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Itineration of the Internet over nonequilibrium stationary states in Tsallis statistics
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The cumulative probability distribution of sparseness time interval in the Internet is studied by the method
of data analysis. Round-trip time between a local host and a destination host through ten odd routers is
measured using the ping command, i.e., doing an echo experiment. The data are found to be well described by
g-exponential distributions, which maximize the Tsallis entropy indexed llegs or larger than unity, showing
a scale-invariant feature of the system. The network is observed to itinerate over a series of the nonequilibrium
stationary states characterized by Tsallis statistics.
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The Internet is a complex system, which has highly intri-“sparseness time interval” denoted by Observation shows
cate tangle, cluster, and hierarchical structures and strorthat the Internet itinerates over a series of stationary states,
spatiotemporal correlation with feedback, self-organizationwhich are all described by the Tsallisexponential cumula-
and connection diversity. The structure emerging from theive probability distribution of 7, indicating the scale-
actions of a large number of users may efficiently be underinvariant feature of the system. In particular, both §<1
stood within the statistical mechanical framework and itsandq>1 cases occur and nothing is special in the lioit
suitable generalizations. For example, Rf] reports the 1. Regarding the sparseness time interval rescaled by its
emergence of scaling behavior and the associated power-lagverage, the more congested the network is, the smaller
distribution of the connectivity of nodes. These concepts argalue q takes. In this sense, the entropic index characterizes
known to be essential for the network to be resilient andhe degree of congestion.
robust to random errors, breakdown, and attk4]. Before presenting the experimental results, let us briefly

From the statistical and dynamical viewpoints of the net-symmarize the basics of Tsallis scale-invariant statistics. This
work, of particular interest are the stationary states undetheory aims to offer a framework for describing statistical
nonequilibrium conditions. Tsallis statisti¢5] based on a properties of complex systems in their stationary states based
nonextensive entron&ﬁ] aims to offer a theoretical basis for on the princip|e of maximum nonextensive entropy_ In the
analyzing complex systems in such states. It has successfulptesent case, the fundamental random variable is the sparse-
been applied to a variety of problems including anomalousess time interval. p(7)dr is the probability of finding
diffusion [7,8], Levy flight [9-11], fractal random walks the value of the sparseness time interval in the rdnge
[12], complex high-energy processgk3—17, cosmic rays 4 q.]. Thusp(r) is a stationary probability distribution in

[18], turbulence[19], earthquake$20], stock markets and  Tsg|ljs statistics if it optimizes the Tsallis entrof§,38]
incomes[21,22, nonlinear maps at the edge of ch488—

29], stochastic resonand@&0], protein folding and biomol- 5
ecules[31,32, citation networks of scientific papef83], 1.5x10
urban agglomeratiof34], and linguisticq 35]. =
. . . . g
In this article, we present experimental evidence that Tsal-—
lis statistics in fact describes the scale-invariant stationaryg 1.0x10° 2 b °
states of the Internet. ;
The “echo experiment” we have performed uses the ping

nte

me 1

command 36,37. A ping signal is emitted from a local host 3 s0x10° b
computer, takes a round trip to a destination Host, a site g

accessed and returns to the local host through ten odd rout- §

ers. The route of the signal emitted to the destination is fixed ” 0 bk

and traced. Each router is connected with the whole network
in a time-dependent manner. The next signal is sent immedi- '
ately after the previous one returns. Such a time interval is time {ms |

typically less than 130 ms and is not included in our data g, 1. Time series data of the sparseness time interval taken
analysis. Using all the collected data of the echo experimentom 3,50 aminitial time) to 6.07 a.m. on 8 February 2002. From
the threshold value indicating congestion is appropriately detne |ocal host buffalo.matsudo-ap3.dti.ng203.181.67.20Dto the
fined(see the later discussiprctually, the result turned out  destination host ring.so-net.ne[jp02.238.95.10Bthrough 11 rout-

to be not sensitive to the definition of the threshdlé have  ers. The curve is drawn based on 31675 measured data points.
calculated each time interval given by the amount of therRoughly, three different nonequilibrium stationary state$3.50
round-trip time below the threshold value between two suca.m.—4.15 a.n, b (4.15 a.m.—5.06 a.i.andc (5.06 a.m.—6.07
cessive thresholds. This interval is referred to here as tha.m) may be recognized.

0 3.0x10° 6.0x10° 9.0x10°
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FIG. 2. Log-log plots of the cumulative probability distributions associated with the stabesindc. The observed data are represented
by the dots, and the Tsallis distribution by the solid lines. The lower graphs in each pand are drawn on tipdogesoale.(a) q=1.07,
T0=2.50x 10° ms, and 4373 data pointéh) q=1.12, 7,=4.35x 10’ ms, and 13587 data point&) q=1.16, 7,=1.00x 10° ms, and
13715 data points.
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FIG. 3. An example with the value af less than unity. The
hosts are the same as in Fig. 1. Data were taken from 4.42 a.m.
5.31 a.m. on 13 February 2008=0.73, 7,=2.27X10* ms, and
14 897 data points.

s 1 J dr a_q !
T F[UP(T)] - 1)

under the constraints on normalization
J drp(r)=1 2

and the normalized) expectation valug¢39] of the sparse-
ness time interval

<T>q=f d7 7Py(7). €]
Here,q and o in Eqg. (1) are the positive entropic index and
a scale factor of the dimension of time, respectiveli.,(7)

in Eq. (3) is the escort distributiof40] defined by

. pi7)
P Far ey @
The optimal distribution is calculated to be
1 B
p(T):Z_qeq(_E(T_<T>q))v (5
Z,= fonaxdTeq( - g(r—@'}q)) . (6)
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Tmaxd 7

c= fo F[crp(r)]q-

B in Egs. (5) and (6) is the Lagrange multiplier associated
with the constraint in EQ.(3). ey(x) stands for the
g-exponential function defined by

()

[1+(1—q)x]¥*" 9 [1+(1—q)x=0],
eq(X)= ()
0 [1+(1—q)x<0],
whose inverse is thg-logarithmic function
xt79-1
Ing(x)=—— )

Accordingly, Tna— if q=1, whereasr = 7/(1—q) if 0
<q<1. Here, 7o=[c+(1—q)B(7)ql/B, which can be
shown to be always positivell]. p(r) is recast into the
following form:

€q(— 7/ 70)
fgmaXdT'eq( —7'l71) .

p(7)= (10)

p(7) is seen to be the Zipf-Mandelbrot distribution with a
feavy tail if g>1. Both the normalizability condition and
finiteness of(7), in Eq. (3) require the entropic index to
satisfyq<2.

In the limit g—1, the Tsallis entropy converges to the
Boltzmann-Shannon entrop$= — fd7p(7)In[op(7)], and
correspondinglyp(7) becomes a Boltzmann-type exponen-
tial distribution since, in this limitg,(x) and In,(x) approach
the ordinary exponential and logarithmic functions, respec-
tively. However, this limit does not play any special role in
the present work.

An important point in Tsallis statistics is that the quantity
to be compared with the observed distribution is pft) in
Eq. (10) itself but its associated escort distributi¢Al].
Therefore, the cumulative probability distribution should be
defined by P(>7)= [ m>d7' Py(7'). From Eg. (10), it is
found to be given by

P(>7)=eq(—7/70). (1)
Below, we discuss how cumulative probability distributions
of this form are realized on the Internet.

In Fig. 1, we present an example of an observed time
series of sparseness time intervallhree distinct stationary
regimesa, b, andc may be recognizedStrictly speaking,
the identification of stationary states depends on the time
scale. Here, we are employing the user’s typical time scale,
i.e., 10 min—-1 h. In Figs. 2a), 2(b), and Zc), the corre-
sponding cumulative probability distributions ofre plotted
on a log-log scale. The threshold value indicating congestion
is defined here by the mean value plus one-half of the stan-
dard deviation. The experimental data are represented by the
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dots, whereas the curves depict trexponential functions. of round-trip time(not sparseness timee.g., sudden heavy

In particular, the lower ones are drawn on the serog congestion.

scale with different values af. The resulting straight lines In conclusion, we have found that the Internet itinerates

imply that the observed cumulative probability distributionsover a series of scale-invariant nonequilibrium stationary

are in fact the Tsallig-exponential distributions. states described by Tsallis statistics. We wish to emphasize
For comparison, we present Fig. 3 to show tthatre also  that the time series of the sparseness time is highly nonsta-

exist stationary states at which the values of the entropigionary and non-Gaussian. This fact makes it difficult to

index are less than unity _identify stationary regimes by power spectrum analysis, in
These results imply that the network undergoes a series feneral. The present work indicates the usefulness of Tsallis

transitions from one stationary state to anothem,fo)  statistics for defining stationary states in the time series ex-
— (02,702 — (03,799 — . Each stationary state is scale pipjted by complex systems.

invariant and maximizes the Tsallis entropy. The points of

transition correspond to catastrophic changes in the time se- We would like to thank Dr. V. Latora and Dr. M. Takayasu

ries for useful discussions.
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