
PHYSICAL REVIEW E 67, 016106 ~2003!
Itineration of the Internet over nonequilibrium stationary states in Tsallis statistics
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The cumulative probability distribution of sparseness time interval in the Internet is studied by the method
of data analysis. Round-trip time between a local host and a destination host through ten odd routers is
measured using the ping command, i.e., doing an echo experiment. The data are found to be well described by
q-exponential distributions, which maximize the Tsallis entropy indexed byq less or larger than unity, showing
a scale-invariant feature of the system. The network is observed to itinerate over a series of the nonequilibrium
stationary states characterized by Tsallis statistics.
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The Internet is a complex system, which has highly in
cate tangle, cluster, and hierarchical structures and st
spatiotemporal correlation with feedback, self-organizati
and connection diversity. The structure emerging from
actions of a large number of users may efficiently be und
stood within the statistical mechanical framework and
suitable generalizations. For example, Ref.@1# reports the
emergence of scaling behavior and the associated power
distribution of the connectivity of nodes. These concepts
known to be essential for the network to be resilient a
robust to random errors, breakdown, and attack@2–4#.

From the statistical and dynamical viewpoints of the n
work, of particular interest are the stationary states un
nonequilibrium conditions. Tsallis statistics@5# based on a
nonextensive entropy@6# aims to offer a theoretical basis fo
analyzing complex systems in such states. It has success
been applied to a variety of problems including anomalo
diffusion @7,8#, Lévy flight @9–11#, fractal random walks
@12#, complex high-energy processes@13–17#, cosmic rays
@18#, turbulence@19#, earthquakes@20#, stock markets and
incomes@21,22#, nonlinear maps at the edge of chaos@23–
29#, stochastic resonance@30#, protein folding and biomol-
ecules@31,32#, citation networks of scientific papers@33#,
urban agglomeration@34#, and linguistics@35#.

In this article, we present experimental evidence that T
lis statistics in fact describes the scale-invariant station
states of the Internet.

The ‘‘echo experiment’’ we have performed uses the p
command@36,37#. A ping signal is emitted from a local hos
computer, takes a round trip to a destination host~i.e., a site
accessed!, and returns to the local host through ten odd ro
ers. The route of the signal emitted to the destination is fi
and traced. Each router is connected with the whole netw
in a time-dependent manner. The next signal is sent imm
ately after the previous one returns. Such a time interva
typically less than 130 ms and is not included in our d
analysis. Using all the collected data of the echo experim
the threshold value indicating congestion is appropriately
fined~see the later discussion!. Actually, the result turned out
to be not sensitive to the definition of the threshold. We have
calculated each time interval given by the amount of
round-trip time below the threshold value between two s
cessive thresholds. This interval is referred to here as
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‘‘sparseness time interval’’ denoted byt. Observation shows
that the Internet itinerates over a series of stationary sta
which are all described by the Tsallisq-exponential cumula-
tive probability distribution of t, indicating the scale-
invariant feature of the system. In particular, both 0,q,1
and q.1 cases occur and nothing is special in the limitq
→1. Regarding the sparseness time interval rescaled b
average, the more congested the network is, the sm
valueq takes. In this sense, the entropic index character
the degree of congestion.

Before presenting the experimental results, let us brie
summarize the basics of Tsallis scale-invariant statistics. T
theory aims to offer a framework for describing statistic
properties of complex systems in their stationary states ba
on the principle of maximum nonextensive entropy. In t
present case, the fundamental random variable is the sp
ness time intervalt. p(t)dt is the probability of finding
the value of the sparseness time interval in the range@t,t
1dt#. Thus p(t) is a stationary probability distribution in
Tsallis statistics if it optimizes the Tsallis entropy@6,38#

FIG. 1. Time series data of the sparseness time interval ta
from 3.50 a.m.~initial time! to 6.07 a.m. on 8 February 2002. Fro
the local host buffalo.matsudo-ap3.dti.ne.jp@203.181.67.200# to the
destination host ring.so-net.ne.jp@202.238.95.103# through 11 rout-
ers. The curve is drawn based on 31 675 measured data po
Roughly, three different nonequilibrium stationary statesa ~3.50
a.m.–4.15 a.m.!, b ~4.15 a.m.–5.06 a.m.!, and c ~5.06 a.m.–6.07
a.m.! may be recognized.
©2003 The American Physical Society06-1
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FIG. 2. Log-log plots of the cumulative probability distributions associated with the statesa, b, andc. The observed data are represent
by the dots, and the Tsallis distribution by the solid lines. The lower graphs in each pand are drawn on the semi-q-log scale.~a! q51.07,
t052.503103 ms, and 4373 data points.~b! q51.12, t054.353102 ms, and 13 587 data points.~c! q51.16, t051.003103 ms, and
13 715 data points.
016106-2
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Sq5
1

12q S E dt

s
@sp~t!#q21D ~1!

under the constraints on normalization

E dt p~t!51 ~2!

and the normalizedq expectation value@39# of the sparse-
ness time interval

^t&q5E dt tPq~t!. ~3!

Here,q ands in Eq. ~1! are the positive entropic index an
a scale factor of the dimension of time, respectively.Pq(t)
in Eq. ~3! is the escort distribution@40# defined by

Pq~t!5
pq~t!

*dt8pq~t8!
. ~4!

The optimal distribution is calculated to be

p~t!5
1

Zq
eqS 2

b

c
~t2^t&q! D , ~5!

Zq5E
0

tmax
dt eqS 2

b

c
~t2^t&q! D , ~6!

FIG. 3. An example with the value ofq less than unity. The
hosts are the same as in Fig. 1. Data were taken from 4.42 a.m
5.31 a.m. on 13 February 2002.q50.73, t052.273104 ms, and
14 897 data points.
01610
c5E
0

tmaxdt

s
@sp~t!#q. ~7!

b in Eqs. ~5! and ~6! is the Lagrange multiplier associate
with the constraint in Eq.~3!. eq(x) stands for the
q-exponential function defined by

eq~x!5H @11~12q!x#1/~12q! @11~12q!x>0#,

0 @11~12q!x,0#,
~8!

whose inverse is theq-logarithmic function

lnq~x!5
x12q21

12q
. ~9!

Accordingly, tmax→` if q>1, whereastmax5t0 /(12q) if 0
,q,1. Here, t05@c1(12q)b^t&q#/b, which can be
shown to be always positive@11#. p(t) is recast into the
following form:

p~t!5
eq~2t/t0!

*0
tmaxdt8eq~2t8/t0!

. ~10!

p(t) is seen to be the Zipf-Mandelbrot distribution with
heavy tail if q.1. Both the normalizability condition and
finiteness of^t&q in Eq. ~3! require the entropic index to
satisfyq,2.

In the limit q→1, the Tsallis entropy converges to th
Boltzmann-Shannon entropyS52*dt p(t)ln@sp(t)#, and
correspondinglyp(t) becomes a Boltzmann-type expone
tial distribution since, in this limit,eq(x) and lnq(x) approach
the ordinary exponential and logarithmic functions, resp
tively. However, this limit does not play any special role
the present work.

An important point in Tsallis statistics is that the quant
to be compared with the observed distribution is notp(t) in
Eq. ~10! itself but its associated escort distribution@41#.
Therefore, the cumulative probability distribution should
defined by P(.t)5*t

tmaxdt8Pq(t8). From Eq. ~10!, it is
found to be given by

P~.t!5eq~2t/t0!. ~11!

Below, we discuss how cumulative probability distributio
of this form are realized on the Internet.

In Fig. 1, we present an example of an observed ti
series of sparseness time intervalt. Three distinct stationary
regimesa, b, and c may be recognized.~Strictly speaking,
the identification of stationary states depends on the t
scale. Here, we are employing the user’s typical time sc
i.e., 10 min–1 h.! In Figs. 2~a!, 2~b!, and 2~c!, the corre-
sponding cumulative probability distributions oft are plotted
on a log-log scale. The threshold value indicating conges
is defined here by the mean value plus one-half of the s
dard deviation. The experimental data are represented by

to
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dots, whereas the curves depict theq-exponential functions.
In particular, the lower ones are drawn on the semi-q-log
scale with different values ofq. The resulting straight lines
imply that the observed cumulative probability distributio
are in fact the Tsallisq-exponential distributions.

For comparison, we present Fig. 3 to show thatthere also
exist stationary states at which the values of the entro
index are less than unity.

These results imply that the network undergoes a serie
transitions from one stationary state to another: (q1 ,t0,1)
→(q2 ,t0,2)→(q3 ,t0,3)→•••. Each stationary state is sca
invariant and maximizes the Tsallis entropy. The points
transition correspond to catastrophic changes in the time
ries
e

,

da

C

a A

int
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of round-trip time~not sparseness time!, e.g., sudden heavy
congestion.

In conclusion, we have found that the Internet itinera
over a series of scale-invariant nonequilibrium station
states described by Tsallis statistics. We wish to empha
that the time series of the sparseness time is highly non
tionary and non-Gaussian. This fact makes it difficult
identify stationary regimes by power spectrum analysis,
general. The present work indicates the usefulness of Ts
statistics for defining stationary states in the time series
hibited by complex systems.

We would like to thank Dr. V. Latora and Dr. M. Takayas
for useful discussions.
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