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Lasing on scar modes in fully chaotic microcavities
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Scar wave functions in a fully chaotic cavity are obtained numerically by an extended Fox-Li method.
Lasing on the scar modes are observed in a semiconductor microcavity with a selective excitation of different
scars controlled by corresponding shape of electrodes for current injection.
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Conventional lasers are built with cavity shapes which areexperiments of tunneling current of the quantum well, the
integrable—with a one to one correspondence betweemicrowave billiards, and the microcavity las¢i2—16.
modes and periodic or quasiperiodic motions due to the sepa- The problem of scars can be discussed by the relation
rability of equations of motion in different coordinates. Re- between ray and wave as well as classical and quantum me-
cently, lasing has been observed in small cavities with a vachanics because stationary solutions of the Maxwell equation
riety of shapes—dye drops, glass microspheres, and@nd the Schrdinger equation are given by the same equa-
semiconductor microcavities. Such shapes can be nonintéion, i.e., the Helmholtz equation. Indeed, lasers of asymmet-
grable and chaotic, in the sense that the motions are ndtC resonant cavities have been studied and laser action de-
separable and the ray trajectories obey chaotic dynamic§cribed in terms of chaotic ray dynamifk?7,18. The laser
The problem of modes of these lasers, and the corresposliodes of two-dimensional resonant cavity provide an effec-
dence between ray trajectories and optical modes is related ttye stage for investigating scaf$5,16.
the problem of quantum chaos and fundamental issues in In this paper, we present the scars of strongly chaotic
statistical mechaniddl,2]. In a fully chaotic cavity, there are optical resonators belonging to a class that has been proven
no stable periodic orbitéSPO’9, and each wave function, in €Xactly to be fully chaotic. We also report on controlling of
principle, “corresponds” in a complex way to an infinite laser action on scar modes by selective pumping of those
number of unstable periodic orbitsPO’s) [1]. One of the Modes. The scar wave functions are numerically obtained by
key issues of wave functions in chaotic cavities, or wavean extended Fox-Li mode calculation method, and also ob-
chaos, is scar wave functions, corresponding to wave funcserved in experiments on a quantum-well laser diode. In this
tions which seem to localize on short UPQ3. type of laser, localization of the light on scars can be de-

Existence of scars is an important issue for the foundatected in far-field emission patterns as beams corresponding
tions of statistical mechanics. Ergodicity is the basis for thel0 propagation along UPO's in the cavity.

statistical mechanic$4,5]. The property of quantum me- The semiconductor laser diodes we investigated have the
chanics corresponding to ergodicity is also important, andame shapes as so-called “unstable optical resonators” and
quantum ergodicity has recently been defiféds,7]. Ac-  “concentric optical resonators,” i.e., the radii of the circular

cording to the correspondence principle, the ergodic properirrors on the edge are smaller than and equal to half of the
ties of classical and quantum mechanics should corresporféfvity length, respectively, as shown in Fig[19]. The dif-

in the so-called semiclassical region of very high energiesference from the usual unstable and concentric resonators is
Indeed, it has been exactly proven that most of the eigerthat they have extra flat mirrors on the side walls, which
functions of quantized classical-mechanical ergodic system&akes closed resonators surrounded by mirrors. We call
converge to uniform distribution$—8]. Therefore, most of ~these resonators as “closed unstable resonators” and “closed
the eigenfunctions of quantized classical-mechanical chaotigoncentric resonators.” Therefore, light reflects on the side
systems distribute uniformly.

However, some of the eigenfunctions of the quantized E(-)i;(;ttrz;leea giop Ouewall | Cmoyed
strongly chaotic classical dynamical systems have been nu- /1
merically found to localize on UPQO’s even in higher energy Curved \
region[3,9]. Therefore, such localization is called “scars,” end-mirror W
which means the scars in a uniform distribution of strongly :
chaotic systemg3]. The mechanism of the existence of scars GaAs substrate
has not yet been clarified completely, although several theo-

retical approaches have been m4d8gl0,11. The evidence L GRIN-SCH-SQW
of scars in the actual experiments have also been found in the n-electrode

FIG. 1. Schematic illustration of the microcavity laser diode of
closed unstable and concentric resonators. The shape of curved end
*Present address: Department of Communication Engineeringmirrors are the arc of a circle. When the radRisf the curvature of
Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719the curved end mirrors is equal to or smaller than the cavity length
1197, Japan. L, the ray-dynamical trajectories are exactly proven to be chaotic.
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FIG. 2. (Color) The scar in a closed unstable resonafar.The
eigenmode of the least losd) Three kinds of periodic orbits. The
red, blue, and green lines correspond, respevtively, to the closed
trajetories of the bounce numbers 2, 4, 6 with the flat and curved
mirrors.
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walls as well as on the circular mirrors, and it is easy to 700 750 800 850 900 950
imagine that the ray-dynamical trajectories are complicated

due to multiple scattering inside the resonators. WH\-’Elﬂﬂg[h [nm]
Indeed, Bunimovich proved exactly the full chaoticity of

the ray dynamics in the resonators of these sh&p@s Ac- FIG. 4. (Colop Lasing spectrum in the case of 10 mw output
cordingly, these resonators are totally different from thosgyower of the closed unstable resonator.

asymmetric resonant cavities deformed from a circular one in ) ) ) )

the sense that ray mechanics shows “full chafi?,18. In glecting the reflecting waves from the circular mirror to the
fully chaotic dynamical systems, there exist no SPO’s. Thes@me circular mirror and those waves which violate the criti-
mathematical proof on full chaos of the ray mechanics jcal angle (.:ondlltlon at the flat mirrors on the 3|de'walls yield
crucially important because SPO's could exist in arbitrarily(N€ following iterative equations for the traveling waves

small regions in the whole phase space even if the phasfé(_)m the left(right) circular mirror to the rightleft) circular

space structure of numerical simulations shows no such of"Mor:

bits.
The resonant cavities we discuss in this paper have a long E (= f K(r,r)E(r'), (1)
waveguide in comparison to their width. Therefore, the qua- A
sistationary eigenfunctions corresponding to the resonancggnere E.y(r) is the light field at the point on the right
can be obtained by the extended version of the Fox-Li mod@eft) circular mirror. Here
calculation method for the cavities of the flat mirrors on the
side walls[19,21,22. Assuming in the Helmholtz-Kirchhoff
integral equation, the Neuman boundary condition of vanish-
ing derivative of the wave function on the mirrors, and ne-
whereH{? is the first order Hankel function of the second
75 kind, while n and k are the refractive index and the wave
! ! number, respectively. In Eq1), the integrating ared is
approximated by the original circular mirror and its mirror
20} i images above and below which express the reflections from
the side walls only satisfy the critical angle conditions.
The round-trip calculations are repeated with an initial
15+ 2 field distribution until the field distribution converges to the
resonator eigenmode, i.e., the quasistationary eigenfunction.
The power coupling coefficients are defined as the power of
10+ izl the absolute values of the complex eigenvalues of one round-
trip calculation that correspond to the loss or decay rate of
the resonator eigenmod#9,21,23.
5+ 5 In order to investigate the laser action on this scar mode,
we have actually fabricated the closed unstable resonators by
using a molecular-beam-epitaxially grown gradient-index,
0 = | 1 separate-confinement-heterostructure, single-quantum-well
0 200 400 GaAs/AlLGa _,As structure as shown schematically in Fig.
. 2 1. The shapes of the circular and flat edges were formed by
IH_] ection Current [IT]_A] the reactive-ion-etching technique in order to realize extreme
smoothness and verticality for our purpose of the investiga-
FIG. 3. (Colon Light output power versus injection current tion of the morphological effects of the resonant cavities on
characteristics of the closed unstable resonator. the lasing modes.

K(r,r’)=—IEH(lz)(nk|r—r’|), 2)

Output Power [mW]
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FIG. 5. (Color) Far-field patterns of the closed unstable resona-
tor. The red curve is obtained numerically and the blue one ob-
served in the experiment.

The lasing mechanism of the optical resonators we report
in this paper is understood intuitively as follows. If the angle
of reflection on the side wall mirrors are larger than the criti-
cal angled(sin#=1/3.3), the light can be confined in the
resonator due to total internal reflection, and grow exponen-
tially while propagating in the longitudinal direction so that
it gains the pumping energy from the lasing medium. When
the growing speed of the light intensity exceeds the cavity
loss, the resonator can lase.

Accordingly, the lasing mechanism of the laser diode we
present here is very similar to the conventional unstable reso-
nators in the sense that the light grows when it propagates in
the longitudinal directionf19]. However, the conventional
unstable resonators do not have side mirrors, and hence they
have only one UPO. On the other hand, there exist infinite
UPO’s in the closed unstable and concentric resonators.
Therefore, we cannot expect one to one correspondence be-
tween the resonator eigenmodes and UPQ’s in the cases f?]f
the closed unstable and concentric resondtb}s

First, let us discuss the closed unstable resonator, qf
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FIG. 7. (Color) The far-field patterns of the scar eigenmodes of
e closed concentric resonator. The width of the resonat¢a)is
60 um, (b) 80 um, and(c) 100 um. The red curve ina) is the

which cavity length and width are 700m and 60um, re-

spectively, while the radius of curvature of the circular end
mirror is 60 um. The resonance eigenfunction of the Helm-

(a)
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FIG. 6. The eigenmodes of the closed concentric reson@pr;
mode 0,(b) mode 1.

alculated far-field pattern corresponding to the scar eigenmode of
Fig. 6(b).

holtz equation for an unstable resonator corresponding to the
wavelength 2Zr/k=855.7 nm outside the resonator is ap-
proximately calculated by the above method, and shown in
Fig. 2(@). The refractive indexn inside the resonator is as-
sumed to be 3.3. One can easily recognize the scar, i.e., the
localization of the light intensity on a few UPO’s in Fig.
2(b). If this mode can lase, the far-field pattern has the sig-
nature characteristic of this scar wave function due to the
coherence of the laser light.

Now we show the experimental results of the laser diode
of the unstable resonator shape is tested at 25°C using a
pulsed current with 500-ns width at 1-kHz repetition. The
relation between the injection current and the intensity of the
output light is shown in Fig. 3. The threshold phenomena can
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be clearly observed, that is, the laser action of the microcawwPO. Unfortunately, one cannot expect that mode 1 would
ity laser diode. Figure 4 is the spectrum of the output lightlase because mode 0 overcomes mode 1 due to the small
from the laser diode of the unstable resonator shape. Thiess. Indeed, we observed laser action on mode 0 by the

sharp peaks clearly show the laser action. far-field pattern, which has one strong peak corresponding to
The red curve of Fig. 5 is the calculated far-field patternmode 0. ) L
corresponding to the scar wave function in Figa)2while We changed the region of current injection from the

the blue curve is the result obtained from the actual experiwhole cavity into the diamond region corresponding to mode
ment. One can see the nice correspondence between bothPY forming the diamond-shape electrode. Then we ob-
structures. Consequently, we conculde that we observed tgeTved the laser action on mode 1 that has two peaks in the
laser action on the scar mode of Fig. 2. The wave functio ar-field pattern, nicely corresponding to the calculated one,

; e P : s shown in Fig. (&). The spacings of the beams correspond-
localizes on a few UPQ'’s inside the resonant cavity as showﬁlg to diamond-shape UPO’s are so wide that the beams do

!QteFrIfge.reZ. Tr?vc\;?]\ée;ng:ﬁetr)iigsthire esr(')og'lzrucf‘rlﬁ St?ratctthrzynot intefere with one another even far outside the resonator,
n wi . period : UCWUreSnd so the periodic orbit structures are observed as the strong
disappear in the far-field pattern of the closed unstable rescb'eaks of the far-field pattern
nator. _ When we vary the width of the closed concentric resona-
Next, let us move to the closed concentric resonators, ofy; from 60 .m o 80 and 10Q:m with the same length of
which cavity length and width are 60@m and 60um, re-  the resonator and radius of curvatures of the curved end mir-
spectively, while the radius of curvature of the circular end;qs  the positions of two peaks of the far-field pattern
mirror is 300um. The conventional concentric re:sonatorschange as shown in Figs(f and 7c) because the shape of
have been considered in the research field of the laser réS@ramond-shape UPO’s also vary. The peak positions of the
nators as a precisely neutral case of stability because thgy fie|d patterns of the closed concentric resonator, of which
ray—dy_namlcal periodic orbits bouncing only circular mirrors idgihs are 60, 80, and 100m, respectively, calculated by
are neither stable nor unstalple9]. However, the closed con- applying the Snell's law to the diamond-shape UPO’s are
centric resonators we discuss here have the mirrors on the 19 2o + 25 g9° and+32.9°. One can see that the peaks
side walls, which do not affect the neutral periodic orbits at.5icylated by the Snell's law excellently correspond to the

all, but produce infinite UPO's by multiple scattering, and neaks of the observed far-field patterns as shown in Fig. 7.

ensure_full qhaoticity of the ray dynamics, as exactly proven |, summary, we numerically obtained the scar eigen-

by Bunimovich[20]. _ modes of the closed unstable and concentric resonators. The
The quasieigenstates of the Helmholtz equation for gy field patterns corresponding to the scar eigenmodes were

closed concentric resonator are obtained numerically by thgpserved in the experiments of the semiconductor microlas-

extended Fox-Li mode calculation method explained abovegrs The |aser action on the scar modes were controlled by

and shown in Fig. 6. The least loss mode O corresponds tgq shape of the electrode for the current injection.

the neutral periodic orbit. Accordingly, mode 0 is not a scar

wave function, but mode 1 that has larger loss than mode 0 is The work at ATR was supported in part by the Telecom-

a scar wave function localizing on the “diamond” shape munications Advancement Organization of Japan.
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