PHYSICAL REVIEW E 67, 016113 (2003
Geometric random inner products: A family of tests for random number generators
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We present a computational scheme, GRIBometric random inner produgtdor testing the quality of
random number generators. The GRIP formalism utilizes geometric probability techniques to calculate the
average scalar products of random vectors distributed in geometric objects, such as circles and spheres. We
show that these average scalar products define a family of geometric constants which can be used to evaluate
the quality of random number generators. We explicitly apply the GRIP tests to several random number
generators frequently used in Monte Carlo simulations, and demonstrate a statistical property for good random
number generators.
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I. INTRODUCTION dom number sequence, when converted to random points in
a space defined by a geometric object, can produce a series
Monte Carlo methods are among the most widely usedf known geometric constants. Later we introduce additional
numerical algorithms in computational science and engineemembers within the GRIP family. We then present results for
ing [1]. The key element in a Monte Carlo calculation is theconfigurations of four, six, and eight random points inran
generation of random numbers. Although a truly randomball. Finally, we conclude by discussing how the GRIP test
number sequence produced by either a physical process sughantifies random number generators by explicitly adding a
as nuclear decay, an electronic device etc., or by a comput&ew geometric property of truly random number sequences
algorithm, may not actually exist, a new and computationallyalong with other known properties studied by previously pro-
easy-to-implement scheme to investigate random numberosed schemg2-13].
generators is always highly desirable.
There have been many proposed schemes for the quality sENERAL DESCRIPTION OF THE GRIP FORMALISM
measure of random number generafi#s12. These com-
putational tests are based either on probability theory and The GRIP scheme is derived from the theory of random
statistical methodsgfor example, they? test, the Smirnov- distance distribution for spherical objects, and can be gener-
Kolmogorov test, the correlation test, the spectral test, andlized to other geometric objects with arbitrary densities
the DieHard battery of randomness t¢sts on mathemati- [19,20. First, three random pointg’{, f,, andf3) are in-
cal modeling and simulation for physical systeifisr ex- dependently produced from the sample space defined by a
ample: random walks and Ising model simulatipriBhese  geometric object. We then evaluate the average inner product
methods also open the door to studying the properties off'12- 230 constructed from two associated random vectors,
random number sequences such as randomness and compl&x=,—; andf,s=r3—F,. For a geometric object such as
ity [13]. Some important attempts at an operational definitioran n-ball of uniform density with a radiu&, the analytical
of randomness were previously developed by Kolmogorovesult is a geometric constant which can be expressed in
and Chaitin(algorithmic informational theopy[14—17 and  terms of the dimensionality of the spacg19,2Q:
by Pincus(approximate entropy{ 18].
In this paper, we study a method to measure n
n-dimensional randomness which we denote by GRKo- (Fio Tog)n=— mRZ- (N
metric random inner produgtsOne of our main purposes in
formulating the GRIP tests is to allow the characterization of, . I . .
geometric correlations which may cause unexpected errors f?]‘ s_:_r:]1pl? (ljlen\_/anon of %q(l) can b‘; found |n'th(|a App;endm.
Monte Carlo simulations. The GRIP family of tests is based.. e following procedures are the numerical implementa-
on the observation that the average scalar products of rartn'-O n of our testing programs. A random n unlber gerlerator 1S
dom vectors produced in geometric obje@sy., circles and usedd'to prod.uceha series gfféandgrl‘g fporqts rﬁ’ af‘dr3 (r;1
spherey define geometric constants which can be used t r?otrﬂ:nates |_ntt € radn_gf_b i ;‘F‘ m_or eac p(l)ln)thsug: |
evaluate the quality of random number generators. After pre6£| B i??;:j?:;ns;a\:vehelrsé ributed iniaaimensional spherica
senting an example of a GRIP test, we exhibit a computa- '
tional method for implementing GRIP, which is then used to P N
analyze a number of random number generators. We then B={(X1,X2,... Xn) XT+ X5+ + X <R} @
discuss the GRIP formalism in detail and show how a ran-
Note that the points are accepted only if the conditi®nis
satisfied, and rejected otherwise. We then compute a series of
*Electronic address: sjtu@physics.purdue.edu values forry, fog. If F15 oy is evaluatedN times (Monte
"Electronic address: ephraim@physics.purdue.edu Carlo stepj then statistically we expect
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N
1 n
I —_— r . r. = — — 2
;leinocN 241 (F12:F23)i n+2 R, 3
as predicted by Eq1).

IIl. RANDOM NUMBER GENERATORS

The following random number generators are used in the

GRIP test.
(1) LCG1—a 32-hit(multiplicative) linear congruential
generatoff2,3] using

Xp=aXX,_1+C mod m, (4)

wherea=16807,c=0, andm=231—1.

(2) LCG2—a 48-bit(multiplicative) linear congruential
generator[21] with a=689096 024 60261¢=0, and m
— 248_

(3) LCG3—a 48-hit(multiplicative) linear congruential
generatof21] with a=25214903917¢=11, andm= 2%,

We note that LCG3 and drand48, a standard library functio

in Unix systems, use the same algorithm.
(4) F55a—a lagged Fibonacci generaf@r3] using

Xn=(Xn-pOXy_q) mod m, (5)

wherep=55,q=24, ©=+, andm=23,

(5) F55b—a lagged Fibonacci generator wih=55, q
=24,0=—, andm=23%,

(6) F100—a lagged Fibonacci generatfi?] with p
=100,q=37,0=—, andm=2%

(7) F378—a lagged Fibonacci generator wjik-378, q
=107,0=+, andm=25,

(8) F23209—a lagged Fibonacci generator wigh
=23209,0=9739,0=+, andm=23

(9) R31—a generalized feedback shift regist&FSR
generatof2,8—19 using

Xn=Xn-p®Xn_q, (6)

wherep=31, g=3, and® is the bitwise exclusive OR op-

erator.

(10) R250—a GFSR generator witi=250 andg= 103.

(11) R9689—a GFSR generator with=9689 andq
=4187.

(12) R44497—a GFSR generator wifih=44 497 andq
=21034.

(13) R132049—a GFSR generator with=132 049 and
q=>54454.

(14) PENTA31—a  four-tap
random-number generatf®—12,22,23 using

Xn=Xn—p®Xn—q,®Xn—q,®Xn_q» (7)

wherep=31, q;=23, q,=11, g3=9, and& is the bitwise
exclusive OR operator.

(15 PENTA89—a  four-tap
random-number generator with= 89, q,=69, q,=40, and
q3:20
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(16) ziff3l—a four-tap shift-register-sequence random-
number generator witlp=31, q;=13, q,=8, andq3z=3
[22,23.

(17) ziff89—a four-tap shift-register-sequence random-
number generator witp=389, q;=61, q,=38, andqs=33.

(18) Ziff9689—a four-tap shift-register-sequence random-
number generator withh=9689,q,=471, g,=314, andqs
=157.

(19 durxor—a generator selected from the IBM ESSL
(Engineering and Scientific Subroutine Librafg4].

(20) durand—a generator selected from the IBM ESSL
(Engineering and Scientific Subroutine Librand the se-
guence period of durand is shorter than durp@®f].

(21) ran_gen—one of the subroutines in IMSL libraries
from Visual Numeric[25].

(22) Random—a Fortran 90/95 standard intrinsic random
number generatdi26].

(23) Weyl—a Weyl sequence generai{@7,28,

Xn={na}, (8)

r\‘/vhere{x} is the fractional part ok, and « is an irrational

number such ag2.
(24) NWS—a nested Weyl sequence generafat,2§,

Xn={n{naj}. ©)

(250 SNWS—a shuffled nested Weyl sequence generator
[27,28,

s,=M{n{na}}+3, (10)

Xn={Sn{Sna}}, (11

whereM is a large positive integer.

IV. OTHER MEMBERS OF THE GRIP FAMILY

For practical computational purposes, we may wish to
transform a random number sequence from a uniform den-
sity distribution to one which is nonuniform. One of the most
important nonuniform density distributions is the Gaussian
(norma) distribution P(r) with mean zero and standard de-
viation o,

1 _ 2, 2
Po(N) = G2 © w2, (12

Here [P, (r)dr=1,r=(x?+---+x2)2 andn is the space
dimensionality. One can use either the Box-Muller transfor-

shift-register-sequence mation method to generate a random number sequence with

a Gaussian density distribution, or use available subroutines
from major computational scientific libraries such as IBM
ESSL and IMSL 24,25. By applying the probability density
function of the random distance distribution as discussed in
Ref.[20], one can add a new GRIP member to investigate the
quality of a Gaussian random number generator, and this

shift-register-sequence new GRIP test can be expressed as

(F12 Tog)n=—no?. (13

016113-2
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TABLE I. Computed results fo¢r'y»- »3),, Where “Expected” is the exact result obtained from Ed.
For each entry in the tabl&)=10° was used. The results have been rounded off to 10 significant digits. See
text for additional details.

RNG n=3 Error Rating n=9 Error Rating
LCG1 —0.6000234824  0.3857%4 J -0.8181917210  0.21441 N
LCG2 —0.6000637749 1.04753 J -0.8181967418  0.32317 J
LCG3 —0.599 965787 7 0.56203 J —0.8181548966  0.58295 J
F55a —0.6000264855  0.43511 J —0.8180015730  3.90347
F55b —0.5999623855 0.61798 N —0.8183771530  4.2297%2
F100 —0.599 922 968 6 1.26561 N —0.8181448119 0.80136 N
F378 —0.600037616 8 0.61796 N —0.818241 3414 1.28886 N
F23209 —0.5999508215 0.80803 N —0.8181821266 0.00668 J
R31 —0.600036514 6 0.59991 N —0.8181388135 0.93162 J
R250 —0.599 925280 4 1.227%5 J —0.8182028575  0.45560 J
R9689 —0.5998896425 1.813#1 N —0.8181392992  0.920%7 J
R44497 —0.599 8295280 2.80110 J —0.8182030371  0.45949 J
R132049  —-0.5999710147 0.47621 J —0.818204 4955  0.49106 J
PENTA31 —-0.5998720867 2.101%5 N —-0.8181627430  0.41304 ¥
PENTA89 —0.6001304197 2.14242 N —0.818172044 3 0.21164 N
Ziff31 —0.5998499122 2.46602 N —0.8183014410 2.59027 N
Ziff89 —0.5999724977 0.45181 N —0.818 203546 6 0.470%0 J
Ziff9689 —0.599932334 3 1.11162 N —0.8181763959 0.11741 J
durxor —0.599 914 506 2 1.40452 J —0.8181196108 1.34706 J
durand —0.599 920 364 2 1.30827 J —0.8182185474  0.79528 J
ran_gen —0.599 8387832 2.64900 J —0.8182070661  0.54667 J
Random —0.599 929863 4 1.15224 J —0.818250867 8 1.49512 J
NWS —0.6298741065  463.606 -0.825614 2629 161.1#1
SNWS —0.5996945214 5.01941 —0.8179734189 451291
Expected —0.600 0000000 —0.8181818181

A very common situation arises when one has to produce (2) 2m uniform random points configuration for arnball
random points uniformly distributed on the surface ofran of radiusR,
sphere of radiu®R. Some general computational techniques

for doing this are summarized in Ref2,19]. We can then

use

<(F12' I?23)’ ' '(Fmel 2m’ I?Zm 1)>n

n(n™1+1)

:(_1)m (n+2)m R2m,

(14) (18

(P12 Toghn=— R?,
to examine the quality of such transformed random numbewhere 2n (m=2,3,4, etc). is a positive even number.
generators as discussed in Re&X9]. A derivation of Eqg.(15 can be found in the Appendix.

Another application of the GRIP formalism is in stochas-Equations(16)—(18) can be derived in a similar manner.
tic geometry. We can design a test scheme for a configuration
utilizing any number of random poinf29], and these tests
can be included in the GRIP family. Among the tests are the
following.

(1) Four uniform random points configuration for an
ball of radiusR,

V. RESULTS

We summarize the computational results using E3).
whenn=3 and 9 in Table I. The results obtained from Eq.
(18) whenm=2,3,4 andn=3 and 9 are presented in Tables
II, 1ll, and IV. Note that in Tables I-1V, RNG denotes the

n(n+1) specific random number generator defined in the text, “Er-

((Fio- T29) (Faa: F4])>n=m—R4, (15 ror” is measured in terms of how many standard derivations
o [8—12] the result differs from the theoretical number in
n absolute value, and the check marks designate those
Froe Far)(Foa: =R RNG's where the errors are less thasn. 3Ve consider those
(P12 Faa)(Pos Tan)n (n+2) R 19 RNG’s whose errors are larger thaor @nacceptable, as they
may contain subtle-dimensional nonrandom patterns hid-
(F13- Foa)n=0. a7 den in random number sequences produced by those RNG's.
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TABLE Il. Computed results foK('1» '23) (Fas- F41))n, Where “Expected” is the exact result obtained
from Eq. (24). For each entry in the tabl&y=10° was used. The results have been rounded off to 10
significant digits. See text for additional details.

RNG n=3 Error Rating n=9 Error Rating
LCG1 0.480326 2207 0.38729 N 0.745160 8586 18204 J
LCG2 0.4793125805 0.81684 J 0.747 1423419 4.47138
LCG3 0.4798002973 0.237&0 J 0.746 097 024 7 3.07191
F55a 0.4794722791 0.62583 J 0.745044 686 3 1.66400 N
F55b 0.4802511129 0.29780 ¥ 0.746 028 097 1 2.98178 N
F100 0.4793333655 0.79466 N 0.747 1734254 451567
F378 0.479240077 4 0.903&4 N 0.747 946 360 4 5.53490
F23209 0.478 891 696 2 1.31638 N 0.745852738 1 2.74513 N
R31 0.481674 398 6 1.98036 N 0.7437512131 0.06789 N
R250 0.479246 1682 0.89487 J 0.745934 636 1 2.85605 J
R9689 0.4804802365 0.56857 N 0.746 4499208 3.54730
R44497 0.480585 7528 0.69443 J 0.7450352788 1.650%4 J
R132049 0.4791108317 1.05649 N 0.746 6298475 3.78132
PENTA31 0.4797095433 0.34451 N 0.747 164 3832 4.48989
PENTAS89 0.478951 2829 1.246d4 N 0.746 2519120 3.27910
Ziff31 0.479977 626 4 0.026%2 N 0.7451600157 1.820%6 N
Ziff89 0.480 608 958 3 0.72163 N 0.7455409875 2.33093 N
Ziff9689 0.4802531051 0.30062 N 0.745934 2387 2.85333 N
durxor 0.479836 356 8 0.19433 J 0.746 112 464 7 3.09483
durand 0.479963554 4 0.04317 J 0.746827 1028 4.05046
ran_gen 0.479737 3236 0.31143 J 0.746 5575424 3.6847%5
Random 0.482301 2440 2.725P2 N 0.744 8450910 1.40049 N
NWS 0.565091 8749 86.8004 0.7293596234 19.5459
SNWS 0.478 633590 1 1.62443 N 0.746 1139251 3.09980
Expected 0.480 0000000 0.743801 6528

Hence caution should be exercised when these generators aemdom number sequence, when converted to random points
put into use. in a space defined by a geometric object, can produce a series
We observe that NWS and Wegresults not shownper-  of known n-dimensional geometric constants. A random
form poorly inn=3 and 9 on all GRIP tests, and hence thesenumber sequence generated from a random number genera-

are not recommended for any serious Monte Carlo simulator can be written as

tion. We also note from the=9 results in Table Il that these

results are clearly biased to larger vallescept R31 and

NWS) compared to the expected value, and reveal much a18783848586878839310- - (19
larger errors than the other cases. One interpretation may be

that ((F15 3) (F3a Fa1))g is @ more sensitive and dedicated oo each numbea, ,a,, ... has been computed to 16
computational test for investigating random number genera. . e+ diaits in the present Kk When th .
tors than other GRIP tests. For RNG’s such as LCG1, 9 9 P work. ¥vhen the sequence IS
F23209. R250, R44497, Ziff31, Ziff89, Ziff9689, and Ran- convertgd to _represent random points ina two-dimensional
dom whose errors are less tham i all the GRIP tests, we geometric ot_)Ject,_the random numbers in ELP) can then
quantify these RNG'’s as high quality, although additionalP®® 9rouped in pairs as

tests for different geometric configurations in other dimen-
sions should be further investigated.

Reference[29] contains additional results for random
number generators based on modern algorithms such as the
data encryption standa®ES) [2,3], and on turbulent elec- where Cartesian coordinates are used. The first set of random
troconvection[30], along with the computed results from points{i,,f,,f5} can thus be identified as
Egs.(13) and(14), and results from other geometric objects
such as am cube.

(a1a,)(aza,)(asag)(azag)(agdsg).. . , (20

r=(a,ay), f=(ag,a,), r3=(as,as). (21
VI. GRIP ANALYSIS

In the following, we analyze the relationship betweenGRIP then useg;, ,, andrs to evaluate the average scalar
GRIP and a random number sequence, and show how a gogdoduct, which can be computed by rewriting
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TABLE 1ll. Computed results foK (1o F23) (a4 Fa5) (Fs6: Fe1) )n» Where “Expected” is the exact result
obtained from Eq(24). For each entry in the tabl&l=10° was used. The results have been rounded off to

10 significant digits. See text for additional details.

PHYSICAL REVIEW E67, 016113(2003

RNG n=3 Error Rating n=9 Error Rating
LCG1 —0.2400475388 0.06410 N —0.555872 3085 1.93763 N
LCG2 —0.240168887 1 0.22627 N —0.5555992398 1.55591 N
LCG3 —0.2398318023 0.22586 N —0.556 386 6859 2.63984 N
F55a —0.2402813218 0.37700 N —0.554 2156398 0.35281 N
F55b —0.240681 256 5 0.90816 N —0.555189014 3 0.99287 N
F100 —0.2396145178 0.51725 N —0.5557254311 1.73039 N
F378 —0.2413305201 1.77206 N —0.5555050339 1.42599 N
F23209 —0.239049 868 6 1.28062 N —0.554812146 3 0.47186 J
R31 —0.2405898126 0.78523 J —0.552 606 828 6 2.59612 J
R250 —0.2396617837 0.45397 N —0.554 9654236 0.68392 J
R9689 —0.239287902 2 0.957%0 N —0.555024 2783 0.76382 N
R44497 —0.2391871024 1.09028 N —0.554 2330513 0.32730 N
R132049 —0.2391273367 1.17125 N —0.5553298935 1.18620 N
PENTA31 —0.240104 407 4 0.13988 N —0.556 1160769 2.26738 N
PENTA89 —0.240516 074 8 0.68886 N —0.5551309197 0.91090 N
Ziff31 —0.2391233759 1.17666 N —0.5558298286 1.86798 N
Ziff89 —0.239424598 6 0.77009 N —0.5554911031 1.41120 J
Ziff9689 —0.239216 6823 1.04965 J —0.5543716876 0.13627 J
durxor —0.239336 568 5 0.88983 N —0.554 875968 3 0.55897 J
durand —0.239676 7746 0.431%5 N —0.555594 1431 1.54743 N
ran_gen —0.239893 600 6 0.142'66 N —0.555514 082 2 1.43941 N
Random —0.2420623991 2.74386 N —0.555326 364 5 1.18388 N
NWS —0.306122 2749 73.1801 —0.543001 3386 16.2303
SNWS —0.239966 6407 0.04487 N —0.5558723085 1.93763 N
Expected —0.240 000 0000 —0.5544703230
A When the geometric object is anball with a radiusR=1
(T To0) = Nizl jzl (Qgi—4+]—Asi—6+]) and a uniform density, we expect from H@) that the result

X (@gi—2+] = Agi—4+j),

(22

whereN is a large positive integer. When the geometric ob-

ject is a circle of radiuR and uniform density,

(F1p Fog)~—0.5R? as predicted by Eql).
The analysis for two-dimensional GRIP can be 'mmed"gives rise to a geometric property characterizing truly ran-

ately generalized to the-dimensional case. When the se- gom number generators. We have shown how a random
quence in Eq(19) is used to generate random points in anpymper sequence, when converted to random points in a

n-dimensional spherical object, we can regroup B@) as

follows:

(83~ 80) @y 17 8n) (B 17 8g0) () ()

9.

"9

The average scalar product ©f;- F',3 can then be expressed

as

o 1
<r12'r23>—ﬁ,

><(a-Bin—n-%—j_a‘3in—2n+j)-

N n
2 (@zin—2n+j— A3in—3n+j)
=1 j=1

(24

of Eqg. (24) should be a geometric constantn/(n+2).

VIlI. CONCLUSIONS

We have presented a computational paradigm, GRIP, for

We expect eyaluating the quality of random number generators in mul-

tiple (n-dimensional levels. We then demonstrate that GRIP

space defined by a geometric object, can produce a series of
known geometric constants. Several random number genera-
tors were selected to run our GRIP tests, and they are graded
based on the @ error criterion. Finally, we note that one
implication of our work is that computational scientists
should test the random number generators they use in their
simulations, and verify that their random number generators
pass as many of the proposed tests as possible.
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TABLE IV. Computed results fo¢("1o: F23) (Faa: Fas5) (P56 Fe7) (F78° Fg1) )n » Where “Expected” is the exact
result obtained from Eq24). For each entry in the tablé&)=10° was used. See text for additional details.

RNG n=3 Error Rating n=9 Error Rating
LCG1 0.135140448 36 1.14563 N 0.448 4099033 0.45119 N
LCG2 0.134 603 480 25 0.31160 J 0.4479009720 1.147%6 J
LCG3 0.134594 842 74 0.300&3 J 0.450139109 2 1.90643 N
F55a 0.134 79383040 0.60793 J 0.447 2990253 1.97962 V
F55b 0.134 80955991 0.62657 v 0.4498437297 1.50743 Y
F100 0.135 268 986 61 1.34148 N 0.449 2375456 0.68210 V
F378 0.133742948 67 1.02185 N 0.4490822100 0.46735 N
F23209 0.133 646 768 54 1.17825 N 0.448 3616819 0.51580 N
R31 0.137 021 008 35 3.94609 0.446 3421757 3.31142
R250 0.13412002593 0.43449 N 0.448392677 3 0.47485 N
R9689 0.135421 42180 1.56498 J 0.449 4326509 0.94622 J
R44497 0.135124 568 49 1.12380 J 0.447998 7079 1.01310 N
R132049 0.134 205 319 96 0.30080 J 0.4482785124 0.63130 V
PENTA31 0.13379353303 0.93659 N 0.4493251347 0.80024 V
PENTA89 0.133268 761 04 1.76752 N 0.447 2890460 1.99025 Y
Ziff31 0.135303 98859 1.391%6 N 0.4493243417 0.79657 N
Ziff89 0.134 159909 60 0.36759 N 0.449596 4794 1.16867 N
Ziff9689 0.133126 247 67 1.99445 N 0.448 3185389 0.576%5 J
durxor 0.134 75584992 0.54729 N 0.4486713851 0.09328 N
durand 0.135199 790 76 1.24225 J 0.448 2558710 0.66290 J
ran_gen 0.135356 21759 1.46385 J 0.447 9750213 1.04562 J
Random 0.135171 00152 1.19067 J 0.448 3599306 0.51967 V
NWS 0.190588 119 06 65.9349 0.4348603210 19.6506
SNWS 0.134 169611 46 0.35468 N 0.448844 0431 0.14295 Y
Expected 0.134 400 000 00 0.448 7398401

versity Computing Center for computing support. This workwhere a+ 6= =. From the triangle formed by the random
was supported in part by the U.S. Department of Energypoints, we then have
Contract No. DE-AC02-76ER1428.
[3,=T2,4 35— 2r 1 f 53C0Sa. (A2)
APPENDIX: DERIVATION OF {(F15F23) )y AND {(Fy5F22)
X (34 T40))n

We derive the analytical result of E¢l) for a circle (
=2) of radiusR and uniform density. The same derivation N 1 2 2 2y _ E 2
can be applied to the case ofdimensions whera=3. We (F1z F2ghn= 2<r12 r25~F3n= 2<r12>n
label three independent random points as 1, 2, and 3 in Fig.
1, and then calculate

Extending this two-dimensional case to thedimensional
case, and combining EqéA1) and (A2), we then evaluate

1 (2R ) n )
——Efo Pn(r)r dr——mR , (A3)

[ 19 Fo3=T 1ol 23C0SH= —T 1, »3COSa, (A1)
wherer =r, and we have utilized the fact thg{,, 7,3, and
N0 ~. 3, are three independent random vectors. The functions
PN A P.(r) in Eqg. (A3), which can be found in Ref$19,20,31—
/! \ 36|, are the probability density functions for the random dis-
; e\“ 2 Y tancer between two random points in amdimensional
N o ' spherical ball of radiu®k and uniform density.
\ ! We consider next the analytical result in E45) for a
Y 1, circle (n=2) of radiusR and uniform density. A similar
3 ; derivation can lead to Eq$16), (17), and(18), as well as to
N ’ the case oh dimensions wher@=3. We begin by express-
. .- ing four random point$,, r,, I3, andr, in Cartesian coor-
""""" dinates, wherd;=(X;,y;). The expression in Eq15) can
FIG. 1. Three random points configuration in a circle. then be evaluated by writing
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R 2 2
f dxlfV 4 _dy, - f dx4JVR £y fody,
R R R R —x:L -R — R —Xy
(M2 T29)(M34- Tg1) ) 2= = §R4, (A4)

f dxlf 4 dY1 f dXAf X dY4
,X4

where
f1=(Xa=X1)(Xg—X2) +(Y2— Y1) (Y3~ Y2),

f2=(X4=X3) (X1 =X4) + (V4= Y3) (Y1~ Y4)-
A derivation of the general result using the probability density functi®g@) in Eqg. (A3) can be found in Refl29].
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