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Cluster Monte Carlo algorithm for the quantum rotor model
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We propose a highly efficient “worm”-like cluster Monte Carlo algorithm for the quantum rotor model in
the link-current representation. We explicitly prove detailed balance for the algorithm even in the presence of
disorder. For the pure quantum rotor model witk=0, the algorithm yields high- precision estimates for the
critical point K.=0.333 05(5) and the correlation length exponent0.67(Q(3). For thedisordered casey
=3+3, we find v=1.15(10).
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What types of insulating, conducting, superconductingjess, V-J=0. In terms of these variables, the classital
and more exotic phases occur in two-dimensional systems at1)D Hamiltonian can be written as follows]:
T=0 is a topic of considerable current interest. A significant
amount of theoreticdll—4] and experimentdb,6] effort has
focused on bosonic systems where a superconductor to insu- H= E Er [EJz —uJr } )
lator transition is known to occur. In agreement with most K& |27 P )
experimentg5], it was shown under quite general conditions
[1,2] that a transition can occur directly between the super-_, . . . _
conducting and insulating states. However, more recently, \F/ denotes a summation over configurations vithJ=0.

has been suggested that an exatietallic phase is also pos- tarylngtl K cor:jesipg)rrr]]ds to cr][angmg][ the ra;i(le r']n thg quan-t
sible [4,6]. In this context, precise numerical results would um rotor model. The quantum rotor model has been exten-

be very valuable, and in the present paper we propose a Ve@i/vely studied 8-1(] in this representation, but a number of

efficient cluster Monte Carlo algorithm for this purpose, al_for:clulilons (t:atr'l bel questioned dgte_to se;/eir? f|r|1_|teh-tT|ze ef-
lowing us to significantly improve previous results. In par- ects. or notational convenience 1t IS useful to siigntly en-

ticular, we show that the inequalify] »=2/d is notviolated large the definition of the link currents at a given site in the

in the presence of disorder, resolving contradictions in prefollowmg_way:. At eaqh site '5; 7) in the lattice we definsix
vious work. The high precision of the algorithm should allow SUrrounding link variableslg -, Whe[i o Tuns over=x,

for precise calculations of transport properties of quantunitY,* 7. Note that, with this notatiod,, » andJg 1y, is
sented here could also be useful for the study of classicdections. The divergenceless constraint at the sife) (can
spin system§19]. then be writtend *+J7Y+J "=J*+J¥+J", so that the

Low-dimensional bosonic systems are often described igums of the incoming and outgoing currents are equal. Con-

terms of the (disorderedl boson Hubbard modelH,, Vventional Monte Carlo updatd§] on this model consist of
:Zr[(U/z)ﬁz_Mrﬁr]_tOE . (<i>*&>r,+c.c). Here U is updat!ng S|multan§ously 'four |Ink variables. qubal moves,
the on-site rrepulsionto is <tﬁe> horpping strengthy, is the updating a whole line of link variables thus allowing particle

chemical potential varving uniformlv in space between and winding numbers to fluctuate, are added to ensure ergod-
b ying y P 2 icity, but the acceptance ratio for these moves becomes ex-

+4, and n=®/®, is the number operator. If we sdt, ponentially small for large lattice sizes. Here we will de-
=|d,|e'% and integrate out amplitude fluctuatiom$,,; be-  scribe a way to construct a wormlike algorithm to perform
comes equivalent to the quantum rotor mold! nonlocal moves for this model.
The cluster algorithnj11-13 we propose is similar in
2 J spirit to worm algorithmg14,15 in the sense that we update
i p———t >, cog6,—6,). the link currents by moving a “worm” through the lattice
r 90 (r.r'y visiting the sitess;=(r;, ;). The links through which the
(1 worm passes are updatedring its construction. At a given
site, the links witho- equal tox,y, 7 are called outgoing links

Here, 6, the phase of the quantum rotorthe renormalized and those witho equal to—x,—y,— 7 are incoming links.
hopping strength, and ({3/36,)=n, . The quantum rotor When the worm is moving 'through the !att|ce, the (;urrents
model describes a wide range of phase transitions dominateli, are updated in the following manner: if the worm is leav-
by phase fluctuations, and it is well know8] that an ing the sites; along an outgoing link, wéncrementthe cor-
equivalent classical model exists where the Hamiltonian isesponding current,

written in terms of currents defined on the links of a lattice,
J=(J%J%,J7). These link-current variables describe the
“relativistic” bosonic current which should be divergence-

1 49
“‘Z(Ta—a

U
aT o

Jgi—>Jéi"=J‘S’i+ 1, o=xyYy,7. (3)
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If the worm is leaving the sitg; along an incoming link, we 1000
decrementhe corresponding current,

Jg—>J;iU=Jgi—l, o=—X,—Y,—T. (4)

The construction of the worm starts with the choice of a 100
random initial sites;=(r4,7;) in the space-time lattice.
Then the algorithm can be decomposed in two stép3he "
worm moves to one of the six neighboring sites. To decide
which direction to go from a sitg;=(r;,7;), we calculate
for all directionso=*X,*y,* 7 Weights,A;’i , according to

O, (local)
o1, (wormy)
& 1. (Worm)

10

local detailed balance. A good choice is 7/
! . R __.__0-5—0-016
AZ=min(1,ex —AEZ/K)), AE=E[—EJ. (5) e ._-_-;-;;;z 8 R _g-B-—fETE
1 C o 1
HereEZ=3(J¢)?— ur ¢ 8, - - is the contribution to the to- 10 100

tal energy from the Iink]S_ , before the worm moves through
' FIG. 1. Autocorrelation times versus lattice size for the conven-

H 1o ; H H H g 1o
it ESi IS the_ energy contribution _Wltﬂsi replaced _t_)y‘]si ) tional and worm algorithm fop=0 atK=0.333. The dashed lines
By normalizing theAg’s, we define the probabilitieps  indicate power-law fits and the solid line an exponential fit.in

=A;’i/NSi, whereNSi=E,,A‘S’i. A direction o is then chosen .
according to these probabilitie§i) Once o is chosen, we —PRIL 1Aﬁ/N The indexo denotes the direction needed
update the correspondini{ according to the above rules, 0 g0 froms; to s, P is the probability for choosing site

Egs.(3) and(4), and extend the worm to the new lattice site S as the starting point, anf, is the probability for erasing
Sit1- (|) and (||) are then repea‘[ed until the worm passesthe worm after construction. If the worw has been ac-
through the initial site whers; ,,;=s,. Finally, in order to  cepted, we have to consider the probability for reversing the
satisfy detailed balance, we havedmsethe worm with a move. That is, we consider the probability for constructing
probability determined in the following way. N(worm) and  an antiwormw annihilating the wormw. We have Py,

N(no worm are the normalization of the probabilities at the =P (1- pe )H 1A /N— Here, the indexs denotes the
initial site s; with and without the worm present, then we

erase the constructed worm with a probability direction needed to go fror$] to sIJrl Note that in this case
the sites _are visited in the opposite ordesrl—sl,sz

Pe=1—min( 1 N(no worm 6 SN sN s,, in generals;=Sy_;+» (i#1). Note also
N(worm) thats; ands;,; are connected by the link =1y_; 1, With

Under most conditions, this probability is very small. SeveralSN and's, $; connected b;i n=I1. With this notation, we see
points are noteworthy about this algorithm. First of all, thethats; andsy_;,1=S;,, are connected by the link variable
configurations generated during the construction of the wornhi - Let us now consider the case in which both of the worms
are not valid ¥ - J#0). However, once the construction of w andw have reached the sit differentfrom the starting
the worm is finished and the path of the worm closed, thesite s;. Since we are updating the link variables during the
divergenceless constraint is satisfied. Secondly, when theonstruction of the worm and since we are always consider-
worm moves through the lattice it may pass many timesng moving the worm in all six directions, we ha\m
through the same link and cross itself before it reaches the = . (i#1). Furthermore, Ao’ and AY
initial site where the construction terminates. Hence, it is N=i+2” SN-i+1=Si+1
crucial that the current variables are updatieding the con-  only depend on the link variablg c connecting the sites;
struction of the worm. Finally, at each stem the construc- and sy_;.1, and we see thaA"/A Hl—exp(—AE"/K)
tion_of the worm itis likely that t.he worm at the sig will _i=1.--N. Hence, sincd®, =P, we find
partially “erase” itself by choosing to go back to the site
s;_ 1 visited immediately before, thereby “bouncing” off the .
site’s; . Py _1-Py
Now we turn to the proof of detailed balance for the al- p— 1-P
gorithm. Let us consider the case where the wonmyisits

the sites{s;- - - sy}, wheres, is the initial site. The worm \yhereAE,,, is the total energy difference between a configu-
then goes through the corresponding link variables - ration with and without the wormv present. Now we con-

-In}, with I connectings; ands; ;. Note thatsy is the last  sider Pe=1—min(1,N, (no worm)Ng (worm)). Here, Ng
site visited before the worm reach®s Hence sy ands; are ! ! !

connected by the linky . The total probability for construct- -
ing the worm w is then given by P,=Ps(1  worm=Ns is equal toNs (worm). Hence, we find for the

ﬁ
N_ expl —AEy/K), (7)

€
w

= Nsl(no worm) is equal toﬁsl(antiworn), andﬁsl(no anti-
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FIG. 2. Lp versusK for different lattice sizes, fop=0. All oS | | | | il
curves cross at the critical poimt,=0.333 05(5) WitthleKc = 015 1055 L20 30 5 O6x6x0 |
=0.49%5). Inset:Ldp/dK at K, versusL. The dashed line inagi- ~ t __.- @ 8x8x16
cates a fit yielding an exponent=0.6703).  t  g=-""_ -6 10x10x25 -
| B 16x16x64
0.1} ﬁ—_AA 20%20x100
- 24%24x144 1
probability to erase the worme=1—min(1N; /N ), and T 26x26x196 ]
V¥ 32x32x256 -
sz 1- mm(l,NSl/NSl) for erasing the antlworm. With this | | | | .

choice of P®, we satisfy detailed balance sind®, /P, O%2as 02as 0285 0286 0247 | 0248 | 0249

=exp(—AE,,/K). Ergodicity is simply proven as the worm K

can perform local loops and wind around the lattice in any FIG. 3. (a) [L?p],, versusK for different lattice sizes, fop

direction, as in the conventional algorithm. =2+3. All curves cross at the critical poir,=0.246(1) with
To demonstrate the efficiency of the proposed algonthm[sz]ale k,=0.121). Inset: [L2dp/dK],, versusL for different

we have calculated autocorrelation times for different latticex. The solid line indicates a power-law fit yielding an exponent

sizes for the worm algorithm and the conventional algorithm.=1.15(10).(b) Scaling plot ofL2p(L,L,) at K.=0.246.

For an observabl® we define the autocorrelation function

and the autocorrelation time, in the usual mann€rl6], than 4 for the conventional algorithm. For the conventional
algorithm, it is likely thatr, is diverging exponentially with

(O(0)O(t))—(0)? s s L sincep is solely determined by global updates for which
(0% —(0)? =ae ""1+be 0+ ..., (8)  the acceptance probability decreases exponentially with

For the worm algorithm, we find a very smaj,c~0.3.
We now present results for the model EQ) at ©=0.

Here,t is the Monte Carlo time measured in Monte Carlo . s
' . . There, the model is expected to undergo a transition in the
d
sweepgMCS), with 1 MCS corresponding ta“ attempted (2+1)D XY universality clas$1,9] from a superfluid into a

updates. The autocorrelation function is calculated frO”‘M
ott insulating phase with a dynamical critical exponent
simulations with 18 MCS, and to obtain the best estimate of _ = 1. The different phases can be distinguished by calculating

7o We always fit to the indicated double-exponential formthe stiffness defined 48]

with 71<<7,. To make a fair comparison af, for the two

algorithms, one customarily12,16 multiplies 7, for the 2

worm algorithm byN/<I>, with <I> the mean number of <<E X ) > (9)
links in a worm andN = 3L3. With this rescaling we show in L L2 .

Fig. 1 the autocorrelation times,, for the stiffnesgsee the

exact definition beloywat «=0 for both algorithms. The Since we expecz=1, we uselL,, the system size in the
calculations have been performed on cubic latticeKat third direction, equal td.. To obtain theK dependence s,
=0.333, very near previous estimates of the critical pointwe have used reweighting techniqyés] on large rungof

[9]. For the worm algorithm we also show the autocorrela-the order of 18 MCS) at K=0.333. The error bars are de-
tion time for the energyre , which is almost identical ta, . termined using jackknife techniqug&6]. Using finite-size
The autocorrelation times increase dramatically with systenscaling relations, the quantipl? is expected to be indepen-
size for the conventional algorithm, whereas they remairdent of system size at the critical poif&], K.. Moreover,
very small(of the order of 2-3 MCS per linkor the worm  LZdp/dK is expected to diverge &, asL'” wherev is the
algorithm. If we fit theL dependence of,~L"c with a  correlation length exponent. We have explicitly calculated
power law, we obtain an autocorrelation expongyt larger  this quantity by evaluating the thermodynamic derivative of
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p with respect to the couplindg: dp/dK=({pE)—{p)
X(E))/K?. In Fig. 2, we showlLp versus K for different
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=0.24€41), although the crossing of =6,8 occurs atk
=0.248. The disorder averagg,],,, has been performed

lattice sizes. From the crossing of the curves we can dete@ver 50 000 samples with 1MCS per sample. The more
mine K,=0.333 05(5) to a much higher precision than wasprecise value foK. significantly changes estimates of
possible using the conventional algorithm on much smallefThe inset in Fig. 8) shows[L?dp/dK],, versusL, which at

systemg8-1(]. Since all the curves cross in a single point,

K. yields v=1.15(10), now largely satisfying the inequality

our results are completely consistent with a dynamical expor=2/d. The results in Fig. @) are clearly consistent with

nentz=1, as expectefll]. In the inset of Fig. 2 is shown the
size dependence &fdp/dK atK. on a log-log scale. We fit
this curve to a power-lavd LY and obtainy=0.67Q3), in

z=2. In Fig. 3b) we show results fol.?p(L,L,) versus
L,/L? atK.. Standard scaling theof20] predicts that this
should be a universal function ef if z=2. Our results con-

perfect agreement with estimates for the three-dimensionajym this nicely. The values of exponents are in good agree-

XY universality clas§18]. Preliminary result§19] for the
generictransition atu=3 show pronounced finite-size ef-
fects questioning previous wofKk 0.

We also simulated the model E@) with disorder foru
=1+1. In this case, the transition is between a superflui
and an insulating Bose-glass phase. Scaling thEbfypre-
dicts a second-order transition with dynamical exponent
=2. Hence, we use lattices of sitexL X aL?, where a
=L,/L? is the aspect ratio. Previous wof&], limited to L
=10, has determine#.=0.248+0.002. Estimates for the
correlation length exponeii8,10] yielded »=0.9+0.1, al-
most violating the inequality7] v=2/d. From the results
shown in Fig. 8a), obtained with the cluster algorithm, it is

clear thatK; is in fact at a slightly lower valueK,

ment with the analytical estimates [ig1].
In conclusion, we have introduced a worm algorithm for

the quantum rotor model. For the link-current representation

of the quantum rotor model, the proposed algorithm is expo-

dnentially more efficient than conventional algorithms and

performs at par with the Wolff algorithifi12] for the classi-

cal 3D XY model. Most noteworthy, the algorithm performs
exceptionally well on disordered systems. We have also suc-
cessfully adapted it to the study of systems with longer-range
interactions as well as classical Ising moddls].
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