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Cluster Monte Carlo algorithm for the quantum rotor model
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We propose a highly efficient ‘‘worm’’-like cluster Monte Carlo algorithm for the quantum rotor model in
the link-current representation. We explicitly prove detailed balance for the algorithm even in the presence of
disorder. For the pure quantum rotor model withm50, the algorithm yields high- precision estimates for the
critical point Kc50.333 05(5) and the correlation length exponentn50.670(3). For thedisordered case,m
5

1
2 6

1
2 , we findn51.15(10).
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What types of insulating, conducting, superconducti
and more exotic phases occur in two-dimensional system
T50 is a topic of considerable current interest. A significa
amount of theoretical@1–4# and experimental@5,6# effort has
focused on bosonic systems where a superconductor to
lator transition is known to occur. In agreement with mo
experiments@5#, it was shown under quite general conditio
@1,2# that a transition can occur directly between the sup
conducting and insulating states. However, more recentl
has been suggested that an exoticmetallicphase is also pos
sible @4,6#. In this context, precise numerical results wou
be very valuable, and in the present paper we propose a
efficient cluster Monte Carlo algorithm for this purpose,
lowing us to significantly improve previous results. In pa
ticular, we show that the inequality@7# n>2/d is not violated
in the presence of disorder, resolving contradictions in p
vious work. The high precision of the algorithm should allo
for precise calculations of transport properties of quant
rotor models studied theoretically in@1,4#. The ideas pre-
sented here could also be useful for the study of class
spin systems@19#.

Low-dimensional bosonic systems are often described
terms of the ~disordered! boson Hubbard model:HbH

5( r@(U/2)n̂r
22m rn̂r#2t0(^r ,r8&(F̂ r

†F̂ r81c.c). Here U is
the on-site repulsion,t0 is the hopping strength,m r is the
chemical potential varying uniformly in space betweenm

6D, and n̂r5F̂ r
†F̂ r is the number operator. If we setF̂ r

[uF̂ ruei ûr and integrate out amplitude fluctuations,HbH be-
comes equivalent to the quantum rotor model@8#:
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~1!

Here,u r the phase of the quantum rotor,t the renormalized
hopping strength, and (1/i )(]/]u r).nr . The quantum rotor
model describes a wide range of phase transitions domin
by phase fluctuations, and it is well known@8# that an
equivalent classical model exists where the Hamiltonian
written in terms of currents defined on the links of a lattic
J5(Jx,Jy,Jt). These link-current variables describe t
‘‘relativistic’’ bosonic current which should be divergenc
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less,“•J50. In terms of these variables, the classical~2
11!D Hamiltonian can be written as follows@8#:

H5
1

K (
(r ,t)

8 F1

2
J(r ,t)

2 2m rJ(r ,t)
t G . ~2!

(8 denotes a summation over configurations with“•J50.
Varying K corresponds to changing the ratiot/U in the quan-
tum rotor model. The quantum rotor model has been ext
sively studied@8–10# in this representation, but a number
conclusions can be questioned due to severe finite-size
fects. For notational convenience it is useful to slightly e
large the definition of the link currents at a given site in t
following way: At each site (r ,t) in the lattice we definesix
surrounding link variablesJ(r ,t)

s where s runs over 6x,
6y,6t. Note that, with this notationJ(x,y,t)

2x andJ(x21,y,t)
x is

the same variable, with equivalent relations in the other
rections. The divergenceless constraint at the site (r ,t) can
then be writtenJ2x1J2y1J2t5Jx1Jy1Jt, so that the
sums of the incoming and outgoing currents are equal. C
ventional Monte Carlo updates@8# on this model consist of
updating simultaneously four link variables. Global move
updating a whole line of link variables thus allowing partic
and winding numbers to fluctuate, are added to ensure er
icity, but the acceptance ratio for these moves becomes
ponentially small for large lattice sizes. Here we will d
scribe a way to construct a wormlike algorithm to perfor
nonlocal moves for this model.

The cluster algorithm@11–13# we propose is similar in
spirit to worm algorithms@14,15# in the sense that we updat
the link currents by moving a ‘‘worm’’ through the lattic
visiting the sitessi5(r i ,t i). The links through which the
worm passes are updatedduring its construction. At a given
site, the links withs equal tox,y,t are called outgoing links
and those withs equal to2x,2y,2t are incoming links.
When the worm is moving through the lattice, the curre
Jsi

s are updated in the following manner: if the worm is lea

ing the sitesi along an outgoing link, weincrementthe cor-
responding current,

Jsi

s→Jsi
8s5Jsi

s 11, s5x,y,t. ~3!
©2003 The American Physical Society01-1
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If the worm is leaving the sitesi along an incoming link, we
decrementthe corresponding current,

Jsi

s→Jsi
8s5Jsi

s 21, s52x,2y,2t. ~4!

The construction of the worm starts with the choice of
random initial sites15(r1 ,t1) in the space-time lattice
Then the algorithm can be decomposed in two steps.~i! The
worm moves to one of the six neighboring sites. To dec
which direction to go from a sitesi5(r i ,t i), we calculate
for all directionss56x,6y,6t weights,Asi

s , according to

local detailed balance. A good choice is

Asi

s 5min„1,exp~2DEsi

s /K !…, DEsi

s 5Esi
8s2Esi

s . ~5!

HereEsi

s 5 1
2 (Jsi

s )22m r i
Jsi

sds,6t is the contribution to the to-

tal energy from the linkJsi

s , before the worm moves throug

it. Esi
8s is the energy contribution withJsi

s replaced byJsi
8s .

By normalizing theAsi

s ’s, we define the probabilitiespsi

s

5Asi

s /Nsi
, whereNsi

5(sAsi

s . A direction s is then chosen

according to these probabilities.~ii ! Onces is chosen, we
update the correspondingJsi

s according to the above rules

Eqs.~3! and~4!, and extend the worm to the new lattice s
si 11. ~i! and ~ii ! are then repeated until the worm pass
through the initial site wheresi 115s1. Finally, in order to
satisfy detailed balance, we have toerasethe worm with a
probability determined in the following way. IfN~worm! and
N~no worm! are the normalization of the probabilities at th
initial site s1 with and without the worm present, then w
erase the constructed worm with a probability

Pe512minS 1,
N~no worm!

N~worm! D . ~6!

Under most conditions, this probability is very small. Seve
points are noteworthy about this algorithm. First of all, t
configurations generated during the construction of the wo
are not valid (“•JÞ0). However, once the construction o
the worm is finished and the path of the worm closed,
divergenceless constraint is satisfied. Secondly, when
worm moves through the lattice it may pass many tim
through the same link and cross itself before it reaches
initial site where the construction terminates. Hence, it
crucial that the current variables are updatedduring the con-
struction of the worm. Finally, at each stepi in the construc-
tion of the worm it is likely that the worm at the sitesi will
partially ‘‘erase’’ itself by choosing to go back to the si
si 21 visited immediately before, thereby ‘‘bouncing’’ off th
site si .

Now we turn to the proof of detailed balance for the
gorithm. Let us consider the case where the worm,w, visits
the sites$s1•••sN%, wheres1 is the initial site. The worm
then goes through the corresponding link variables$ l 1••

• l N%, with l i connectingsi andsi 11. Note thatsN is the last
site visited before the worm reachess1. Hence,sN ands1 are
connected by the linkl N . The total probability for construct
ing the worm w is then given by Pw5Ps1

(1
01570
e

s

l

m

e
he
s
e

s

2Pw
e))i51

N Asi

s/Nsi
. The indexs denotes the direction neede

to go fromsi to si 11 , Ps1
is the probability for choosing site

s1 as the starting point, andPw
e is the probability for erasing

the worm after construction. If the wormw has been ac-
cepted, we have to consider the probability for reversing
move. That is, we consider the probability for constructi
an antiworm w̄ annihilating the wormw. We have Pw̄

5Ps̄1
(12Pw̄

e )) i 51
N Ās̄i

s /N̄s̄i
. Here, the indexs denotes the

direction needed to go froms̄i to s̄i 11. Note that in this case
the sites are visited in the opposite order,s̄15s1 ,s̄2

5sN , . . . ,s̄N5s2, in generals̄i5sN2 i 12 ( iÞ1). Note also
that s̄i and s̄i 11 are connected by the linkl̄ i5 l N2 i 11, with
s̄N and s̄1 connected byl̄ N5 l 1. With this notation, we see
that si and s̄N2 i 11[si 11 are connected by the link variabl
l i . Let us now consider the case in which both of the wor
w and w̄ have reached the sitesi different from the starting
site s1. Since we are updating the link variables during t
construction of the worm and since we are always consid
ing moving the worm in all six directions, we haveNsi

5N̄s̄N2 i 125si
( iÞ1). Furthermore,Asi

s and Ās̄N2 i 115si 11

s

only depend on the link variablel i connecting the sitessi

and s̄N2 i 11, and we see thatAsi

s /Ās̄N2 i 11

s
5exp(2DEsi

s/K),

i51•••N. Hence, sincePs1
5Ps̄1

, we find

Pw

Pw̄

5
12Pw

e

12Pw̄
e

N̄s̄1

Ns1

exp~2DEtot /K !, ~7!

whereDEtot is the total energy difference between a config
ration with and without the wormw present. Now we con-
sider Pe512min„1,Ns1

(no worm)/Ns1
(worm)…. Here, Ns1

[Ns1
~no worm! is equal toN̄s1

~antiworm!, andN̄s1
~no anti-

worm![N̄s1
is equal toNs1

~worm!. Hence, we find for the

FIG. 1. Autocorrelation times versus lattice size for the conv
tional and worm algorithm form50 atK50.333. The dashed line
indicate power-law fits and the solid line an exponential fit inL.
1-2
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probability to erase the wormPw
e 512min(1,Ns1

/N̄s1
), and

Pw̄
e

512min(1,N̄s1
/Ns1

) for erasing the antiworm. With this

choice of Pe, we satisfy detailed balance sincePw /Pw̄
5exp(2DEtot /K). Ergodicity is simply proven as the worm
can perform local loops and wind around the lattice in a
direction, as in the conventional algorithm.

To demonstrate the efficiency of the proposed algorith
we have calculated autocorrelation times for different latt
sizes for the worm algorithm and the conventional algorith
For an observableO we define the autocorrelation functio
and the autocorrelation timetO in the usual manner@16#,

^O~0!O~ t !&2^O&2

^O 2&2^O&2
5ae2t/t11be2t/tO1•••. ~8!

Here, t is the Monte Carlo time measured in Monte Ca
sweeps~MCS!, with 1 MCS corresponding toLd attempted
updates. The autocorrelation function is calculated fr
simulations with 108 MCS, and to obtain the best estimate
tO we always fit to the indicated double-exponential fo
with t1!tO . To make a fair comparison oftO for the two
algorithms, one customarily@12,16# multiplies tO for the
worm algorithm byN/, l ., with , l . the mean number o
links in a worm andN53L3. With this rescaling we show in
Fig. 1 the autocorrelation times,tr for the stiffness~see the
exact definition below! at m50 for both algorithms. The
calculations have been performed on cubic lattices aK
50.333, very near previous estimates of the critical po
@9#. For the worm algorithm we also show the autocorre
tion time for the energy,tE , which is almost identical totr .
The autocorrelation times increase dramatically with sys
size for the conventional algorithm, whereas they rem
very small~of the order of 2–3 MCS per link! for the worm
algorithm. If we fit theL dependence oftr;LzMC with a
power law, we obtain an autocorrelation exponentzMC larger

FIG. 2. Lr versusK for different lattice sizes, form50. All
curves cross at the critical pointKc50.333 05(5) withLruK5Kc

50.495(5). Inset: Ldr/dK at Kc versusL. The dashed line indi-
cates a fit yielding an exponentn50.670(3).
01570
y

,
e
.

t
-

m
n

than 4 for the conventional algorithm. For the convention
algorithm, it is likely thattr is diverging exponentially with
L sincer is solely determined by global updates for whic
the acceptance probability decreases exponentially withL.
For the worm algorithm, we find a very smallzMC;0.3.

We now present results for the model Eq.~2! at m50.
There, the model is expected to undergo a transition in
(211)D XY universality class@1,9# from a superfluid into a
Mott insulating phase with a dynamical critical exponentz
51. The different phases can be distinguished by calcula
the stiffness defined as@8#

r5
1

LtL
2 K S (

r ,t
J(r ,t)

x D 2L . ~9!

Since we expectz51, we useLt , the system size in the
third direction, equal toL. To obtain theK dependence ofr,
we have used reweighting techniques@17# on large runs~of
the order of 108 MCS! at K50.333. The error bars are de
termined using jackknife techniques@16#. Using finite-size
scaling relations, the quantityrLz is expected to be indepen
dent of system size at the critical point@8#, Kc . Moreover,
Lzdr/dK is expected to diverge atKc asL1/n wheren is the
correlation length exponent. We have explicitly calculat
this quantity by evaluating the thermodynamic derivative

FIG. 3. ~a! @L2r#av versusK for different lattice sizes, form
5

1
2 6

1
2 . All curves cross at the critical pointKc50.246(1) with

@L2r#avuK5Kc
50.12(1). Inset: @L2dr/dK#av versusL for different

K. The solid line indicates a power-law fit yielding an exponentn
51.15(10).~b! Scaling plot ofL2r(L,Lt) at Kc50.246.
1-3
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r with respect to the couplingK: dr/dK5(^rE&2^r&
3^E&)/K2. In Fig. 2, we showLr versus K for different
lattice sizes. From the crossing of the curves we can de
mine Kc50.333 05(5) to a much higher precision than w
possible using the conventional algorithm on much sma
systems@8–10#. Since all the curves cross in a single poi
our results are completely consistent with a dynamical ex
nentz51, as expected@1#. In the inset of Fig. 2 is shown th
size dependence ofLzdr/dK at Kc on a log-log scale. We fit
this curve to a power-lawAL1/n and obtainn50.670(3), in
perfect agreement with estimates for the three-dimensio
XY universality class@18#. Preliminary results@19# for the
generic transition atm5 1

4 show pronounced finite-size e
fects questioning previous work@10#.

We also simulated the model Eq.~2! with disorder form
5 1

2 6 1
2 . In this case, the transition is between a superfl

and an insulating Bose-glass phase. Scaling theory@1# pre-
dicts a second-order transition with dynamical exponenz
52. Hence, we use lattices of sizeL3L3aL2, wherea
5Lt /L2 is the aspect ratio. Previous work@8#, limited to L
<10, has determinedKc50.24860.002. Estimates for the
correlation length exponent@8,10# yielded n50.960.1, al-
most violating the inequality@7# n>2/d. From the results
shown in Fig. 3~a!, obtained with the cluster algorithm, it i
clear that Kc is in fact at a slightly lower valueKc
S

v.

01570
r-
s
r

,
-

al

d

50.246(1), although the crossing ofL56,8 occurs atK
50.248. The disorder average,@•#av, has been performed
over 50 000 samples with 105 MCS per sample. The more
precise value forKc significantly changes estimates ofn.
The inset in Fig. 3~a! shows@L2dr/dK#av versusL, which at
Kc yieldsn51.15(10), now largely satisfying the inequalit
n>2/d. The results in Fig. 3~a! are clearly consistent with
z52. In Fig. 3~b! we show results forL2r(L,Lt) versus
Lt /L2 at Kc . Standard scaling theory@20# predicts that this
should be a universal function ofa if z52. Our results con-
firm this nicely. The values of exponents are in good agr
ment with the analytical estimates in@21#.

In conclusion, we have introduced a worm algorithm f
the quantum rotor model. For the link-current representat
of the quantum rotor model, the proposed algorithm is ex
nentially more efficient than conventional algorithms a
performs at par with the Wolff algorithm@12# for the classi-
cal 3D XY model. Most noteworthy, the algorithm perform
exceptionally well on disordered systems. We have also s
cessfully adapted it to the study of systems with longer-ra
interactions as well as classical Ising models@19#.
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