we focus ZN(():E ZSNH (1= &niniyy), (1)
on the case ofnnealeddisorder and derive exact closed- {n} i=1

form expressions for the pressure per site, as well as present

explicit asymptotic expansions in powers of the activity for whereSy=3!",n; and the summatioll, , extends over all
the mean particle density and for the compressibility of thepossible configurationgn;}, while z denotes the activity,
system. In Sec. IV we examine the caseqoknchedisor-

der. Here, we show that the thermodynamic limit result for z=expBu), 2
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w being the chemical potential, which accounts for the res- (ann) 1 1
ervoir pressure and for the particles’ preference for adsorp- Ps :E lim N<|”ZN(§)>§v ®)
tion. Note thatZy(¢) in Eq. (1) is a functional of the con- N
figuration{={¢;}. _ o _ _
It might be instructive to remark thaty(¢) can be also 1-€., contrary toP{“*" defined in Eq(3), in which case we
thought of as a one-dimensional version of models describface the problem of averaging thegarithm of the partition
ing adsorption of hard moleculd@1-2§, i.e., adsorption function with the distribution in Eq(4), here we have to
limited by the “kinetic” constraint that any two of the mol- perform averaging with the distributign(¢), Eq. (4), of the
ecules can neither occupy the same site nor appear on tipartition function itself. Also in this case will have the
neighboring sites. The most celebrated examples of suckame meaning of the mean number density of the catalytic
models are furnished by the so-called “hard-squares” mode$egments.
[21-25, or by the “hard-hexagons” model first solved ex- ~ We note also that the situation wigmnealeddisorder can
actly by Baxter[27]. be realized in practice in case when the catalytic agents
These models exhibit phase transitions. The universadimodeled here as the segments with catalytic propegdiés
classification of phase transitions is known to depend on th&se. On the other hand, an assumption ofdheealeddis-
dimensionality, the presence of further interactions, and th@rder is often used as a meaningful “mean-field” approxima-
way in which the lattice can be partitioned into sublattices.tion for systems with quenched disorder. Hence, it might be
For bipartite lattices and interactions dominated by nearesinstructive to consider this case in order to check the behav-
neighbor exclusion, the ordering transition is the result ofior provided by such a mean-field approach against an exact
competition between the two sublattice densities. The phasgolution in thequenchedlisorder case.
transition is thus associated with a breaking of the symmetry OnceP., are obtained, all other pertinent thermodynamic
between these two sublattices. For geometrically more comproperties can be readily evaluated by differentiating
plex Baxter's hard-hexagon model, which consists of parwith respect to the chemical potential In particular, the
ticles with the nearest-neighbor exclusion on the triangulagisorder-averaged particles’ densityill be given by
lattice, the phase transition belongs to the three-state Potts
model universality class, in accordance with the fact that the J
phase transition is associated with symmetry breaking in- nxzﬁPw, (6)
volving three competing equivalent sublattice densities. For
more discussion see, e.g., Rdf27,28 and[29].
In our case of the CARs on random catalytic substrate
the nearest-neighbor exclusion constraint is introduced only
locally, at some specified, randomly distributed intervals. 1 dn.
Such locally frustrated models of random reaction/adsorption kT:n_z W- (@)
thus represent a natural and meaningful generalization of the “

well-studied exclusion models over systems with disorder,
Of course, in this context two-dimensional situations are of'/& Se€t out to show that for botannealedand quenched

most interest, but nonetheless it might be instructive to findlisorder cases, whefj are independent, two-state random
examples of such models that can be solved exactly in on¥ariables all these functions can be evaluated explicitly, in a

gvhile the compressibilitk obeys

dimension. closed form. We will distinguish between these two cases by
Our main goal here is to calculate the disorder-average@SSigning, for notational convenience, the supersc(gns)
pressure per site, and(quen).

To close this section, we display the results corresponding

1 1 to two “regular” cases: namely, whem=0 andp=1, which
plaven =~ lim N<|nZN(§)>§y (3 will serve us in what follows as some benchmarks. In the
N—oe p=0 case all sites are decoupled, and one has the trivial

) Langmuir adsorption results,
where the angular brackets with the subsciphere and g P

henceforth denote averaging over all possible configurations

{i}. We suppose thaf; are independent, randomly distrib- pchan):1|n(1+z), nian — (8)
uted variables with distribution B 1+z
p(&)=po({—1)+(1-p)a(f). (4)  and

Note that herep is the probability that a given segment is 1
catalytic; hence, in the thermodynamic lirpidetermines the B_lk(TLan):—- (9)
mean number density of the catalytic segments. z

Further on, we will consider the case when the disorder in
placement of the catalytic segments can be viewedras The “regular” case wherp=1 is a bit less trivial, but the
nealed. In this case, which requires a somewhat simpliersolution can be still straightforwardly obtained. In this case,
analysis, the disorder-averaged pressure per site is given bye have
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1 [(J1+4z+1 27 where, but the penalty of 2 In{ip) has to be paid. For any
PUed——|n| ———— nfed=1- ————— finite p<1 thi I b dbyi ing th
b B 2 v Ny 1+47—1tdz inite p<1 this penalty can be overpassed by increasing the
10 chemical potential and hence, for larg@ne may thus ex-
(10 pect completely different behavior in the annealed and
and quenched disorder cases. On the other handpfed this
penalty gets infinitely large and cannot be compensated by
27 the increase of the chemical potential; thss 1 is a special
Bk = T4z iia0 (1) point.
1+4z(1+2z-V1+42) Now, to find an explicit form ofZ, we proceed as fol-

lows. Let us first introduce an auxiliary, constrained partition

Note that in thep=1 case(the completely catalytic system function of the form

the mean particle density tends to 1/2zase (compared to
n{-2"_,1 behavior observed for the Langmuir cgaghich N-2

means that the adsorbent undergoes “ordering” transition Zr/\IZZN|nN:l:ZZ 1] (1—pnini; ) (1—pny_q),
and particles distribution on the lattice becomes periodic, ini} i=1

revealing a spontaneous symmetry breaking between two (15
sublattices. This happens, of course, due to the neare
neighbor exclusion constraint embodied in Ed). In the
limit z— oo the compressibility vanishes &§°9«1/\/z com-
pared to the Langmuir behaviék-"oc1/z.

Sd\ihereSN_lzEi’\';llni and,Z}, stands for the partition func-
tion of a one-dimensional lattice gas with a nearest-neighbor
repulsion and fixed occupation of the siteN, ny=1. Evi-
dently, we have that

Ill. ANNEALED DISORDER Zn=2Zn_ 1+ 2. (16)

We start our analysis of the random reaction/adsorptiotNext, considering two possible values of the occupation vari-
model considering first the situation in which the disorder ingpjen,,_,, i.e.,ny_;=0 andny_,=1, we find thatz], can

placement of the catalytic segments can be viewed agg expressed througty,_, andZ/,_, as
annealed In this case, the disorder-averaged pressure per N~

site is defined by Eq(5) and thus has a more simple form N-3

than that in Eq(3), since we have to perform averaging not Z,’\,zzE zSN*ZH (1—pnin;1)+2%(1—p)

of the logarithm of the partition function in E¢l) but of the in, =1

partition function itself. N-3

Averaging of the partition function in Eql) over the x> z5%-2]] (1—pninis1)(1—pny_»)

distribution of the catalytic segments can be performed very {ni} i=1

directly. Since all; are independent, the disorder-averaged _ _ ,

partition functionZy(¢) attains a factorized form, =2yt 2(1=p) 2y, (17)
N-1 WhereSN,2=ZiN=’12ni Now, recursion in Eq(16) allows us

<ZN(§)>£:Z ZSNH ((1—§i”ini+1)>gi: (12)  to eliminate Zy in Eq. (17). From Eq.(16) we haveZ
iy i=1 =Zny—2Zn-1, and consequently, we find from E(L7) that
the unconstrained partition functiaty in Eq. (14) obeys the

where each multiplier . .
P following recursion

<(1_§inini+1)>§i:jdzp(z)(l_gnini+l):p(l_nini+l) Zn=[1+2(1-p)]Zn-1+2PZy-2, (18)
which is to be solved subject to evident initial conditions
+(1=p)=(1-pnin;.,). (13 :
Consequently, the disorder-averaged partition function in Eq. Zo=1 and Z;=1+z. (19
(1) is given by Solution of the recursion in Eq18) can be readily obtained
N—1 by standard means, i.e., by evaluating the generating func-

. _ o) N . . . .
Zo=(7 =S 7S 1—DN ML), 14 tion for Zy, Z,=2-1Z\t", and then by inverting it with
N= (2D {% |1;[1 (1=Pnini+a) a4 respect to the variable which yields

Note now that since (% pnin;, ¢)=exdIn(l—p)nini; 1], Zn (I+zpty) (1+zpt)
defined in the last equation can be thought of as a partition NTzpt(ti—to) * sz(t+—t,)t‘ . (20
function of a one-dimensional lattice gas with nearest-

neighbor repulsive interaction with the amplitudgd {1l  where

—p)]. Note also that here the original constraint that no two

particle can be located simultaneously at the extremeties of +i\/[1+z(1_ 54z [1+2(1-p)]

the catalytic segments is replaced by a more tolerant condi- "=  ~2zp P P 2zp

tion that the particles may occupy neighboring sites any- (22)
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Noticing next that . <|t_| we find that in the annealed dis-
order case in the thermodynamic limit the disorder average BP@"=In(z)+In(1—p)+

pressure per site is given by

Pgoann): S
B

[1+z(1-p)]
2zp

1
E)\/[l+z(1—p)]2+4zp

, (22

which is valid for anyz andp.

Consider now the asymptotic smalbnd largez behavior
of the pressureP®"  the mean densityn®" | and the
compressibilityk{®"™ . ExpandingP®"" in Eq. (22) into the
Taylor series in powers of the activiy we find that in the
smallz limit P@" follows:

1 1
BPEM=z—|S+p|Z2+| S +2p+p? |2
1 9
- Z+3p+ §p2+p3 *+0(2°). (23
Note thatP3"" in Eq. (23) reduces to
1 1 1
(Lan)_,_ —_ 2, —.3_ "4 5
BPLAV=2- 52+ 22— 7+ 0(2°), (24)
and
3 10 35
BPgeg)=z—§zz+ §z3—jz4+0(zs), (25)

for p=0 andp=1, respectively. From Eq23) we find that
in the annealed disorder case in the smadimit the mean
particle density is given by

n@" =z—(1+2p)z%+(1+6p+3p?)Z°

—(1+12p+18p2+4p>Z*+0(2°), (26
while the compressibility obeys
1
BTN ==+ p(2—p)z—4pZ+3p(2+3p)Z°
—8p(1+4p+2p?)z*+0(2°). (27

We consider next the asymptotic behavior RIf"” in the
largez limit.! We notice first that herp=1 is actually a
special point; that is, asymptotic largesehavior ofP@" is
completely different fop<1 andp=1 (completely catalytic

PHYSICAL REVIEW B7, 016115 (2003

1 (1+2p)
(1-p)’z 2(1-p)*Z
+(1+6p+3p2) _ (1+12p+18p°+4p?)

3(1-p)°2 4(1-p)8z*

1
+O—5

z

: (28)

while in the regular, completely catalytic cape=1 it fol-
lows

ﬂp(ann) — IBP(reg)

1 1 3 1
221/2 - 4823/2 + 128&5/2 +0 ZT/Z ’
(29)

_l
—Eln(z)+

Consequences of such a difference can be seen in a dramati-
cally different behavior of the mean particle density. fpor
<1 andz>(1—p) 2 we find

1 +(1+2p)_(1+6p+3p2)
(1-p)z (1-p)*z*>  (1-p°2

while in the regular casp=1 the mean particle density is

given by
1
O ) (31

This signifies, in particular, that fqr arbitrarily close but not
equal to unity, the mean density is equal to 1z&s», while
for p strictly equal to unity the mean density®""=1/2.
The behavior oh®" as a function of for different values
of pis depicted in Fig. 2.

In a similar fashion we find that asymptotic behavior of
the compressibilitykt is very different forp<1 andp=1.
For p<1 andz>(1-p) 2 k" obeys

ngcann)zl_

. (14 12p+18p%+4p3)
(1-p)®z*

(30

n(r‘?g)zl_ 1 + 1 _ 3 +
* 2 421/2 3223/2 51z5/2

B 4p +3p(2+3p)
(1-p?z (1-p*z? (1-p°2

Bflkgl_ann) _

systems For p<1 and z=(1—p) 2, we have that the _ 8p(1+4p+2p? o 1 (32
asymptotic expansion d®@"" reads (1-p)ez 5]
while for p=1 andz>1 it follows that

!Note that physically this limit corresponds to the systems with
high vapor pressure, low temperature or systems having a high 1 3 5 1
barrier against desorption of individualparticles(this barrier does B—lk(TrEQ): 4+ —+ — + o( _) .
not affect, however, desorption of react@d pairs, which still 27?7 2z 16782 2567%2 z’”?
instantaneously desorb (33
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1+ 1, -
n B kg
o z=02
nriealed disorder
. pA.7 p~£0.9
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FIG. 2. The mean densityp of adsorbed particles versus the FIG. 3. The compressibilitg~k; versus the mean densipyof

chemical potentiajgu for the annealedcurves tending to uniy he catalytic segments for several values of the activityz

and quenched _dlsorder case for different values of the mean dens@olzy2 andz=20. Upper, nonmonotonic curves show the behavior
p of the catalytic segments.

of B~ k¢ in the annealeddisorder case, while the lower curves

. . . . correspond to the solution in truenchedlisorder case.
Finally, we realize that in thannealeddisorder case for P o

any fixedz the compressibilityk{*"” appears to be aon-
monotonidfunction of p. To see this, it suffices to notice that,
first, k{{@MW<k{"®9 e, for any fixedz the value of the com-
pressibility forp=0 is always less than or equal to its value
for p=1. Second, one readily finds that in the vicinity pf

the logarithm of the partition function in Edl). Conse-
quently, here we aim to determine the recursions obeyed by

Zyn(£) and(InZy(Q));-

=1 the compressibilit)k(Ta””) obeys A. Recursion relations for Zy(£) and {InZy(9)),
We proceed here along essentially the same lines as in the
472 preceding section. We introduce first a constrained partition
“ikan = g-1glred y  — _(1-p)+O[(1-p)?], function of the form
ﬁ T IB T (1+4Z)3/2 p [ p ]
(34)

ZWOD)=ZN(D)|ny=1

i.e., for anyz the valuek{®? corresponding t@=1 is ap- -

proached from above. Consequently, for any fixékde com- _ Su

pressibility k{*" is a nonmonotonic function of the mean Tt " 1i1:[1 (1=4inini ) (1= dn-10n-1),
density p of the catalytic segments. Behavior of the com-
pressibility k{*" as a function ofp for several different
values ofz is presented in Fig. 3.

(39

Zy(£) now stands for the partition function of a system with

fixed set{={¢;} and fixed occupation of the siie=N, ny

V- QUENCHED DISORDER =1. Similarly to Eq.(16), we have thaZ\({) obeys
We turn now to the more complex situation with a

guenched disorder, in which case, in order to define the

disorder-averaged pressure, we have to perform averaging of ZN(§)=Zn-1(0)+Z{(0). (36)
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Next, considering two possible values of the occupation variwith
ableny_4, i.e.,ny_1=0 andny_;=1, we find thatZ\(¢)

h _ Z,
can be expressed throu@h,_,(¢) andZy_,(¢) as Ry({)=R,=1+2, (40)

Zn(6) =22y -2(8) +2(1 = In-1)Zn-1(D), &7 which represents a random homographic relation. Once
which parallels the result in Eq17). Eliminating Zj,(£) in ~ Rn(¢) is defined for arbitrari, the partition functiorZ(¢)

Eq. (37), we find eventually that the unconstrained partitioncan e readily determined as the product,
function Zy(¢) in Eq. (1) obeys the following recursion:

N
ZN(Z):[l"_Z(l_gN—l)]ZN—1(§)+ZgN—lzN—Z(g):(gs) ZN(f)ziI;Il Ri({), (41)

(19. . _ partition function will be obtained as
A conventional way(see, e.g., Ref.30,31) to study lin-

ear random three-term recursions is to reduce them to ran-

dom maps by introducing the Ricatti variable of the form N
(InZy(0)¢= 2, (INRi(D)). (42
Zn({)
RN =57 (39
n-1(£) Before we proceed further on, some comments on the
. . recursion in Eq.(40) are in order. We recall first that, by
In terms of this variable Eq38) becomes definition, each quenched random varialjjeassumes only
; two values—21(with probability p) and O (with probability
_ B ZiN-1 1-p). Hence, we may formally rewrite the random homo-
Ru(9)=[1+2(1 g'\"1)]+RN_1(§) graphic relation in Eq(40) as

1+2/R_1({), ¢i-1=1 (with probability p)

Ri(5)= 1+z=Ry, Z;—1=0 (with probability 1—p).

Note now that recursion schemes of quite a similar formin which one sets)’' =In(1/\e) and h/=In(1/y/z). As no-
have been discussed already in the literature in different corticed in Ref.[20], the product in Eq(43) also appears in the
texts. In particular, two decades ago Derrida and Hilhorskolution of a two-dimensional Ising model with row-wise
[20] (see also Ref.33] for a more general discussiphave  random vertical interaction4], the role ofe being played
shown that such recursions occur in the analysis of théy the wave numbep. The recurence scheme in E@3)
Lyapunov exponenE(e) of the product of random 22  emerges also in such an interesting context as the problem of
matrices of the form enumeration of primitive words with random errors in the

locally free and braid groupi82]. Some other examples of
physical systems in which the recursion in E43) appears

F im
(e)=||mN Iny Tr

N— o

N1 can be found in Ref.30].
iﬂl Ze z, (43 Further on, Derrida and Hilhor$20] have demonstrated
iz} thatF(e) can be expressed as

wherez; are independent positive random variables with a
given probability distributiorp(z). Equation(43) is related,

for instance, to the disorder-averaged free energy of an Ising
chain with nearest-neighbor interactions in a random mag-
netic field, described by the Hamiltonian

1 N
F(e)=lim ;1 (INR{)(z), (45)

N—s oo

whereR/ are defined through the recursion
N—-1 N , ) , ] ,
H'=—J o003 2, oiois1— 2, hioy,  (44) Ri=1+z_ 1tz ("~ 1/R_; with Rj=1 6
=1 =1
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Moreover, they have shown that the model admits an exact Note next that the first term on the right-hand side of Eq.

solution when

p(2)=(1—p)d(z)+pdo(z—y), (47)

i.e., when similarly to the model under study,are indepen-
dent,
values—y with probability p and 0 with probability *p.
Supposing that whenincreases, a stationary probability dis-
tribution P(R’) of the R/ independent of exists[35], Der-
rida and Hilhors{20] have found the following exact result:

y—b
F(e)=pIn(1+b)—p(2—p)in 1+bl—by>
*® y_b N+1
2 N
+(1-p) Nzlp In|1+b 1_by) . (49
where
1—y)2 2 1/2
b=1+( y) 1-|11+4 <y . (49
2¢e%y (1-y)?

We note parenthetically that EG8) shows a striking behav-
ior in the e—0 limit. In this case, Derrida and Hilhorg20]
have demonstrated that for

py>1, and p<1, (50

which implies thatfp(z)In(2<0, the Lyapunov exponent

F(e) defined by Eq.(48) exhibits an anomalous, singular

behavior of the form
F(e)~e€”,

where a=—In(p)/In(y). (51

We turn now back to our recursion scheme in Ed) and
notice that setting

Ri({)=(1+2)R/, (52
and choosing
z z
=_—__— —_plLan 2_ _ (Lan)
y 11z n;, and e 147 =
(53

makes the recursion schemes in E4Q. and (46) identical

(54) is a trivial Langmuir result for thep=0 case
(adsorption/desorption without reactjowhich would entail
n{9YeV=z/(1+2z). Hence, all nontrivial, random reaction-
induced behavior is embodied in the Lyapunov exponent
F(e). We hasten to remark, however, that despite some co-

random two-state variables assuming only twdncidence of results, the random reaction/adsorption model

under study has completely different underlying physics, as
compared to the model studied by Derrida and Hilhp2éj.
Thus, one would not expect any singular overall behavior of
pressure in thee—0 limit (which corresponds here to the
limit of vanishingly small activities (or u— — ), and thus
pertains ton<1). In consequence, heyeis also dependent
on zandy—0 in the same manner as Moreover, in our
casey<0, which invalidates the condition in E¢0).

B. Disorder-averaged pressure

Hence, the disorder-averaged pressure per site can be
readily obtained from Eqs(48) and (49) by defining the
parametery and e as prescribed in Eq53). This yields the
following explicit representation:

(1-p)?
p

BPY =In(¢,)— (1—p)In(1— w?)+

X > pMIn[1—(—1)NwN*2], (55)
N=1
where
1+/1+4z
N (56)
and
Ji+4z—1
w=-————— =2 p?=1— —. (57)
Vi+4z+1 o

Note that¢, obeys¢,(¢$,—1)=2z and thus forz=1 the ¢

is just the “golden mean,’»,;=(/5+1)/2. Below we will

show why and how this mathematical constant appears here.
On the other hand, the derivation of the result in Exh)

can be performed in a very straightforward manner without

resorting to the assumption on existence of a stationary prob-

ability distributionP(R"). The intermediate steps of such a

Consequently, the disorder-averaged pressure per site in oflgrivation contain useful formulas, which might be helpful

random catalytic reaction/adsorption model can be express
as

1 1
pgoquemEE|n(1+z)+ EF(G),

whereF(¢€) is the Lyapunov exponent of the product of ran-
dom 2X 2 matrices in Eq(43), in which e andz; are defined
by Eqs(47) and(53).

(54)

d@r the understanding of the asymptotic behavior of &§).

Since it allows us to answer also the question of how the
thermodynamic limit is achieved, we find it expedient to
present such a derivation here.

We start with calculation of an explicit form @i R(2)), .
To do it, it suffices to notice the following two points. First,
we notice that

R(OD=Ri({i-1:8i-2:8i-3, -+ - {1 (59
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and aging it with respect to the distribution of random variables
Ri-1(O)=Ri({i-2.{i-3.{i-a, - - L), (59 &, we have

i.e., Ri_x({) depends only onfj_,_, with n=1,2,...] IN[R;()] =<In(l+z(1—§- )+ 2z fi-a )> .

—k—1 and is independent d@f _,. Second, with probability (RO TV UR_(D) [

1—p the Ricatti variable is set equal to+lz, i.e., to its (60)

initial value R4, which is a nonrandom function. These two

observations allow us to work out an explicit formula for We notice next that sindg;_ 1(¢) is independent of;_,, we

(In(R())); which is valid for anyi. can straightforwardly average the right-hand side of (BQ)
Taking the logarithm of both sides of EGI0) and aver-  with respect tof;_,, i.e.,

1+z(1—¢_4)+z iz )>
4

<|nRi(§)>§:<|n Ri-1(0)

z
=(1-p)In(1+2)+p{In| 1+
(1=p)in(1+2) p< Ril(g“))>§
z
=(1-p)In(1+2)+p/ In[ 1+ 2 . (62)
1+z(1-¢ )+ 7=t
( gl 2) Ri72(§) .
Now, sinceR;_,(¢) is independent of;_,, we can again perform averaging over states of this variable, which yields
z
(INRi()),=(1—p)In(1+2)+p/ In| 1+ 2
1+7(1— ¢ ) + 7=
( gl 2) Rifg(é‘) ;
z
=(1— _ _c 2
(1-p)In(1+2)+p(1—p)In| 1+ 152 +p°/ In 1+1+ -
Ri—2(4)
—(1-p)In(1+2)+p(1—p)in( 1+ ——|+p? [ In[ 1+ z 62
=(1=p)in(1+2)+p(1-p)in{ 1+ —]+p° [ In - - (62
1+
1+2(1- ¢ _5)+2 fi-a
Rs(0 /[,
|
Noticing again thalR; _3(¢) is independent of;_; and so
forth, we arrive eventually at the following explicit represen-
tation for (INR()), 7
- Fi=In| 1+ : (64
z
(INRi(9)=(1-p) 2, p" " Ft+p' "7, (63 =
n=1 1+
where the sum on the right-hand si@ids) of Eq. (63) is 1+ m

defined fori=2 and equals zero otherwise, whifg denote
natural logarithms of the Stieltjes-type continued fractions of

the form To analyze the leading large-behavior of the disorder-

averaged pressure per site we resort to the standard generat-
z ing function techniqug36], often used, in particular, in the
1+m ' analysis of peculiar properties of different random walks
[37]. Let us define first an auxiliary generating function

Fi=In(1+2z), F,=In

z
Fa=In| 1+ ——1,
Z

1+ — RFEI t"(INRy()) - (65)
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Then, multiplying both sides of E¢63) by t" and perform-
ing the summation, we readily find that

E (66)

= p(l

Consequently, the generating function of the averaged loga-

rithm of the partition functiorZy({) obeys

) - N 1
= 3 tMIZy (D)= 3 S, (nRy(0) ;=1 —R,
N=1 N=1 n=1

1-pt <
= 2 t"p"

p(1—1)2 i=1 ©7

PHYSICAL REVIEW E67, 016115 (2003

in which equationP{9U¢" defined by Eq(73) is the desired
thermodynamic limit result for the disorder-averaged pres-
sure per site in the quenched disorder case. Note that in
virtue of the expansion in Ed.74), the corrections to the
thermodynamic limit are proportional to the first inverse
power of the chain lengtN. Note also that since

_ 1+1+4z
lim 7, —

n—oo

=In(¢,)=1In (75

i.e., F, is the nth approximant of Ing,), P{9"®? can be
thought of as the generating function of such approximants.
One expects then that fax 1 the sequence of approximants
converges quickly to Ing,); expanding theath approximant
F, into the Taylor series in powers af one has that the first

n terms of such an expansion coincide with the firéerms

and hence, the generating function of an average pressure p&‘rthe expansion of Ink,). ConsequentlyF, andF, , differ

site, defined as

0

1 tN
5 2 NNz,

= 68
P B N=1 €8
attains the form
1 <
P=5p > PNAIN Pl (69)
p N=1
where
t A1
| =Jd . 70
N 0 7-(1—7)2 (79

Now, in the largeN limit, the asymptotic behavior of the

disorder-averaged pressuRg, per site in a finite chain of

lengthN can be obtained very directly from the expansion of
P; in the vicinity of the closest to the origin singular point

[36], i.e.,t=1. Since, in the limit—1~, |y obeys
In=7=¢ +(N=D)In(1-t)+0(1), (71)
we have that in this limifP; is given by
P=1 tF><que">+|n(1 t)( ppgoq“e@ +0(1),
(72)
where
(1-p)
plaven — "Fo. 73
Bp nZl P 73

Consequently, we find that in the largelimit P& fol-
lows

(74

1 J
(quen _ p(quen _ — [ _— p(quen
Py P N ( pap P

1
+Om

only by terms of order", which signifies that convergence
is good. On the other hand, fa=1 convergence becomes
poor and one has to seek for a more suitable representation.
As a matter of fact, already fa=1 one has that in the limit
n— o the approximant, tends to Ing,), i.e., the logarithm
of the “golden mean,” which is known as the irrational num-
ber worst approximated by rationals. Moreover, Zef « the
convergence is irregular in the sense that only the approxi-
mants with odd numbers show the same lazgeehavior as
In(¢,); the approximants with even all tend asz—x to
finite values Ing/2+ 1) (see, Fig. 4

We turn now back to the result in E¢Z3) aiming to find
a convenient representation more amenable to further analy-
sis. To do this, let us note the#, in Eq. (64) can be ex-
pressed as the logarithm of the convergents of the Stiltjes-
type continued fractions,

Kn(2) ) 76

Fn=In ,
3 (Kn—l(z)
where K,(z) are polynomials of the activityz defined
through the three-term recursién,
Kn(2)=Kn-1(2) +2zK,-2(2), Ko(2)=1, K1(2)51+(Z-7)
7

These polynomials can be, of course, obtained very directly
by introducing their generating function, but we can avoid
doing it by merely noticing that they are simply related, in
view of the form of the recursion in E477), to the so-called
golden or Fibonacci polynomialg . »(x) [38], which are
defined by the three-term recursion of the form
Fria(X)=XFa(X)+F,-1(x), Fai(x)=1, Fz(X)E)((-?S)

On comparing the recursions in Eq3.7) and (78), one in-
fers that

2lt is straightforward to check that the polynomi&}(z) is just
the partition function in Eq(1) for a chain of lengthn in the
completely catalytip=1 system, i.e.K(2)=Z,({=1).

016115-10
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3.57 In virtue of this formula, one finds that the ratio of two
F E consecutive golden polynomials obeys
n 1
3 Fri2(1h2) ¢, [[1-(-1)"0""?]
=2 SN :7)
Fraa(1h2) VZ\[1+(-1)"0" ]
E
25 3 wherew has been defined in E¢7). Consequently, we find
that thenth approximant?, is given by
k5
2 Fo=In( ) +1 [1= (=1 83
_ =In n ,
) L+ (D ™Y

In(¢2) where, as we have already remarked, the first term on the rhs

1.57 of Eq. (83) corresponds to the limiting form of the approxi-
mants, while the second term determines the relaxation to

FG this limiting form. More specifically, to the leading order this

n relaxation is described by an exponential function

F4 exd —nin(l/w)]. Consequently, one expects a fast conver-

gence in case whenis small (w is smal) and poor conver-

E gence wherz—» (w—1). Substituting Eq(83) into Eq.

2 (73) we recover, upon some straightforward algebra, the re-
sult in Eq.(55).

0.5

. . . . . . C. Asymptotic behavior of the disorder-averaged pressure,
0 5 10 15 20 25 30 mean density and the compressibility

z Consider first the smalt- behavior of the disorder-
averaged pressure per site, defined by ). As we have
FIG. 4. Plot of the approximant$,, n=1,2,3,4,5, and 6, already remarked, expanding timh approximant?, into

and In,) versus activityz the Taylor series in powers af one has that the firstterms

of such an expansion coincide with the firsterms of the
Ki(2) =2 D2 o(112). (79  expansion
+ 1+
Hence, the approximarf, can be expressed as In(¢p,)=1In %
1 F 1z o qyn n
fn=§|n<z>+ln<M). . Ly CUTem
For1(142) 2Jmica T(n+1)  n

Note that even at this stage one may understand where fro@nich implies thatz,, and%,,_, differ only by terms of order

such functions as$, appear in the expression for the zn anq allows to obtain very directly a convergent snzall-
disorder-averaged pressure in E8f) (first term on the rhs expansion of the pressu@quen). We find then
The point is that, similarly to the Fibonacci numbdfg )

=F,(1), which obey lim, ..F,/F,_1=¢,=(5+1)/2,

the ratio of two consecutive golden polynomidis(1/\/z) pPlauen =z 1er)22+ 1+2p+ p2)23

and F,_;(1//z) also converges as—x to a finite limit 2 3

given by the functionp,/+/z. One expects hence that the rest 1 7

of terms on the rhs of Eq55) stem from the finitea effects _(Z+ §p+4pz+ p?|z*+0(2°). (89

and describe the relaxation of the logarithm of
Fa(1N2)/F,_1(11V2) to In(s,) .

To determine the relaxation terms, one uses the standa
definition for the Fibonacci polynomials,

r%onsequently, in the smatldimit the mean density obeys

nueN=z—(1+2p)z%+(1+6p+3p?Z°

n n

o [(xeEER —(1+14p+16p?+4p>)Z*+0(2°), (86)
Fn(X) VN s
/4+X2 2 X+ 4+ X

81  while the compressibilitk{™*" follows
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1 which represents the contribution of terms with eterNote
ﬁ_lk(Tquen):EJr p(2—p)z—4p(2-p)zZ° that in contrast to the behavior & 44, the sum in Eq(92)
diverges wherz— (w—1). Since + w?N*2~1— for
+3p(8—p—2p?)Z3+0(z*. (87 w—1, we have that in this limit
2

Note now that the expressions in E¢R5) to (87) differ from S - P IN(1— o) (93)
even .
1-p?

their counterparts obtained in trennealeddisorder case,
Egs. (23), (26), and (27), only starting from the terms pro-
portional to the fourth power of the activigz On the other To obtain several correction terms we make use of one of
hand, the coefficients in the smallexpansion nonetheless Gessel's expansiorf89],

coincide with the coefficients in the expansionP§f2" and _1)kyk
(reg) : 2(N+1)x ( )
P9 when we sep=0 orp=1 in Eq.(85). N ———3]= E gk(2N+2) . (94)
Now, we turn to the analysis of the largebehavior 1-(1-x)

which is a bit more complex than tlze<1 case and requires .
understanding of the asymptotic behavior of the sum whereg,(2N+2) are the Dedekind-type sums of the form
1

g(2N+2)= > ———

5= 3 plin[1-(~1)Na""2] (89) ‘ 2 (-1

©

(95

where the summation extends overabeing the (N+2)th
roots of unity(with {=1 excluded. As shown in Ref[39],
the weightsg,(2N+2) are polynomials inN of degree at
mostk with rational coefficients; first few values @fi (2N

entering Eq(73). We note first that in this sum the behavior
of the terms with odd and eveM is quite different and we
have to consider it separately.

Let

+2) are
1 & g1(2N+2)=—(2N+1)/2,
=— Nin(1+ N+t 89
Sodd™ 5 Nzl pin(1+w ) 9 ga(2N+2) = — (2N+1)(2N—3)/12,
denote the contribution of the terms with o8l Note that g3(2N+2)=(2N+1)(2N—-1)/8,
when z—« (i.e., w—1) the sumS,44 tends topIn(2)/(1 94(2N+2)=(2N+1)(8N3+ 28N?— 186N + 45)/720.
—p?). The corrections to this limiting behavior can be de- (96)

fined as follows. Expanding the logarithn{1ar "] into . _ o _
the Taylor series in powers of and then using the definition Now, settingx=1/¢, in the expansion in E¢94), plugging
w=1-1/¢, and the binomial expansion, we construct a sedt to Eq. (92), and performing summations ovsl; we find

ries in the inverse powers @f,. This yields that Se, e can be written as
1p(3—p») 1 1p(3+6p>—p p2 p?
Sodd= | = - Sewen= ~ T IN(g2)+ ——In(2)+s
odd™ ( )~ (1 p2)2 d)z 3 (1_p2)3 even 1— (d’z) p ( ) p
1 1 p(15+10p%>—p* 1 (-1 )k
X5+ g Opz 3 P 2o |- (90 - E Gi(p) (97)
¢ 24 (1-p)° 4 : kgy

Note that this expansion is only meaningful whep>(1  wheres;, is an infinite series of the forin

—p) ' [z>(1-p) ?)], which signifies thap=1 is also a %

special point for the quenched disorder case. Sp= E p?NIn(N+1), (99)
Further on, plugging into the latter expansion the defini- N=1

tion of ¢,, ¢,=(1++1+42)/2, we obtain the following

expansion in the inverse powers of the activity while G, (p) are the generating functions of the polynomials

gk(2N+2),

< | n2) p(B3-p) 1  p(O-2p*+ph1

odd_ TS T o2 2 . 23 S
2 (1- P2)2 72" 8 (1-p?)® 2 *Note thats, shows a nonanalytic behavior whem-1. This

2. 4 function can be represented as
+p(3—4p +p7) 1 N 1 o1 o
48 (1—p2)3 2302 2] (91) S=— 2, d(p?n,1), (98
Consider next the sum where®(p?,n,1) are the Lerch transcedentb(p N,1)=37",(1
o +1)""p?. It is straightforward to find then thas,=—1/
Sepen= 2 PNIN(1— w2N*2), (92)  (1-p?)In(1-p®)—y/(1-p*)+O[(p)], where y is the Euler
N=1 constant.
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Gk<p>=NZl 9 (2N+2)pN. (100

Inserting next the definition oth,, we find the following
explicit asymptotic expansion:

2 2

p
Seuen:_z — 2|n(z)+1_pz|n(2)+sp
_p¥2-p*) 1 p*21-18°+5p%) 1
(1_p2)2 Z1/2 24(1_p2)3 Z
p*(2-p?) 1 1
+—=—+0| <. 10
24(1—p?)? 732 2 (10D

Finally, combining the expansions in Eg&.3), (91), and
(101, we find the desired large-expansion for the disorder-
averaged pressui{d'e"

1 (1-p)? (1-p)?
(quen _ _— = ¥
BPY —1+pln(z) 17p) In(2)+ Sp
+3Lp—pgz+o(1> 102
6(1+pP(1-p 2 \22)

Note thatP{9"®" in Eq. (102) shows a completely different

PHYSICAL REVIEW E7, 016115 (2003

cases is presented in Fig. 2.
Finally, from Eq. (103 we find that the compressibility
k{@ue? admits the following form:

1 6+3p—p° 1+1 p(6+3p—p3? 1
6 (1+p)(1-p? 2 36(1+p)%(1-p?)? 2

1)
2/’

which also holds in the asymptotic limit>(1—p) 2.

B~ laven =

+0 (104

V. CONCLUSIONS

To conclude, in this paper we have presented an exact
solution of a random reaction/adsorption model, appropriate
to the situations with the catalytically activated reactions on
polymer chains containing randomly placed catalysts. More
specifically, we have considered here the A— 0 reaction
on a one-dimensional regular lattice that is brought in contact
with a reservoir ofA particles. TheA particles adsorb on and
desorb from the lattice according to the Langmuir mecha-
nism. Some portions of the intersite intervals on the regular
lattice possess special “catalytic” properties such that they
induce an immediate reactioh+A—0, as soon as twé
particles land onto two vacant sites at the extremities of the
catalytic segment, or aA particle lands onto a vacant site
while the site at the other extremity of the catalytic segment
is already occupied by anothérparticle. For two different
cases; namely, when disorder in placement of the catalytic
segments can be viewed asnealed,and a more complex
situation with aquenchedrandom distribution of the cata-

behavior compared to its counterpart in the annealed disordeﬁytic segments, we have determined exactly the disorder-

case already in the leading term in the lamexpansion.
Note also that her@=1 appears to be a special point and
thus the expansion in Eq102) becomes meaningless fpr
=1. As a matter of fact, fop arbitrarily close to, but less

averaged pressure per site. For the annealed disorder case
such a pressure has been found in a closed form and explicit
asymptotic expansions in powers of the activity for the mean
particle density and for the compressibility of the adsorbate

than, unity one has intervals that are devoid of the catalyti¢,5 e been obtained. In the case qfencheddisorder we
sggments. Contribution of such intervals _to the overallhave shown that the thermodynamic limit result for the
disorder-averaged pressure is of a Langmuir type and vanyisorder-averaged pressure per site can be obtained very di-
ishes only whemp is strictly _equal_ to unity, which implies rectly by noticing a similarity between the expressions defin-
that also her@=1 is a special point _ ing the pressure in the model under study and the Lyapunov
_ We find next that foz>(1—p) "~ the mean particle den- eyponent of a product of random<2 matrices, obtained by
sity obeys Derrida and Hilhorsf20]. We have also derived an explicit
expression obeyed by the averaged logarithm of the partition
function, which is valid for any chain lengtN. From this
1 expression we have constructed the lakjexpansion and
_+O( have shown, in particular, that the first correction to the ther-
z modynamic limit result for the disorder-averaged pressure
per site is proportional to the first negative powemMbfThe
leading term in this expansion coincides with the one found
from the analysis by Derrida and Hilhorst. Explicit
i.e., contrary to the behavior of the mean particle density inasymptotic expansions for the mean particle density and for
the annealed disorder case, E80), n{?"®" tends towards a the compressibility were also derived. We have demonstrated
constant value 1/(% p), which depends op and coincides that for low activities in the annealed and quenched disorder
with the corresponding valugs'2”=1 andn("®9=1/2 for  cases the coefficients in the corresponding expansions of the
p=0 and p=1. Behavior of the mean density versus thepertinent parameters in the Taylor series in powerg ob-
chemical potentiak for the annealed and quenched disorderincide up to the ordez® and start to deviate from each other

1 1 6+3p—-p°
1+p 6 (1+p*1-p?

1
(quen _ -
nOO 2 1

z
(103
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in the fourth order. On the other hand, expansions in inverséhe behavior of the compressibility: in the annealed disorder
powers ofz (largez behavioj are different already in the case it appears to be a nonmonotonic function of the mean
leading order. Most spectacular differences between the amlensity p of the catalytic segments, while in the quenched

nealed and quenched disorder cases have been observeddisorder case it is a monotonically increasing functiorp.of
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