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from the hydrogen bond topology of ice
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Ice-lh consists of a disordered hydrogen-bonded network. The degree of disorder in ice-lh, and possible
phase transitions to an ordered phase have been debated in recent years. The dependence of energy, free energy,
and other scalar physical properties on H-bond topology is needed to understand these phenomena. Graph
invariants provide a means of linking physical properties to the topology of the H-bond network. We have
previously shown the effectiveness of graph invariants for finite water clustets Kuo, J. V. Coe, S. J.

Singer, Y. B. Band, and L. OjarneaJ. Chem. Phys114, 2527(2003)]. In this work, we develop a formalism

for the graph invariants of periodic systems. We demonstrate that graph invariants for small unit cells are a
subset of the graph invariants of larger unit cells, providing a hierarchy of approximations by which detailed
calculations for small unit cells, such as periodle initio calculations as they become available, can be used

to parametrize the energy of the astronomical number of H-bond arrangements present in large unit cells. We
also present graph enumeration results for ice-1h, analyzing conflicting results that have appeared previously in
the literature and furnishing information on the statistical properties of the H-bond network of ice-lh in the
large system limit.

DOI: 10.1103/PhysRevE.67.016114 PACS nunier05.10—~a, 64.60.Cn

Hydrogen bond order and disorder in ice-lh is an old Graph invariants serve two important functions.
problem that is still the subject of controversy. Since the (1) They enable the enumeration of all symmetry-distinct
work of Pauling, Giauque and and Stout in the 1980Q%], it H-bond arrangements by changing it from Q(NZ) to
is believed that the protons in ice-lh are disordered, subjeab(N In N) problem[21].
to the constraints of the Bernal-Fowler “ice rulef3], that (2) They provide a means to systematically parametrize
each water donates to two hydrogen boridsbonds and hysical properties of water clusters or ice configurations
accepts from two other H bonds. The number of allowed4t giffer in their H-bond topology.
hydrogen bonding arrangements in an infinite periodic lattice In this work we use graph invariants to facilitate the list-

has been well-establishdd,4,5. However, conflicting re- ing of all the hydrogen bonding arrangements accessible in

sults for the number of distinct H-bond arrangements in P€Several unit cells of the ice-Ih lattice. We resolve the discrep-

riodically replicated units cells, candidates for a pOSSibleancies in the literaturg6—g] for small unit cells. We also
low-temperature ordered phase of ice, have appeared in the : o .
literature[6—8]. Small energy differences between hydrogenprowde results for larger unit cells_ containing b|I.I|<.)ns of'dn‘-
bond arrangements in ice may induce a phase transition tofgrent H-bopd arr.angements, Wh'c_h are of sufflc[ent size to
proton-ordered crystal, although under normal conditions th€€rVeé @s simulation cells for statistical calculations. With
transition is kinetically inaccessible. Most experimental re-n€se data in hand, we analyze properties of hydrogen bond-
ports center around a first-order transition at 72 K to a ferroing in ice-Ih that depend exclusively on the topological con-

electric structurd9—17). However, a substantially different Straints of the crystal lattice and satisfy the ice rules.

transition temperature has been repofte], and the ferro- In a previous work on water clustef1] we demon-
electric nature of the low-temperature structure has beeftrated that graph invariants furnish a very useful set of
questioned as well19,20. symmetry-adapted functions for capturing the dependence of

The purpose of this work is to extend our graph theoreti-scalar physical properties, such as energy, free energy, etc.,
cal techniques, originally developed for water clus{e$], on the arrangement of H bon{21]. In that work we devel-
to periodically replicated systems, providing analytic tools tooped a hierarchy of invariants—first-order, second-order, and
address the issues mentioned above. We develop the concédypgher-order invariantsthey are defined in Sec. JH-and
of graph invariants for periodically replicated systems. that physical properties of water clusters could be described
Graph invariants are functions of hydrogen bond variablegjuite well in terms of the simplest of the invariants, the first-
which are invariant to the symmetry operations of the sysand second-order invariants. The first-order invariants are of-
tem. In other words, graph invariants are symmetry-adapteten identically zero, as they are for the ice-lh lattice. Using
functions that are appropriate for describing how the scalamnvariants to parametrize the dependence of cluster energy on
properties—e.g., total energy, free energy, squared magnits H-bond topology, we successfully described the energy of
tude of the dipole moment, etc.—depend on the arrangement 10°~1¢ different hydrogen bond isomers of a {B),,
of H bonds. cluster, spanning a range of50 kcal/mol, with only seven
numbers, one of which sets the zero of the energy $edle
In this work, we show how the same procedure may be
*Electronic address: singer@chemistry.ohio-state.edu adopted for crystal lattices. At the same level of approxima-
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tion that was successful for clusters, we show here that or

the order of ten numbers should parametrize the energies an 3> 5— 3 5—

other scalar physical quantities of the billions of H-bond iso-

mers that are possible in a large unit cell of ice-lh. The goal&_ & - & L, L,
of this work is to provide the theoretical framework that

reduces the description of large numbers of H-bond isomer: 5 6— 2. $_

to a handful of parameters. The value of those parameter:

must come from future detailed calculations, such as periodic t_’ L’
ab initio calculations for ice, or from experiment. - 6— o

The implication of these results is that a relatively small ) ) ) o
number of calculations should suffice to predict the lowest FIG- 1. A square ice lattice used to illustrate graph invariants.
energy structure and phase transitions in ice-lh. This is sigThe molecular configuration, shown on the left, is summarized by

nificant because different H-bond arrangements in ice aréhe directed graph appearing on the right, The_ hydrogen t_aond ar
. e e . . rangement shown here is adopted as the canonical bond orientation.
closely spaced in energy and it is difficult to predict their

Other periodic hydrogen bond arrangements are possible, as illus-

energetic ordering. Buch, Sandler, and Sadlej have demoR:,iaq in Fig. 2.

strated that empirical water potentials give inconsistent pre-

dictions of the relative stability of these arrangemefi@ik I. AGENTLE INTRODUCTION TO ORIENTED GRAPHS
This information will have to be obtained from costly peri- AND GRAPH INVARIANTS

odic electronic structure calculations. It is currently not fea-

sible to perform electronic structure calculations for every Each hydrogen bond in ice or water clusters consists of a

symmetry-distinct H-bond arrangement for a unit cell largehydrogen covalently bonded to one oxygen, the donor, and

enough for statistical simulations. Even such calculations fof'ydrogen bonded to a second oxygen, the acceptor. Hence H
a Monte Carlo sample would be quite taxing. Instead of suc onds are directional, and are conventlonally_taken to point

expensive routes, our techniques offer the possibility of ex!ToM donor to acceptor. Proton arrangements in ice are sum-

tracting parameters from calculations on small unit cells an arized by oriented graphs, a set of vertices Ilnke_d by di-

. . rected edgef22—-24. The symbolb, stands for the orienta-
bootstrapping to estimate the energy of hydrogen bond art- ftherth h ith cal
rangements in much larger cells. To accomplish this task Wgo_n 0 t ert ydrpgen bond wit _respect to a canonica
' '’ “prientation,b, = +1 if the H bond points in the same direc-

require the relationship betwee_n the graph Invariants of Sm_aﬁon as the canonical orientatioh,= —1 if the direction is
unit cells and those of large unit cells, which is developed 'nopposite

this work. _ ) , . To illustrate the theory, let us take a simple example,
In Sec. | we provide a “gentle introduction” to graph «gquare ice,” which, like ordinary ice, consists of four-

invariants, using an artificial two-dimensional “square ice” coordinate water moleculegOf course, applications to the
lattice as an example to illustrate the basic idea with a miniyey) jce-ih lattice are presented below in Sec) Réart of the
mum of formalism. In Sec. Ill we precisely define graph square ice lattice and the direction of bonds, all in an arbi-
invariants, and how they are generated by group theoreticafarily chosen canonical bond orientation, are shown in Fig.
projection operatoréSec. Il A). In Sec. Ill B we develop the 1 gy possible graphs within thex22 unit cell of square ice,
relation between graph invariants for small and large unihown in Fig. 2, when periodically replicated realize an
cells, and the key concept that permits the physical propefy_pond topology in agreement with the Bernal-Fowler ice
ties of large unit cells to be parametrize by calculations onjes. The eight bonds of thex22 unit cell are given an
small unit cells. The concepts are illustrated in Sec. Il C byarbitrary index ranging from 1 to 8, as indicated in graih

returning to the example of “square ice.” The reader not Fig. 2. The value of the bond variablbg,b,, . . . bg for
interested in the details of the formalism can gather the basig, graphs in Fig. 2 are given in Table I.

ideas by reading Secs. |, Il, and Il C. _ . Some of the graphs shown in Fig. 2 are related to each
Section IV contains applications to ice-Ih. Graph invari- jipar by a symmetry operation. Graphis obtained from
ants for the common eight-water molecule orthorhombic ”nitgraph A by either aC, rotation or reflection operation.

cell of ice-Ih are presented in Sec. IV A and the AppendiX.Therefore, the energy and other scalar properties of the two

Graph invariants also provide an efficient means for comeqnfigurations should be identical. The same is true for

plete enumeration of all symmetry-distinct H-bond arrangeéyanhsB andE, and graph< andF. If the energy depends

ments for either a clus_ter or periodic system. Applications %N the topological features of the H-bond network, then it
ice-lh are presented in Sec. IV B. Graph invariants permit,, st depend upon functions of the bond variatigthat are

complete enumeration of unit cells large enough to approXijyentical for configurations related by a symmetry operation.
mate the infinite-system limit. Our largest example is a 48- Consider the combination of bond variables

molecule water hexagonal unit cells for which there are
2404 144962 possible H-bond arrangements permitted by axn 1

the ice rules, of which 8360361 are symmetry distinct. In 115 =7 (D1b3+ b, +bsbe+b7bg), 1)
Sec. IV C we analyze selected statistical properties of these

arrangements. Finally, we present some concluding remarksghich is an example of graph invariant (The origin of the
in Sec. V. notation 1252 and the normalization constant will be ex-
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A C Buchet al.[8] and refer to bonds with nonbonded hydrogens
on the same side as “cis,” and others as “trans.” In Fig. 2,
all four bonds of graph#& andD are cis. In graph8 andE
the bonds connecting waters along thexis are cis, while
those connecting waters along thexis are trans. None of
the bonds are cis in graplGandF.

Clearly, ngis=2(135%+1), as follows from the dot prod-
uct nature of Eq(1) and can be verified from Fig. 2. Hence,

D E
‘t_’ if Bjerrum’s conjecture turns out to be correct then the graph
o : r’ I Ea invariant| 45 % will be the appropriate link between a scalar
t f physical property, the energy in the case of Bjerrum’s con-
e 4 3 jecture, and the topology of the H-bond network. If the con-
jecture is valid, we would be able to approximate the depen-

dence of energy on the H-bond topology by a relation of the
FIG. 2. Graphs that lead to periodic hydrogen bond pattern%rm oy pology by

satisfying the Bernal-Fowler ice rules in the square ice lattice de-
picted in Fig. 1. In grapl® the bonds are arranged in their canonical
orientation, the same one shown in Fig. 1. The eight bonds associ-

ated with the 2 unit cell are numbered according to the schemehq validity of Bjerrum’s notion of strong and weak H bonds
indicated in graptA. In some graphs the bonds associated with unithas been debated for many years in the litera@r26—24.
cells neighboring the primary unit cell are shown to make it more\nhile certainly appropriate for the water din{@9], it is not
apparent how the orientations of complete water molecules are inélear that H bonds in ice-Ih fall into strong and \;veak groups
dicated by the graphs. For example, in grapthe periodic image

of bond 4 is actually drawn to the left of bond 3. In graBtbond 'filfilc\(/)vrf?ilcr:}? tf)opz)rl]c?g};;T/fté?l?jrgsgrfﬁgg?bgeriI(??allfti\(/:v:gr? rlr?oesrl
variablesb,, b,, bs, bg, b;, and bg all have value+1, while . S . . .
bondsb; andb, have value-1, all defined relative to the canoni- relevant t(_) |ts_ stability is to systematically identifgll

cal orientations of grapi. symmetry-lnvarlany features (_)f the H-bond topology upon
which scalar physical properties may depend. For the22
unit cell of our square ice example, there are four other graph
pjvariants that depend upon pairs of bond variables,

1 2

E~Eo+ a3 @)

plained late). Notice in Table | thatl3;? has exactly the

same value among the three pairs of graphs related by sy

metry operationsl f;z also has a clear physical interpreta-

tion. It is a sum of dot products of four pairs of parallel |§§2=E(b2b3+ b,bs+bghs+bshg), (3
bonds. 122 effectively counts the number of hydrogen 4
bonded pairs in which nonpatrticipating hydrogens lie on the 1
same side of the hydrogen bond. Bjerrum postulated that this |§2X2:Z(blb2+ bsbs+ bsb,+bgbg), (4)

type of bond has higher energy than those in which the non-
bonded hydrogens are more dist§86,26. Instead of the

more complicated notation of Bjerrum, which is only mean- 2x2:£ bbe— bobe— babe-t babe+ bibe+ babe+ bab
ingful for the three-dimensional ice-lh lattice, we will follow *° 16( V5 MoRs  MeEs T HaEs T HIYe T R2Ye T NSTe

TABLE |. Value of the bond variables and graph invariants as- —bybg+byb7+byb7+bsb;—byb7+bibg—Db,bg
sociated with each of the graphs depicted in Fig. 2.

—b3bg+b,bg), ()
Graph 1
A B C D E F |§f2:§(b§+ b3+b3+b3+b2+b3+b3+b3).  (6)

b, 1 1 1 1 1 -1
b, 1 1 —1 1 1 1 An improvement over Eq(2) would be given by using all
bs 1 -1 -1 1 1 1 the invariants that depend on bond variables,
b 1 -1 1 1 1 -1
b: 1 1 1 1 1 1 E~Eo+ayglis *+apal 53+ anad 152+ and §5 2+ eyl §1°2
be 1 1 1 -1 -1 -1 @)
b, 1 1 1 -1 1 -1 While Egs.(2) and(7) are written for the energy, we empha-
bg 1 1 -1 -1 -1 1 size that the dependence of any scalar physical quantity on
1952 1 0 -1 1 0 -1 H-bond topology can be parametrized in that fashion.
1252 1 0 1 1 0 1 For the ice lattice, both real ice-lh and our illustrative
1252 1 1 -1 1 1 -1 example square ice, all invariant linear combinations of
1222 0 0 -1 0 0 -1 single bond variablesfirst-order invariants are identically
122 1 1 1 1 1 1 zero. The graph invariants in Eq4)—(6) are a complete set

of invariant bond combinations for the>x22 unit cell of
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square ice that can be constructed from products of two bonH-bond topologies, the energy, free energy, or other scalar
variables. We call such combinations of pairs of bond vari-physical properties of each of these topologies, if our previ-
ables second-order invariants Procedures for generating ous calculation for cluster21] is any guide, depend upon
graph invariants are described in Sec. Ill. More complicatedhe value of a handful of invariants.
invariants, made from products of three or more bond vari-
ables(third- and higher-order graph invariapt@re possible
as well, although one may hope for convergence with the
respect to description of physical properties as more compli-
cated invariants are included. We have been able to docu-
ment that second-order invariants adequately describe the de- The properties of invariants illustrated for “square ice” in
pendence of energy and other scalar properties on hydrogdhe preceding section, and shown in Sec. Ill to hold quite
bond topology in clusterg21]. generally, sets up a scheme by which information from small
The four additional invariants presented in E¢3)—(6) unit cells can be used to treat the statistical properties of cells
can be assigned physical interpretations, just as we discuss&#ge enough to approach the thermodynamic limit.
for 1252 with relation to Bjerrum’s conjecture regarding cis '€ potential energy surface for ice-lh consists of a num-
and trans H bonds. For examplé,;z measures the degree to ber of deep minima, each corresponding to a different hydro-

which chains of H bonds along theor y direction align in gen bond topology. Working within the framework of classi-
._cal statistical mechanics, the classical configuration integral

the same direction. Because of the constraints of the IC&n be written as a sum of contributions from eachNbf

II. HOW DETAILED CALCULATIONS FOR SMALL UNIT
CELLS CAN APPLY TO SYSTEMS LARGE ENOUGH
FOR STATISTICAL SIMULATIONS

whose OH bonds are both parallel to theor y direction. face[30—39

(Only graphsC andF contain such waters. All other graphs '

contain waters with one bond pointing aloxgnd one point- "

ing alongy.) Ifsxz can be seen to measure this same property. N gv(eN . N BTV (N —y (N

In fact, with regard to the graphs shown in Fig.I2;% and ZN:f drie VU ):;1 fie”# 'Ldr e AVIETVIDL,

1252 are linearly dependent upon each othis 2= 21322 ' ®)

+1. It often happens that, when evaluated for graphs that

satisfy constraints such as the ice rules, invariants are lin-

early dependent upon each other. Relaxing the ice rules, fgi/€ Use a boldfacél to stand for No,Ny), the number of
example, by allowing hydronium or hydroxide to appear in! ydrogen and oxygen atoms. The position of the atoms at the

the lattice, will break the linear dependence of the invariants!th 10cal minimum is denoted as, D; is & N-dimensional

. . - . . . _ N .
The invariantl 252 is rather trivial for the graphs shown in Intégration domain about thiéh minimum,E;=V(ry) is the

Fig. 2, merely giving the fraction of filled H bonds in a unit Potential energy at theth minimum, andf; is the number of
cell. symmetry-related configurations that are represented by one

Let us return to Bjerrum’s conjecture that the energy ofSymmetry-distinct configuration. The canonical partition

different H-bond topologies can be linked to the number offunction of the system is given as
cis or trans H bonds present in the lattice. The beauty of

Bjerrum’s simple conjecture is that it can be applied to both M 3 "
regular, periodic patterns of H bonds, as well as disordered Q=2 ! e*BEiJ drNe— BV = V()]
arrangements. Put another way, the number of cis and trans =1 ASNNI D

H bonds is a topological invariant for a periodically repli- M

cated lattice of arbitrary size, for small unit cells, cells large = fe BEFA, 9)
enough for numerical simulations, or cells whose size tends =

toward infinity in the true thermodynamic limit. We will
demonstrate in this paper that this property of cis and trans H . . .
bonds is shared by all the invariants we generate: invariantd! K€€PIng with the notation of Eq8), A*MN! stands for

like the ones we presented in Eq$)—(6) for the 2x2 unit (Ao °A "No!Ny!), where A is the thermal de Broglie
cell of the square ice lattice are also invariants of larger unitvavelength of atonk, A, = JBh227m,, andm, is the mass
cells. of atomk.

Larger unit cells will also generate new invariants that The contribution of each isomer to the partition function
have no counterpart in small unit cells. However, these nevis determined by the potential energy of the isomer, and
invariants involve bond combinations more distant from eactan integral over “vibrational” or “phonon” fluctuations
other than in a small unit cell. As a result, one may expecgbout theith local minimum of the potential energy surface
that at a certain point these new, long-range invariants willwhose contribution we call the vibrational free enefgy, ; .
not be important in capturing physical properties of the sysAt sufficiently low temperature the classical procedure could
tem. This sets up a strategy for describing the properties die modified to incorporate quantum effects, for example, by
large unit cells, those large enough for statistical simulationgalculating A,j, ; quantum mechanically. Here, we have
in terms of properties derived from small unit cells. Evenmade use of classical statistical mechanics to illustrate the
though the large unit cells admit millions or billions of use of invariants with a minimum of formalism.
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Calculating theE; and A,y ; for the billions of hydrogen sible route to thermodynamic properties. It also might be a
bond topologies found in a “simulation cell,” a unit cell reasonable assumption to replakg, ; by an average value
large enough to approximate the thermodynamic limit, is noﬂvib for each of the isomers, in which cas@,
feasible, yet it is what would be needed to, say, predict pro- e AhuibsM fe BB
ton ordering phase transitions in ice-lh. The graph invariants
we introduce in this work provide a way to circumvent the
need to calculate all thig; andA,;, ; . First consider how the
scheme would work for the energy if one accepted Bjerrum’s  Graph invariants, functions of bond variables that are un-
conjecture about cis and trans H bonds. The energy differehanged under any symmetry operations, can be constructed
ence between a cis and a trans H bond in ice-lh could besing standard group theoretical projection operators. The
established byab initio calculations on small unit cells, for application of a projection operator to a single bond variable,
which this type of detailed calculation is feasible. Sath b, takes the form
initio calculations are not possible for billions of H-bond
arrangements in large simulation cells, but we have shown
that it is certainly possible to enumerate all the H-bond to-
pologies for large cells, determining the coefficiefitin Eq.

(9) and properties such as the cis-trans bond distribution fowhere C, is a normalization constant chosen for conve-
all topologieq 21]. The energieg; for the billions of topolo-  nience g, is a member of the symmetry group of the system,
gies possible for large unit cells would be given, relative toand the sum runs over the entire symmetry group. The char-
an all-trans configuration, by counting the number of cisacters of the totally symmetric representation are identical
bonds in each topology and multiplying by the cis-trans enfor all symmetry operations. Therefore, to construct a linear
ergy difference. This illustrates the two ingredients needed iombination that transforms according to the totally symmet-
our scheme, parameters derived from detailed calculationdC representation of the group, the tergg(b,) are com-
(such asab initio) on small unit cells and enumeration results bined in Eq.(10) with equal coefficients. The appropriate
for a larger simulation cell. It also illustrates that an invariantdroup for a crystal lattice is the space group. We assume that
for small unit cells, in this case the number of cis and trans Hhe crystal is large and periodic, so the translation subgroup
bonds, is also an invariant for large cells and that the enedS ©f order N,NyN, (or obviously N,N, for a two-
getic parameter obtained for small cells is applicable to #limensional lattice such as square)idd/e usex,y,z to des-
large cell. ignate the crystal axes, but nothing in our formalism requires

Of course, using a single parameter, the relative numbéhat these axes be orthogonal. o
of cis and trans H bonds, is not likely to furnish an accurate Other invariants can be constructed similarly:
description of ice-lh. This work gives the proper generaliza-
tion of this idea, showing how a hierarchy of parameters, the | =C E 9.(b;by) (11)
graph invariants, can be generated, and how graph invariants s TISed SadmrEsh
of increasing complexity can be added until convergence is
attained. In our previous work, we showed how even low-
order invariants provided a reasonable description of the en- | st= CrstE 0.(b,bghy), (12
ergetics and dipole moment of the H-bond isomers in water “
clusters[21]. Even when using the appropriate graph invari-
ants, the two ingredients remain detailed calculations for
small unit cells and an enumeration of H-bond topologies for
large cells. Throughout this work we conveniently take the normaliza-

To describe phase transitions, free energetics, not just eion constant to be the inverse of the order of the groGyp,
ergetics, are required. However, any scalar physical propertifaking the invariants intensive quantities,
can be parametrized with graph invariants. Therefore, the
vibrational free energies;, ; are equally amenable to pa- c _i (19
rametrization with graph invariants. We briefly discuss a few G|
methods by whichA,;, ; might be obtained, just to empha-
size that graph invariants do furnish a feasible route to pre- e refer tol, as a first-order invariant, as a second-
dict phase transitions in ice-Ih. In a harmonic approximationorder invariant, and so on. From the definition of invariants,
V(rM)—V(r]) would be taken as a quadratic function in de-it is obvious to see thats=1,. More generally, invariants
viations fromr! and the range of integration ovér could  with permuted subscripts are equivalent. When all bonds are
be safely extended to all space. In the harmonic approximéfilled, all bond variablesb,=*1. Therefore we havé,,
tion, the contribution ofA,;, ; to the heat capacitfy is =const, as well a5, =l - Products of invariants
identical for all H-bond isomers, and the temperature depenare also invariants. For example, products of two first-order
dence ofC,, is fixed by the energieg;. Calculation of the invariants can be expanded as a linear combination of
heat capacity for a model water cluster is given in our presecond-order invariants, products of first and second are a
vious work[21], showing that the invariant scheme is a fea-linear combination of third-order invariants, and so on,

Ill. GRAPH INVARIANTS

1,=C, >, gu(by), (10)
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A. Graph invariants and space groups

— r,s
Ils= % Cealtus (14) Symmetry properties are manifested by a group of permu-

tation operations mapping the set of vertices onto them-
selves. A list of adjacent verticgsertices connected by a
I o= 2 Chimaluow (159  bond, irrespective of the bond’s directiois preserved by
o each of the symmetry operations. The space group of a crys-
tal can be treated as a finite group by invoking periodic
boundary conditions. Consider a lattice with possibly nonor-
r{hogonal unit cell vectorga, ,a, ,a,}. The full space group
Is designated ass. I', the crystallographic translational
group, is generated by the elementary translation operators
{ry7y7,}, wherery7)75(R)=R+ua,+va,+wa,. That s,

We have previously shown that if a symmetry operation ca
bring a single bondb, into —b,, the first-order invariant of
b, is identically zero[21]. More generally, if g,(b,)
==*bg, I, andlg are equivalent. Local constraints, for ex-
ample, ice rules, can cause further degeneracy, as was illus- F:{Tgfr;q';'uzo,l, o Ny=1,v=01,... Ny—1,
trated in Sec. I.

Scalar physical properties that depend on hydrogen bond w=0,1,... N,—1}. (18
topology will be a function of graph invariants. The simplest
relationship, linear dependence, is illustrated below for thene will always assume a large but finite crystal with periodic
energy, although any scalar physical quantity can be paranboundary conditions,
etrized in a similar fashion:

w+N

u+N v+N
T, =1l V=1, andT,

X X1 Yy

=1, (19

E=E0+Z a,|r+r25 arslrs+% Al st -+ (16)
Hence,I' becomes a finite group anfl|, the order off, is

The above expression will always be valid if the physicalNxNyN;.

differences between H-bond arrangements are not too great. AS is well known in the theory of space groufg9], G

We have shown that the linear expansion can be still quitéan be decomposed into a sum of coset$' of

successful for water clustef21], even when energetic dif-

ferences between H-bond isomers are rather great. In Eq. G=Ip,Ulp,UlpgU ..., (20)

(16) the graph invariants provide a vector space over H-bond

topologies. In particular, the graph invariants are symmetry;

adapted combinations that span the symmetry invariant SUI%’ummation of two sets, which is the set of all objects that are

space. . ) contained in at least one of the sets. The set of cosets forms
The linear expansion of Eq16) is not the most general g/

ere thep, are coset representatives aodstands for a

lation bet | " d H-bond topol e factor grougG/I". Conventionally, the coset representa-
relation between scalar properties and H-bond topology, anfy ¢ ps is chosen to be a pure point group operation if pos-
in certain situations we may expect nonlinear dependence

hysical properties on the invariants. To give an example, in ible, or a space group operation involving a minimal trans-
phy prop 109 P'€: Mation if a screw or glide operation.

a 5|mp!e model where the_ total dipole moment arises from The projection operation for the totally symmetric repre-
bond dipolesu, , the total dipole moment could be expressed i A .
sentation ofG, denoted here &S, is generated by applying

in terms of our bond variables as . . = !
all operations of the group with coefficients proportional to
the characters of the totally symmetric representation, that is,
pzZ b, u, (17) with equal coefficients. The projection operator for the to-
' tally symmetric representation of the pure translation group,

and we expect the squared magnitude of the total dipoldenoted here ak, is simply
moment to be well described by a linear expansion in
second-order graph invariantgs,|>~3,sa,l s, and indeed
find this to hold nicely for H-bond topologies of the {B)
cage clustef21]. This implies that a linear expansion |Qf, |
itself through second-order invariants would not be as suc
cessful, unless a series expansion of the square rdet, {f
converged rapidly. Instead, the nonlinear function

Ny—1 Ny—1 N,—1

= > 2 (m)Ury)i(r)", (21)
u=0 v=0 w=0

and for the full space group the projection operator is

VE sarsl s would be the expansion of choice fo,|. (For G=2> g.= > Tpg. (22)
nonlinear functions, the classification of invariants into first, acG BeGIT

second, and higher orders loses its significgn©é.course,

since products of invariants are also invaridiiigs.(14) and  The first sum is over all elements @, while the second sum
(19)], a linear expansion fofu,| in the form of Eq.(16) is over the coset representatives. Our previous equations
would eventually converge, but might require higher-order(10), (11) for graph invariants can be rewritten in terms of
terms. projection operators:
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—Cc A —c ¢ _ A The second equality is a consequence of the periodicity of

I,=C,G(b,), 1,s=C,sG(b,by), I C,stG(b,bghy), ) ; . ot

1= GG, 11s=CrsGbiby). rsi=CraGlbrbs t)23 the lattice, as expressed in E4). The third equality is
(23 obtained by invoking the normalization condition, Ef3).

and so on for higher-order invariants. The action ofG on bond variable®,bs . . . produces a lin-

The graph invariants of Eqél)—(6) were generated using €2 corrAlbination of bonds spanning the entire lattice. Reduc-
projection operators. Before explicitly presenting the procetion of G(b,bs . ..) in thesecond line of Eq(25) to a few
dure, we have to recognize that expressions like(E8.are  terms over a single unit cell multiplied BY| is only true for
still not adapted to bond patterns consisting of periodicallythe value of the invariant, given that the pattern of bond
replicated unit cells. variables is periodically replicated.

For a unit cell O(n,XnyxXn,) with basis
{n«ax,nya,,na,f, the translation group, denoted as

B. Invariants for arbitrary unit cell choice .
I xn,xn, €an be written as

Practical statistical simulations of proton ordering ice-lh
require unit cells large enough to approximate the properties
of an infinite system. However, cells much beyond ten water

molecules allow an astronomical number of different =1 ()Y (MY u=0,1, . .. &_1
hydrogen-bonded arrangements, seemingly making Monte = "™™*" x2Sz Ty 7
Carlo samplind40] the only feasible approach for unit cells N N

large enough to approach the thermodynamic limit. Graph v=01,... —~—1,w=0,1,... ——1}.
invariants provide a link between the properties of large unit Ny n;

cells and cells small enough to allow accurateinitio stud- (26)

ies, thereby providing an alternate to numerical simulations
for larger unit cells. The key is the link between graph in-
variants for unit cells of different size, which we derive in
this section. The derivation presented in this section is rathe]FﬂxX“anz
technical. Some readers may prefer to first see the results
illustrated and confirmed for “square ice” in Sec. Il C, = =
where the relevance of these results to describing H-bond |an><ny><nz| AL L
disorder is more apparent. If the main concepts are suffi-
ciently clarified by the example in Sec. Ill C, this section For graphs satisfying the periodic boundary condition of
may be skipped. unit cell O(n,xXnyxn,), the value of a bond variable at a
Consider the smallest unit cell, defined by the translatiorposition translated by one of the membersl“qfXXnanZ is

subgroupl’. Since the hydrogen bonding pattern is repeatedgqual to the bond variable at the original position,
in all unit cells,

It is elementary to see thdt is equivalent tol'; 1,4 and
Cl'yx1x1=T". For anyI‘nXXnanz, we have

V7rel , value of ;b,=valueof b,. (28
V7 eT, value ofr,b, = value ofb, . (24) TS mecnyxng Tt - (28

The above equation applies to thalueof the bonds, not the Note that the above equation provides fewer consf[raints on
bond variables themselves. The translated babd resides ~ the hydrogen bonds than E(R4) for the smaller unit cell
in a different unit cell fromb, , and the image of;b, under ~ O(1X1x1). As the periodic cell is enlarged, a greater va-
a symmetry operation is different from the imageopf even ety pf hydrogen bonding patterns is per_rnlf[teq'untll, as the
though they might share the same value of eithet or cell size approaches the th_ermody_namlc_ limit, it is capable of
—1. This point is illustrated with an example for “square describing all manner of disorder in an |ce-lh crystal.
ice” in Sec. Il C, which immediately follows this section.  The full space group can be decomposed into cosets of the
[See discussion following E434) below] Periodic replica- ~ ranslation subgroup' . xn,. While the the pure transla-
tion of the hydrogen bonding pattern, as expressed in Edion group for the crystal with unit celD(n,xXn,Xxn,) is
(24), implies that only the coset representatives need to bemaller than folO(1X 1X 1), the set of coset representatives
projected to generate invariants, for O(n,XnyXn,) is correspondingly enlarged by a factor
of nynyn, . The set of coset representatives™ ™" for the
larger cell is given by

Irs...:Crs...é‘(brbs- - )=Crs . 2 lA_‘pﬁ(brbs---)
BeGIT

{T)L('T;T\Q'pﬁLBeG/F, u=0,1,...n,—1,0v=0.1,...n,—1,

=Crs...|F|B§;/F pa(bbs...) w=0,1,...n,—1}. (29)
1 .
_ The space grous may be decomposed into cosets appro-
= bbg...). 25
GIT| ,eezc;‘/r Po(bibs- ) 29 priate for either the cell©(1x1x 1) or O(nyXnyXxn,),
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G=Fp1UFp2UFp3U . :FnXXnyxnzpzxXnanZUanxnyxnngxxnyxnzuanxnyxnngxxnanZU o (30)

In the above equation we have decomposgdnto right the actual bond variable§See discussion accompanying
cosets. For the full translation subgroup the choice betweekgs.(24) and (25).] Using the definition of the coset repre-
left and right cosets is irrelevant becadsés a normal sub- sentatives given in Eq29), we can further simplify invari-
group of G, for which left and right cosets are identical. antsl,s  in unit cell O(n,xXnyxn,),

However,'"™*"y*"z might not be a normal subgroup &,

and the left and right cosets may be distinct. In this case,nc<nyxn,

decomposition into right cosets is the most convenient':

choice because, according to Eg8), following the action

of a coset representative with any member [g%*"y*"z s ny=1 ny—1n,~1
leaves thevalue of the bond expression unchanged, as ex- =Cp™ nzuzo Zo = YT, BEEG/F Pa(bibs...)
plained in the discussion accompanying E@sl) and(25). 0
The application oG on a product of bond variables can 1 MLy il e w
be simplified in several ways. Following from the unit cell ~ —|G/F|n non uzo UZO “~ TxTy Tz
conditions ofO(n,Xnyxn,) expressed in Eq(28) and in ey
analogy to Eq(25), application ofG only needs to involve
the coset representatives, % BEZGW Pa(brbs .. ) . (32
G(b,bs...)= > Lhosnoxn pZXX”vX”Z(brbs ) Let us analyze resu(B2) in two different situations. First
BeGIn xnsn, consider when all the bonds within the prodigbs . . . lie
close to each other within the cé&l(n,xn,Xxn,), in fact, so
=1'n xn xn close that they would fit within a smaller unit ce
IT x| | hat th Id fit withi I it cell

O(1x1Xx1). Then, for terms of this type the quantity in
H nyXnyXn, . . .
% > PN h b ). (3D) square brgcket_s in Eq32) for I XY~ "# is, within a con-
BeGITy wn xn A stant, an invariant,;  for O(1X1X1), evaluated for a
o portion of the larger unit celD(n,xn,xn,). Hence each
The last line of Eq(31) applies to thevalue of the expres- invariant for the small unit cell appears as an invariant of the

sion when evaluated for a periodically replicated system, nokarger unit cell,

1 ng=1ny—1n,~1
NyXnyXn, _ u v, wplxix1
(B [ mnn UZO 020 WZO T Y bbs . . L), bybg ... € O(1x1X1). (33

[The converse, that each invariant in E8R) generated from ucts of bonds separated by distances greater than the dimen-
b/bs ... lying within a small unit cell is an invariant of the sion of the small unit celD(1x 1% 1), these invariants will
lattice with a smaller unit cell, is not true. This is becausedescribe longer ranged physical interactions, which would be
periodicity imposes fewer constrains for the larger lattice.expected to be weaker.

This pOint is illustrated in Sec. Il @Of course, when the In summary, upon en|arging the unit cell from
unit cell is enlarged toO(n,xn,Xxn,), the small cell O(1x1x1)toO(n,x n,Xn,), we find two types of invari-
H-bond pattern is, in general, not periodically replicatedants. The first type are simply invariants of the small cell
within the large cell. Therefore, the valuelcﬁf_xn'yXnZ isnot  evaluated for portions of the large cell and then summed.
simply a multiple of the value of,;  for a smaller unit When decomposing the dependence of enéogyother sca-

cell. lar physical quantitigson H-bond topology in terms of in-
Second, let us consider the case where the bonds withivariants, we expect these invariants to provide the dominant
the producb,bs . .. in Eg.(32) do not all lie within a region  contribution. The second type are fundamentally new invari-

of the size of the small celD(1X1X1). The invariants ants involving products of bonds separated by distances
generated forO(n,xn,Xn,) in this case have no analog greater than the dimension Gf(1X1x1).

from O(1x1x1). These new invariants arise from the Our discussion of enlarging the cell fro@(1x1X 1) to
greater variety of H-bond topologies permitted when the unitO(n,XnyxXn,) applies equally when going from
cell is enlarged. Since this class of invariants involves prodO(n,Xny,Xn,) to even larger unit cell dimensions
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We begin by examining the result of projecting onto
bonds B and & of the 4x4 unit cell,

1

I i;ga: 3_2{b1ab3a+ D24l 4a+ Dsabeat b7abga

+D1p03p+ bopbap+ bspbey + b7,bgp

+D1chgc+ 0oyt bscbgc+brcbge

+D1gb3g+ bogbag+bsgbeg+ b7gbgg

FIG. 3. Labeling scheme for bonds in the<4 unit cell of +D1cb3atbochyst bspbes+b7ybea
“square ice.”
+ blab3c+ b2ab4c+ b5ab6b+ b7ab8b

O(ngXnyxny). This provides a natural hierarchy of ap- +b1pb3gt bopbag+ bscbggt b7cbgy
roximations for decomposing the dependence of scalar
Shysical properties on H-Ft;ondq[opology.gl'he most local and +D1abay + baghap+ Dsabec + brabec.  (34)
dominant effects would be captured by fitting to invariants at ] ) )
the level of the small celD(1x 1x1). If these effects are Each of the first four lines are clearly recognizable &S of
completely dominant, then physical properties for cellEd. (1) evaluated for each22 sector of the & 4 unit cell.
O(nXnyXn,) would be accurately predicted in terms of Each of the terms represents the product of bond.vanat.)lgs
invariants that are from th@(1x 1x 1) cell, summed over for bonds that are parallel and separated by one lattice unit in
all portions ofO(n,xn,xn,). Deviations from this picture either thex or y direction, an interaction that could be esti-
are used to parametrize physical properties in terms of thenated by a calculation for the smallex2 cell. Terms like
invariants forO(n,xn,xn,) that involve longer range in- b1absc may seem to violate this condition, since bonds 1
teractions. This improved characterization could, in prin-and X lie three lattice units from each other in thedirec-
ciple, be tested at a still larger level(n;xn/xn}) until  tion. However, the ternb,,bs. actually represents the inter-
convergence is achieved. action of the bond & with another bond below it which lies
For simplicity, the transition from small to large unit cells in @ neighboring unit cell. Because of lattice periodicity, that
has been discussed here as a mere rescaling of the unit vétand has the samealue as its periodic image bondc3
tors by factors ofn,, n,, andn,. Quite often, convenient Hence, in the termb,,bsc, the variablebs. represents the
choices of larger unit cells involve linear combinations of value of another bond which is its periodic image in the
primitive lattice vectors. Our conclusions apply to theselattice. This example illustrates the distinction, made imme-
cases as well, and we illustrate such unit cells in our treatdiately after Eq.(24), between bond variables and their
ment of ice below. Whatever may be our choice of unit cell,value. In expressions like E¢34) above, it is most conve-
the unit cell vectors are a subgroup of the full translationnient to replace actual bond variables, which might be bond
groupT". The translation subgroup of the unit cell vectors variables outside a primary unit cell, with other variables
can be used to decompose the full space group into righithin the primary cell that have the same value. Returning

cosets, and the link made between invariants for small anéP Ed. (34) above, we could have just as well said that the
large unit cells. term by bz represents the interaction of a bond @ith

another bond one lattice unit above it whose value is the
) _ _ same as its periodic image, bond.1
C. An illustration for square ice Expression(34) is an illustration of the general formulas,
In Sec. | we exhibited the five second-order graph invari-Egs.(32) and(33). The terms in the last four lines would be
ants| 22 associated with the 22 unit cell of our “square identical in value to those of the first four lines if the lattice
ice” examp|e_ The formalism of Secs. Ill A and Il B ex- still had 2x 2 perIOdICIty Put another way, if the letters were
plained how those graph invariants were generated with pro€moved from the subscripts in the last four lines, thereby
jection operators, and exposed relations between graph ifghforcing 2<2 periodicity, the last four lines would dupli-
variants for unit cells of arbitrary size. The very practical cate the first four lines. These terms are indeed parff,
consequence of these relations is that calculations feasibleut they do not appear explicitly in Eq1l) because their
for only small unit cells, such asb initio energetic calcula- Vvalueis identical to terms already present in that expression.
tions, can be applied to larger unit cells appropriate for staln the 4X4 setting these terms must be included as distinct
tistical simulations. Since the formalism of Sec. Il B may be contributions. Provided the additional invariafs. (40)—
forbidding at first glance, we illustrate the relationship be-(46) below] introduced at the % 4 level do not make a sig-
tween graph invariants for unit cells of different size for nificant contribution, the contribution of an invariant like
square ice. The entire set of second-order graph invarianls‘i"zg‘a to a scalar physical property like the energy could be
|74 for the 4x 4 unit cell (Fig. 3) is presented in this sec- estimated fromab initio calculations for the X2 unit cell.
tion, and we discuss the connections with the graph invari- As discussed in Sec. |, invariants nké;ga of EQ. (34
ants of the smaller 2 unit cell. have the physical interpretation of counting the number of
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cis and trans H bonds of square ice. Therefore, if Bjerrum’s 1

conjecture was correct and the energetic difference between |‘11ﬁa=3—2 > (b +b3, +bj,+b3,

a cis and trans H bond was established for»a22unit cell aabed

and the parametesi;; of Eq. (2) established, then for the +b2,+bZ,+b3,+b3,). (39

4X 4 unit cell the energy would be given by

E~Eo+ a3, (35 Each of the invariants listed so far for thex4 unit cell
involves products of bonds that lie sufficiently close to each
where a3 is the same number as in Eq. (2) and has beerpther so that they also generate an invariant for the smaller
established by detailed calculations on the smaller unit. CE||2>( 2 cell, and their contribution to scalar physical properties
Of course, an expression like E@5) would only be appro- can be estimated from calculations for the smaller2cell.
priate if Bjerrum's conjecture about cis and trans H bondsn other words, if then's in Eq. (7) were determined for the
was valid. Therefore, an eXpreSSion using additional inVari'ZXZ Ce”’ then an estimate for the properties of the |arger
ants, like Eq.(7) for the 2<2 cell, would be more accurate. nuymber of H-bond isomers of thex# cell would be avail-
In the following paragraph we illustrate that each of the in-gp|e.
variants appearing in Eq7) also appears as an invariant of  |f the energy or free energy of thex22 unit cell was
the _ _ parametrized  according to  the  value  of
4x4 cell [as, predicted, in general, by Eq®2) and (33)],  |2x2 2x2 2x2 12x2 anq12X2 then a first guess for the
and so thea’s of Eq. (7) determined for the smaller cell gnergy of configurations of thexd4 cell would be in terms
provide !nformatl(.)n about the x4 cell. o of the invariants in Eqs(34)—(39). At this level of approxi-
Just likel7, 5, in Eq. (34), each of the graph invariants mation, the parameters needed to describe the many H-bond
given below in Eqs(36)—(39) has a counterpart among those jsomers of the %4 cell, the a’s of Eq. (16), would be
of the 2x2 unit cell, specifically in Eqs(3)—(6), known from calculations for the smaller2 cell, and only
the enumeration of topologies required for thex4 cell.
Perhaps comparison with more expensive, detailed calcula-
tions for the 4<4 cell would indicate reasonable conver-
(36) gence of the energy. If not, use of invariants involving bond
pairs further separated from each other would be an option to
improve the description. This would involve invariants for
|‘1‘§,ga:§_ > (b1 byt b3,by,+ D507, + 6, 0g,) the 4x 4 cell which have no counterpart in the<2 cell and
azabed are listed below.

1
1305764 , 52, . g (P2aP38+ P1aDagt Doobg+ beubsg),

=a,b,c,

(by,bygt by,b
(@p)=Tab)ca) P TP ‘
034045+ 04,D3p) H

by

]
+ > (bsab7p+b7,b55+ bg,bgg by,
(a,8)=(a,c),(b,d)

+b8ab6ﬁ)]' (37) P .i ~—I. A= l_%qf

1
Ii;ga:_ 2 (blab5a_b3ab5a_blab6a+b2ab6a
64 d

a=a,b,c,

+ b3ab6a_ b4ab6a+ b3ab7a_ b3ab8a+ b4ab8a)

+ > (b1,bgptbg,b15—02,bgp
(a,B)=(a,c),(b,d)

- b8ab2ﬁ_ b7ab1B_ blab7ﬁ)

+ > (bs5ubaptbabs55—bs,bsg
(a,8)=(a,b),(c,d)

- b5ab2,8_ b4ab7[3_ b7ab43)
FIG. 4. The labeling of H bonds, and their canonical orientation,
4 z (b2ab7,8+ b7ab2/3) , (39 are shown here for the Orth&l1 X 1) unit cell. In the canonical
(a,8)=(a,d),(c,b) orientation, all of the H bonds are cis.
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|4><4 _ 1

123%™~ 35 (b1ab3pt+ 03,015+ D405+ bs04ps)

{ (a,8)=(a,b),(c,d),(a,d),(c,b)

+ > (Pgabsgtbs,bestbgb7p+ b7ab8ﬁ)] ) (40)
(a,8)=(a,c),(b,d),(a,d),(c,b)

[4%4 _ 1

1226~ 35 (b1ab2gt b2 015103045+ D4,035)

[ (a,8)=(a,c),(c,b),(a,d),(b,d)

+ > (bs,b75+b7,b55+ bg,Dg s+ bg,b )], (41
(@B)=-(ab){ob). @ad)(ca) P TP T0aT8p T TBaTop

1
Ig;ézﬁs :g cd (bZabSa_ b4ab5a+ blab7a+ b4ab7a_ blab8a+ b2ab8a)

+ by, bes+beybis—bsbes—beabastbasbestbeybas—biabss—bs,bis+bs,b
(a,B):(a,c),%b),(b,d),(c,d)( 1aP68T DeaP157 03,0657 D64035T 04,0687 064045 0D1,055— 05,0157 03,055

+ 05,035 02,065 Dgab2s—02,075—=07,025—D3,075—D7,035— 04,055 05,045+ b3,055+bg.b3p)

+( B):gd) ) (b1ab75+D7,015—=b1,0g5—bg 015+ 05,055+ D5, 025+ b2, bgs+bgabos—04,055—Ds5,04g
+b4ab7ﬁ+b7ab4ﬁ)}, (42
|4X4=i (by,bsz+be,bis—b1,bes— b b1s+brybes+ bg,bostba,bgst bg,b
1b,5¢ 64 (a.8)=%0).@.d) 1a¥58 5¢¥Y18 1la™6pB 6aM1pB 2aM6B 6aM2pB 4aM8 8aM4pB
—bs5,b35— 03,055+ Dg035+D3,065+ 03,075+ 07,035 b3,055—bg,035—06,045—Dasb6p)
+ B4,bs55+Ds, b4z~ Do,Ds 5~ b5 Doz~ bagbs5—brb
(a‘ﬁ):gc)‘(b’d)( 4aP58T P54~ D2aPlspg™ P5D2™ Dy b7~ D7 4ﬁ)
+ b1,bgs+Dg, b1~ 01,075~ 07,015~ bobgs—bgabog) + bygb7, !, 43
(a,B)ng),(c,d)( 1aM8B T PgaP1p7™ P14P787 P74P157 P2aPgp— Vs 23) w=Stcd 2 7] (43
|4X“=i > (by,b15+ by bos+bs,bss+ by, bas+bs,bss+bg,bes+bs,b7s+bg,bgs) (44)
1b,1c 16 (a.8)='0). @) 1a¥1pB 2aM2pB 3aM3B 4aM4ApB 5aM58 6aM63 T7a¥7p 8aM8p/ (1
1
| 474 = by bigt+bo,bos+bs,bastba bag)+ bs,bs g+ bg,bgs+ br,b75+bg bgs) s
la,1c 16{(a,ﬁ)=(a,c),(b,d)( 1aM18T P24P2pT D3,038 T Dy 43) (a,B)=éb),(c,d)( 5aM58T PeaPepg™ P7,075T gy 8[3)
(45)
1
1458 =— b1,b15+ boybostbabsgtba,bag)+ bs,bsz+ b best b7,b75+ b, bgg) b -
la,1b 16{(0(’@_%1))'(&(‘)( 1aP18T P24P2pT P3,P033T Dy 45) (H’B):éc)’(b‘d)( 54055 PDeaPep ™ P7,075T Dgy 85)

(46)

Equations(40)—(46), like Egs. (34—(39), reduce to graph  IV. GRAPH INVARIANTS AND GRAPH ENUMERATION
invariants found for the 2 unit cell when the letter sub- FOR ICE-Ih

scripts are removed, thereby enforcing the periodicity of the

smaller cell. However, it is crucial to realize that the seven In this section, we report graph invariants and graph enu-
invariants in Eqs(40)—(46) are fundamentally different in meration results for ice-lh. Historically, both orthorhombic
nature because they involve products of bonds further sepand hexagonal unit cells have been used in the study of ice-
rated in the lattice than the five invariants of E¢34)—(39). Ih, most often the former, due to the convenience of using
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orthogonal unit vectors. The symmetry of the oxygen lattice
of ice-lh has been identified aB63/mmc since the late
1920s[41,42. Some recent experiments reveal a transition 7 414 \ 8360361

Hex (2x2x1)

to a low-temperature, proton-ordered phase, ice-Xl, in which
the hexagonal symmetry of the oxygen lattice of ice-lh is

; Orth (3x1x1
broken by ordering of the hydrogen bori@-17]. The space hex (2x2x1) rih Gxlxh
group of ice-Xl isCme2;. RS = 36/4 14 2275

A. Invariants for the eight-molecule water orthorhombic Hex (1x1x1)
unit cell

13 5 14
The series of ice-lh unit cells formed by the cell vectors,

\/\ / Orth (1x1x1)
a=
3

=RX, hex (1x1x1) 136 16
7 2 2
b= \8RYy, (47 FIG. 5. Each unit cell is accompanied by three numbers, which
from left to right are the number of second-order graph invariants,
s . the number of linearly independent invariants for graphs that satisfy
c= =Rz, the ice rules for neutral water, and the number of symmetry-distinct
3 H-bond configurations for that unit cell.

has been popular because these unit cell vectors are conve- 1

niently orthogonal. In Eq(47), R is the distance between | 4a4a=- {052+ b5p+ b3, + b3y} (50)
nearest neighbor oxygens, ardy, andz are Cartesian unit 4
vectors. The smallest orthorhombic unit cell is an eight-
molecule unit cell(Fig. 4). Extending our notation to distin-
guish several different choices of unit cell vectors for ice-lh
we use Orthig,XnpXne) in place of O(n,xnyXxn,)

to designate a unit cell obtained by extending the small

?ifr:egrtgl(z)r:g Tﬁé% L;:(Iitscealzé rzlmgrsneasloza)rfge?hz?zx?sb. one were to map the energy of a two—dimensional_sheet of
Hence the eight—watér moltcacule orthorhombic cell is&2XIS bonds onto a two-dimensional triangular lattice. The
labeled Orth(X1Xx1), and there are three unit cells possible dgpendencg of energy upon ferroelectricity or ‘."mt"
Orth(2x 1x 1) Orth(’1><2><l) and  Orth(X1x2) ' ferr_oelectrlcny ofc-axis bonds WI" be cap_tured by thes_e in-
having 16 Walcer molecules bl;t their geometries are7 Vervarlants. Notice how _the possible couplmg_betwerew_qs

' Yonds between two bilayers would be described at this level

different. by invariantsl
ot . . ; ; idan. 4a,8a -
All first-order graph invariants for the ice lattice are iden The remainder of the invariants for the Ortt{1x 1)

tically zero. A set of 13 second-order graph invariants is ; .
obta%ed by projecting on all bondg pgirs from the cell are presented in the Appendix. We have also generated

Orth(1x 1x 1) unit cell according to Eq31). If the projec- invariants and determined the number of linear independent

tion operator acts on a pair of bonds that lie alongdiais invariants for much larger unit cells. The total number of
then all symmetry operations will produce other pairs.’thats’ecor.]d'order invariants and the nur_nbe_r of linearly indepen-
also lie along thec axis. Hence there is a subset of second-dent invariants are reported below in Fig. 5, but we do not

order invariants, three in all, that are composed totally of{ﬁizor;th; e;(rpéllcgr':izrsn;hcgtIﬂ\allegat:gzrforclgtrglggeudnlttc)c:#:c:lpthe
bond pairs along the direction. Similarly, there is another paper. P P

subset of two second-order invariants composed totally 0Energy of the ice lattice, such as the number of cis or trans H

bond pairs that lie within tha-b bilayers. Finally, there is a onds[_43] in the lattice or the de_gree of ferr_oelgctncny n
. . . . ; the lattice, can be expressed as linear combinations of these
third subset of eight invariants coupling bonds from the

: second-order invariants. In addition, the invariants must also
anda-b bilayers. . . ;
. . . describe other topological features that have not been dis-
The following set of invariants are constructed exclu- ; . .
. N cussed in the literature, but which have not been ruled out as
sively from bonds along the direction: : . )
possible factors affecting the energy. Having the full set of
1 second-order invariants allows an unbiased analysis of which
|4a’4b:1_2{b£21a+ b421b+4b4ab4b+ b523a+ b523b+ 4bg,bgp), topological fea_tures_, are most S|gn_|f|cant. _
The graph invariants can be viewed as forming a set of
(48)  pasis vectors in a space of H-bond configurations. For ex-
ample, there are 16 symmetry-distinct H-bond arrangements
possible for the Orth(X 1X 1) unit cell that we picture as
forming a 16-dimensional vector spac¢€urther discussion

| 10,40 describes interactions betweeraxis bonds that are
nearest neighbors above the same bilaffére squared term
’bﬁa appears becausn, is nearest neighbor to its own image
in an adjacent unit cell, and similarly for the other squared
terms inly, 45 .) This invariant is what one would obtain if

1
|4a,8a:g{2b4ab8a+ D4abgp+ 2D4,bgp+ Dapbga}, (49)
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of the enumeration of the actual H-bond arrangements is
given below in Sec. IV B ).Each invariant is mapped to a

vector whose 16 components are the value of that invarian
evaluated for each of the H-bond arrangements. Since ther

are only 13 second-order invariants, they cannot possibly_-.-.-:--'%-_;f. #i
I*.—.’I

A
._"___|

i

span the 16-dimensional space of symmetry-distinct H-bonc
arrangements. In fact, for H-bond configurations that obey

<9

the ice rules; there is a high degree of linear dependenct
among the second-order invariants. Consequently, the spac
spanned by the second-order invariants is only of dimensior
6. Of course, adding third- and higher-order invariants would

2 -

4
f
¥

-

incorporate further flexibility and more fitting parameters. =

P
'l
= i o

S0.dn

<

{} -%
Our experience to date for clusters indicates that energetics i i i
well described at the level of second-order invaridis],
but this conclusion will have to be tested for ice. If trunca- o
tion at second-order invariants is found to be a reasonable
approximation for ice, this provides strong constraints on

. . - ) _ FIG. 6. These two configurations of the Orth{1x1) cell are
how scalar physical properties might depend on H-bond tosymmetry distinct, yet are related to each other by reversal of all H

pology. bonds. The left-hand structure is converted into the right-hand one
by first reflecting through a horizontal plane that bisects the figure
B. Enumeration of H-bond arrangements in ice-lh midway between the twa-b bilayers, followed by reversing all the
H bonds.

In addition to their usefulness in describing physical prop-

erties, graph invariants _aI;o provide an efficient means t?orms, two pairs had the same value, leading to only 15
generate all symmetry-distinct H-bond arrangements of a figistinct Coulomb energies. In 1998 Buch, Sandler, and
hite, or periodic, system. Eliminating symmetry equ“z’alentSadlej sought to enumerate the distinct configurations of the
configurations from a list o graphs is nominally a®(N<) Orth(1x1x 1) cell [8]. They employed a Monte Carlo
operation, because all pairs should be compared for symmesheme to generate  H-bond  configurations  for
try equivalence. However, graphs with different values ofgpih1x1x 1), and then eliminated redundant configura-
any invariant must be symmetry distinct. This suggests agong according to physical properties such as total energy

efficient scheme for eliminating symmetry equivalent graphs, g ginole moment. Buch and co-workers found 16 distinct
The list of graphs is partitioned into subsets such that eac rrangements.

subset contains graphs with unique values of one or more |, this work, we use symmetry properties of the H-bond

invariants. Hence, a graph in one subset cannot be symmetpy,1oqy to eliminate redundant configurations. This is the
equivalent to another graph in a different subset. As a resulgyme criterion used by Howe, but we obtain different results.
symmetry equivalence need only be tested amongzgraphs Using the functional form of a potential function is problem-
the same subset, reducing the operation count fiN“) 0 aic hecause symmetry-distinct structures may have the same
O(NInN). Details are furnished in our previous wd®l].  energy for certain potential functions, but the degeneracy
Results of this efficient enumeration scheme are presentqqay be lifted for other potentials. To give an elementary
here for several unit cells of ice-lh. We provide results forexample originally noted by Lekndf], the total oxygen-
small unit cells because, as mentioned in the introductionoxygen and oxygen-hydrogen Coulomb interaction is identi-
there are conflicting results in the literature for the .4 for all H-bond topologies in an idealized ice-lh lattice
symmetry-distinct H-bond arrangements of cells such as thghere all covalent and nearest neighbor bond lengths are
eight-member orthorhombic cell. We also provide results forequal. Differences among the H-bond topologies arise exclu-
large unit cells, cells whose size can be considered appropr'glvdy from hydrogen-hydrogen Coulomb interactions. We
a}te for stati;tical s'imullations, to'id_entify t(_)pological Proper-yill encounter a more subtle example below, in which two
ties of the ice lattice in the statistical limit, and to demon-gy,cryres have identical bond lengths, and therefore are de-
strate the feasibility of large-scale enumeration. generate with respect to all pairwise additive potentials, yet
are symmetry distinct. Finally, Monte Carlo methods may be
used exhaustively for the smallest unit cells, but would be
In 1987 Howe reported that 17 symmetry-distinct H-bondhighly impractical for exhaustive enumeration of some of the
arrangements were possible for the smalled orthorhombitarger unit cells we present below.
cell, Orth(1X1X 1) [6]. In 1998, Lekner enumerated the 114  Following the enumeration procedure described in our
H-bond arrangements possible for Ortb(1x 1) before earlier work[21], we obtain 16 symmetry-distinct H-bond
symmetry reduction, and then eliminated redundant structopologies for Orth(X 1X 1). Two configurations out of the
tures according to the functional form of the Coulomb inter-16 are of particular notéFig. 6). These configurations are
action[7]. This is not necessarily the same as reduction byelated to each other by reversal of all H-bonds, yet are sym-
symmetry equivalence. Lekner observed 17 distinct forms ofmetry distinct. In an idealized structure where covalent and
the Coulomb potential function. Among the 17 functional nearest neighbor oxygen-oxygen distances are the same for

1. Enumeration results for the eight-member orthorhombic cell
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all molecules, we have verified that the two structures shown
in Fig. 6 have identical distributions of pair distances out to
2.9R. From the structural information given in Lekner’s

0.4

work, it is clear that these two structures are the pair that 03
Lekner found to be energetically degenerate with respect tc P (Iid)
the Coulomb potential, as they would be for any pairwise 02

additive potential.
0.1

2. Sequences of unit cells for ice-lh

The primitive unit cell of ice-lh is defined by the follow-

0 5 10 15 20 25
ing unit vectors: |1l (bond dipole)
\FRA 005
a=1\/3
3
0.04
P (%—trans)
\/5 003
b=—\/3Rx+ J2Ry, (52) oo
0.01
8 .
c=sRz
3 20 40 60 80 100
Jo—trans
We use hexf, <X nyxn.) to label unit cells built from mul- FIG. 7. The top panel shows the distribution of dipole moment
tiples of the primitive unit cell. magnitude arising from H bonds along tbeéirection in a 48-water
We will also consider another hexagonal system consmolecule unit cell[Hex(2xX2xX1)] of ice-lh. Measured in bond
structed from the following unit vectors: dipoles, the maximum dipole moment is 24, the number of H bonds

along thec axis. The bottom panel shows the distribution of percent

- “ trans H bonds among the 96 H bonds of the unit cell.
a=\6Rx+ 2Ry,

C. Analysis of enumeration results

b= \/§Ry, (52) While energetic calculations are beyond the scope of this

paper, constraints on ice structures, as revealed by enumera-
8 . tion of H-bond topologies, do provide some insights into the
c=3Rz behavior of ice-lh and possible low-temperature phases. As-
suming a random distribution of H-bond topologies, the stan-

These unit cells, designated here as Hgy{(n,xn;), form dzlrd r:m)dfl gon:jg tback to :h? ;/_vorlk of Pa:."'ﬁg]'f we Ie;]re h
a convenient sequence of whem,=n,=n. The able here to predict some statistical properties of ice-lh, suc

hex(nxXnXxn.) and HexiXnxn,) cells can be taken to be as dipo!e momgr(ﬁn a bond dipole modelin 'most pr'evious':
prisms with the full hexagonal symmetry of the ice-Ih lattice. Simulations of ice-Ih, the H-bond topology in the simulation
[An example of the Hex(X 1x 1) unit cell is shown in Fig. C€ll has been chosen to have zero dipole moment, and often
9(b).] minimum higher _mult|pole5{40,44,43. Here we r_eport on
The  Orthizxnpxny),  hex(axnyxn.), and how likely or unlikely these low multipole configurations
Hex(nx nXx nc) Ce”s stand in re'ation to each other as shownWi“ be. Our eXplorationS will also Categorize pOSSible candi-
in Fig. 5. The arrows in that diagram represent a membershigates for the low-temperature phase of ordinary ice. Calcu-
relation between the oriented graphs of the cells linked by afations of water dimer indicate that the lowest energy topol-
arrow. When the set of oriented graphs of a smaller unit celpgy would contain maximum fraction of trans bonds, yet
is a subset of the graphs of a larger unit cell, the two cells areecent experiments have been interpreted to favor a ferro-
joined by an arrow. In effect, the arrows represent a chain bglectric structure, where the fraction of trans is 25%, far from
which an invariant from smaller unit cells can predict the optimal according to Bjerrum’s conjectuf@5,26. We will
properties of larger cells. Also shown in Fig. 5 are the num-explore the correlation between ferroelectricity and fraction
ber of symmetry-distinct graphs that would arise from the iceof trans bonds.
rules for neutral water, second-order graph invariants, and We have accumulated data on H-bond geometry and di-
linearly independent second-order graph invariants for neupole moments for the variety of unit cells shown in Fig. 5.
tral water graphs. The number of linearly independent grapfhe results are all qualitatively the same, both for the ortho-
invariants appears to level off and remain quite small, reachrhombic and hexagonal cells. Therefore, we present the re-
ing only 14 for the Orth(X 1X1) and Hex(2<2X1) cells. sults for the largest unit cell, Hexf2x1), whose
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FIG. 8. Scatter ploftop row) and three-dimensional representatidnsttom row of the distribution of H-bond isomers in ice-1h resolved
according to dipole moment and percent trans H bonds. The three-dimensional plots best convey where the bulk of the distribution is located,
while the scatter plots depict the locus of possible structures, regardless of their frequency. From left to right are the distribution of total
dipole moment of the unit cell, dipole moment generated by H bonds alorgatkis, and dipole moment generated by H bonds lying within
the puckered hexagonal sheets parallel to ¢gheand b crystallographic axes. The data were generated for the 48-water molecule
Hex(2x2x 1) unit cell, for which there are 2404 144 962 isomers satisfying periodic ice rules, of which 8360 361 are symmetry distinct.
The dipole moment is reported in units of OH bond dipoles.

2404144962 configuration€3360 361 symmetry distinct  Orth(1x1x 1) unit cell, the H-bond arrangements with H

best approximate the infinite system limit. The dipole mo-bonds completely aligned along thexis tend to have small

ment is calculated in a bond dipole approximation, and theercentage of trans bonds: one isomer has 50% trans, four

bond dipoles are assumed to be parallel to the oxygenincluding Cmc2,;) have 25% trans, one has 12.5% trans,

oxygen vector of the H bonds. We report dipoles in units of

the bond dipoles. Dipole moment arising from bonds along a) — b)

the ¢ axis, the origin of ferroelectricity in the proposed J?;_ j |

Cme2, structure of ice-Xl, are of particular interest. The 4;' 5'_35'-?Q5

distribution, shown in the top panel of Fig. 7, indicates that of . { 7 A

complete alignment of H bonds along thaxis is extremely b uh Q-“'J 1—:"“

rare. Zero dipole moment, as often imposed in computer ?"- o -

simulations of ice-1h[40,44,43, is relatively frequent, but ad/’ _

still is not typical, only occurring in 27.5% of H-bond ar- o 3_

rangements. The bottom panel of Fig. 7 shows that nearly all

H-bond arrangements contain a percent of trans H bonds riG. 9. Two examples of small unit cells with complete ferro-

between 40% and 80%, with the maximum near 60%. electric order along the axis coexisting with a high percentage of
The proposed ferroelectri€mc2; structure of ice-Xl is  trans bonds(a) A 16-water molecule Orth(21x 1) cell with 62%

rather unusual among ferroelectric structures in that it contrans bonds(b) a 12-water molecule Hex(21x 1) cell with 75%

tains a small fraction of trans H bonds. In the trans bonds.
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and one has 0% trans. This is an artifact of the small unit celsmall unit cell, or whether the bonds only belong to a larger
size. In larger unit cells the completely aligned structuresunit cell. We have shown that graph invariants of larger unit
tend to have a larger percentage of trans bonds. This propergglls fall into two categories. The first class involves bonds
is illustrated in the two-dimensional distributions of dipole that are close enough to be part of a small unit cell. The
moment and fraction of trans bonds shown in Fig. 8. Look-dependence of the energy on these invariants can be deter-
ing at the top, center panel of Fig. 8, we find that the permined from smaller unit cells, and used to determine the
centage of trans H bonds in arrangements with maximungn€rgy of the much larger number of H-bond arrangements

ferroelectricity along the axis extends from a minimum of of the large cell. The second clags of invariants involves
0% to a maximum of 75%. products of bonds that only occur in the large cell. Eventu-

ally, as the unit cell is progressively enlarged, the contribu-

tion arising from far-away bonds will become negligible. The

rate of convergence for this second of the two axes in the
rid of approximations has not yet been tested, and awaits
e results of periodiab initio calculations.

Contrary to what one might expect by only considering
the Orth(Ix 1Xx 1) unit cell, there exist several examples of
slightly larger unit cells with complete ferroelectric order in
the c direction and high percentage of trans bonds, as show
in Fig. 9. As one can see from Fig. 8, t@anc2, structure is
very atypical, at least with respect to dipole moment and
fraction of trans H bonds. Optimization of a large unit cell by
Monte Carlo method$8,40] would be unlikely to uncover
either theCme2; structure or the examples of Fig. 9. Enu-  This research was supported by NSF Grant No. CHE-
meration is an important complement to Monte Carlo search0109243. J.L.K. would like to thank the Ohio State Univer-

sity for support.
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V. CONCLUSION

Larger unit cells of iCE-'h, needed to simulate thermal APPENDIX: INVARIANTS OF THE Orth (1X1X1) CELL
properties and phase transitions, can be arranged in astro-

nomically large numbers of H-bond configurations. Energy There are 13 independent invariants for the orthorhombic
differences among these configurations are rather small, $8(1x1X1) unit cell of ice-Ih. Three of those, Eq&8)—
accurate and expensivab initio methods are likely to be (50), are discussed in Sec. IV A. The remaining are pre-
required to understand the low-temperature behavior of icesented in this appendix.

lh. Graph invariants provide a means of describing the en- The following invariants involve products of bonds that
ergy, free energy, and other scalar physical properties of thée within the same bilayer:

large number of configurations using only a handful of pa-
rameters. It is significant to note that, even though the num- 1
ber of H-bond arrangements grows exponentially with sys- _ o+ _ _
tem size, the number of linear independent invariants growéla’Zb_24(2b5bb6a+2b5ab6b 2b1pP2a~2D1ab2n*b1aDza
quite slowly and appears to approach a finite limit. Features

of the H-bond topology in ice-lh previously suggested as +01pD3a 012035+ D1pb3p + brabsat bapbsa
determinants of the energy, such as trans and cis H bonds +boubay+ Dopbap + bsabra+ bspbrat bsabop
[25,26, emerge in our theory as some of the possible low-

order invariants. However, graph invariants provide many + bspb7p— beab7a— Pepb7a— beab7— Depb7p),

other possible links between H-bond topology and scalar
physical properties which have not been considered, but may
turn out to be significant.

The hierarchy of approximations provided by graph in-
variants can be arranged on a two-dimensional grid. On ong,, ,.=
axis, the level of approximation is distinguished by the num-

(A1)

Z‘r( 2bsabgat 2bspben— 2014025 — 20102+ D103,

ber of bond variables multiplied together in each term. In- +byyD3a+ D1abap+ D1pbap+ Doabsa+ bopbsa
variants can be constructed as linear combinations of single
bond variablegfirst-order invariants products of two bond + Dby byt bopbsy+ bsab7,+ bgpbra+ bs by

variables (second-order invariants three bond variables

(third-order invariants and so on. We hope that the expan- *+D5p075 = Deab7a— Penb7a—beab7n—benb7n),

sion of scalar physical properties in terms of invariants con- (A2)
verges with relatively low-order invariants, a property we

have demonstrated for finite clusters of water moleci2és

The second axis of the grid of approximations is unique to 1

periodic systems. The crystal can be constructed from unit | 1a,10= 57 (4b3abap+ 4D7ab7,+ 2012015+ 2boabay

cells of different size, with large unit cells needed to describe

a disordered solid such as the H-bond disordered phase of +2bgabgp+ 2bgabsp + b2, + b3, + b3, + b3, + b2,
ice-Ih. Graph invariants can be ordered according to whether ) ) )
they are a linear combination of products of bonds from a + b5, + b+ bp), (A3)
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1
_ T I R T R S S S
| 1a,1a_l_2(bla+ b+ b3, + b3, + b3+ b3, + bs, + bs, + b,

+bZ,+bZ,+b3). (A4)

The next set of invariants involves bonds that lie within
adjacent bilayers.

1
| 1a,6b:ﬂ(2b2bb5a+ 2b53bsp—2b1pbga— 201306 = D3aD54

— b3pbsa— D305 — b3pbsp+ b3abea+ D36
+ b3abgp+ b3pben—01a07a—D1p07a—D1ab7p

—Db1pb7p=b2ab73—= bopb7a—b2ab7,—b2pb7y),
(A5)

PHYSICAL REVIEW E 67, 016114 (2003

1
l1a6a= ﬁ( 2b5,b5,+ 2bopbsp — 2013065 — 201,06 —D3abs4

—b3pbsa— b3absp —b3pbsy +D3a06a+ D3pbea
+ D3aben+ bapben—b1ab7a—D1pb7a— 024074
—bopb7a—b1ab7p—b1pb7p—b2ab7,—b2pb7y),

(AB)

1
| 1a,5a=g(blabsaJr D165 —D2ab6a—b2pbep

+D3pb7a+b3abp), (A7)

1
| 1a,5b:1—2(2b3ab7a+ 2b3b7p+ 014055+ D105+ 01405,

+ b 1pPb5p—b2aba—bopbea—b2aben —D2pb6p) -

(A8)
Finally, there is a set of invariants that couple bonds that
lie along thec axis with bonds in a bilayer.

1
[ 1a,4b:4—8(b1ab4a+ D1p0sa+ D1+ D1pban+D1abga +D1pDga + 01208+ D1p0gH+D2ab s+ Dopbaa+Doabap + 02,04y

+02a0ga+ bopbgat boabgn+ bopbgn —04ab52—Dapbsa— D45 — D apbsy + Daabeat+ Dapbeat Daabsn + Dapben
— bsabga— bspbga—D5abgh— Dspbgn+ beabgp + Depbgn T Deabgat Penbga— 2D3,0g, = 20305, — 2b3,b4p

—2b3pb4a+ 2b7pbga+ 2043075+ 2D4,b7, - 2b75bgy), (A9)

1
| 1a,4a:ﬂ(bmb%\+ D2ab4a—P3ab4atD1pbap+ Dopbap —D3pbap—04ab5a = Dapbsy+ D aabea+ bapben + bapb7a+0b4ab7y

+D1a0gat D2abga—b3pbga— bsabga+Dabgat 074052+ D1pbgn+ bopbgy — b3abg, —Dspbg, + bepbgy + b7pbgp) -

(A10)
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