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Lasing on scar modes in fully chaotic microcavities
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Scar wave functions in a fully chaotic cavity are obtained numerically by an extended Fox-Li method.
Lasing on the scar modes are observed in a semiconductor microcavity with a selective excitation of different
scars controlled by corresponding shape of electrodes for current injection.
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Conventional lasers are built with cavity shapes which
integrable—with a one to one correspondence betw
modes and periodic or quasiperiodic motions due to the s
rability of equations of motion in different coordinates. R
cently, lasing has been observed in small cavities with a
riety of shapes—dye drops, glass microspheres,
semiconductor microcavities. Such shapes can be non
grable and chaotic, in the sense that the motions are
separable and the ray trajectories obey chaotic dynam
The problem of modes of these lasers, and the corres
dence between ray trajectories and optical modes is relate
the problem of quantum chaos and fundamental issue
statistical mechanics@1,2#. In a fully chaotic cavity, there are
no stable periodic orbits~SPO’s!, and each wave function, in
principle, ‘‘corresponds’’ in a complex way to an infinit
number of unstable periodic orbits~UPO’s! @1#. One of the
key issues of wave functions in chaotic cavities, or wa
chaos, is scar wave functions, corresponding to wave fu
tions which seem to localize on short UPO’s@3#.

Existence of scars is an important issue for the foun
tions of statistical mechanics. Ergodicity is the basis for
statistical mechanics@4,5#. The property of quantum me
chanics corresponding to ergodicity is also important, a
quantum ergodicity has recently been defined@2,6,7#. Ac-
cording to the correspondence principle, the ergodic pro
ties of classical and quantum mechanics should corresp
in the so-called semiclassical region of very high energ
Indeed, it has been exactly proven that most of the eig
functions of quantized classical-mechanical ergodic syst
converge to uniform distributions@6–8#. Therefore, most of
the eigenfunctions of quantized classical-mechanical cha
systems distribute uniformly.

However, some of the eigenfunctions of the quantiz
strongly chaotic classical dynamical systems have been
merically found to localize on UPO’s even in higher ener
region @3,9#. Therefore, such localization is called ‘‘scars
which means the scars in a uniform distribution of stron
chaotic systems@3#. The mechanism of the existence of sca
has not yet been clarified completely, although several th
retical approaches have been made@3,10,11#. The evidence
of scars in the actual experiments have also been found in
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experiments of tunneling current of the quantum well, t
microwave billiards, and the microcavity lasers@12–16#.

The problem of scars can be discussed by the rela
between ray and wave as well as classical and quantum
chanics because stationary solutions of the Maxwell equa
and the Schro¨dinger equation are given by the same equ
tion, i.e., the Helmholtz equation. Indeed, lasers of asymm
ric resonant cavities have been studied and laser action
scribed in terms of chaotic ray dynamics@17,18#. The laser
diodes of two-dimensional resonant cavity provide an eff
tive stage for investigating scars@15,16#.

In this paper, we present the scars of strongly chao
optical resonators belonging to a class that has been pro
exactly to be fully chaotic. We also report on controlling
laser action on scar modes by selective pumping of th
modes. The scar wave functions are numerically obtained
an extended Fox-Li mode calculation method, and also
served in experiments on a quantum-well laser diode. In
type of laser, localization of the light on scars can be d
tected in far-field emission patterns as beams correspon
to propagation along UPO’s in the cavity.

The semiconductor laser diodes we investigated have
same shapes as so-called ‘‘unstable optical resonators’’
‘‘concentric optical resonators,’’ i.e., the radii of the circul
mirrors on the edge are smaller than and equal to half of
cavity length, respectively, as shown in Fig. 1@19#. The dif-
ference from the usual unstable and concentric resonato
that they have extra flat mirrors on the side walls, whi
makes closed resonators surrounded by mirrors. We
these resonators as ‘‘closed unstable resonators’’ and ‘‘clo
concentric resonators.’’ Therefore, light reflects on the s

g,
-

FIG. 1. Schematic illustration of the microcavity laser diode
closed unstable and concentric resonators. The shape of curve
mirrors are the arc of a circle. When the radiusR of the curvature of
the curved end mirrors is equal to or smaller than the cavity len
L, the ray-dynamical trajectories are exactly proven to be chao
©2003 The American Physical Society07-1
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walls as well as on the circular mirrors, and it is easy
imagine that the ray-dynamical trajectories are complica
due to multiple scattering inside the resonators.

Indeed, Bunimovich proved exactly the full chaoticity
the ray dynamics in the resonators of these shapes@20#. Ac-
cordingly, these resonators are totally different from tho
asymmetric resonant cavities deformed from a circular on
the sense that ray mechanics shows ‘‘full chaos’’@17,18#. In
fully chaotic dynamical systems, there exist no SPO’s. T
mathematical proof on full chaos of the ray mechanics
crucially important because SPO’s could exist in arbitrar
small regions in the whole phase space even if the ph
space structure of numerical simulations shows no such
bits.

The resonant cavities we discuss in this paper have a
waveguide in comparison to their width. Therefore, the q
sistationary eigenfunctions corresponding to the resona
can be obtained by the extended version of the Fox-Li m
calculation method for the cavities of the flat mirrors on t
side walls@19,21,22#. Assuming in the Helmholtz-Kirchhoff
integral equation, the Neuman boundary condition of vani
ing derivative of the wave function on the mirrors, and n

FIG. 2. ~Color! The scar in a closed unstable resonator.~a! The
eigenmode of the least loss.~b! Three kinds of periodic orbits. The
red, blue, and green lines correspond, respevtively, to the clo
trajetories of the bounce numbers 2, 4, 6 with the flat and cur
mirrors.

FIG. 3. ~Color! Light output power versus injection curren
characteristics of the closed unstable resonator.
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glecting the reflecting waves from the circular mirror to t
same circular mirror and those waves which violate the cr
cal angle condition at the flat mirrors on the side walls yie
the following iterative equations for the traveling wav
from the left~right! circular mirror to the right~left! circular
mirror:

Er ( l )~r!5E
A
K~r,r8!El (r )~r8!, ~1!

where Er ( l )(r) is the light field at the pointr on the right
~left! circular mirror. Here

K~r,r8!52
i

2
H1

(2)~nkur2r8u!, ~2!

whereH1
(2) is the first order Hankel function of the secon

kind, while n and k are the refractive index and the wav
number, respectively. In Eq.~1!, the integrating areaA is
approximated by the original circular mirror and its mirr
images above and below which express the reflections f
the side walls only satisfy the critical angle conditions.

The round-trip calculations are repeated with an init
field distribution until the field distribution converges to th
resonator eigenmode, i.e., the quasistationary eigenfunc
The power coupling coefficients are defined as the powe
the absolute values of the complex eigenvalues of one rou
trip calculation that correspond to the loss or decay rate
the resonator eigenmode@19,21,22#.

In order to investigate the laser action on this scar mo
we have actually fabricated the closed unstable resonator
using a molecular-beam-epitaxially grown gradient-inde
separate-confinement-heterostructure, single-quantum-
GaAs/AlxGa12xAs structure as shown schematically in Fi
1. The shapes of the circular and flat edges were formed
the reactive-ion-etching technique in order to realize extre
smoothness and verticality for our purpose of the investi
tion of the morphological effects of the resonant cavities
the lasing modes.

ed
d

FIG. 4. ~Color! Lasing spectrum in the case of 10 mw outp
power of the closed unstable resonator.
7-2



po
le
iti
e
e
at
e

vit

w
s
s
l
th
it

or

s

,

nd

the
p-

in
-
, the
.
ig-
the

de
g a

he
the
can

na
ob

;

of

e of

RAPID COMMUNICATIONS

LASING ON SCAR MODES IN FULLY CHAOTIC . . . PHYSICAL REVIEW E 67, 015207~R! ~2003!
The lasing mechanism of the optical resonators we re
in this paper is understood intuitively as follows. If the ang
of reflection on the side wall mirrors are larger than the cr
cal angleu(sinu51/3.3), the light can be confined in th
resonator due to total internal reflection, and grow expon
tially while propagating in the longitudinal direction so th
it gains the pumping energy from the lasing medium. Wh
the growing speed of the light intensity exceeds the ca
loss, the resonator can lase.

Accordingly, the lasing mechanism of the laser diode
present here is very similar to the conventional unstable re
nators in the sense that the light grows when it propagate
the longitudinal direction@19#. However, the conventiona
unstable resonators do not have side mirrors, and hence
have only one UPO. On the other hand, there exist infin
UPO’s in the closed unstable and concentric resonat
Therefore, we cannot expect one to one correspondence
tween the resonator eigenmodes and UPO’s in the case
the closed unstable and concentric resonators@1#.

First, let us discuss the closed unstable resonator
which cavity length and width are 700mm and 60mm, re-
spectively, while the radius of curvature of the circular e
mirror is 60mm. The resonance eigenfunction of the Helm

FIG. 5. ~Color! Far-field patterns of the closed unstable reso
tor. The red curve is obtained numerically and the blue one
served in the experiment.

FIG. 6. The eigenmodes of the closed concentric resonator~a!
mode 0,~b! mode 1.
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holtz equation for an unstable resonator corresponding to
wavelength 2p/k5855.7 nm outside the resonator is a
proximately calculated by the above method, and shown
Fig. 2~a!. The refractive indexn inside the resonator is as
sumed to be 3.3. One can easily recognize the scar, i.e.
localization of the light intensity on a few UPO’s in Fig
2~b!. If this mode can lase, the far-field pattern has the s
nature characteristic of this scar wave function due to
coherence of the laser light.

Now we show the experimental results of the laser dio
of the unstable resonator shape is tested at 25 °C usin
pulsed current with 500-ns width at 1-kHz repetition. T
relation between the injection current and the intensity of
output light is shown in Fig. 3. The threshold phenomena

-
-

FIG. 7. ~Color! The far-field patterns of the scar eigenmodes
the closed concentric resonator. The width of the resonator is~a!
60 mm, ~b! 80 mm, and~c! 100 mm. The red curve in~a! is the
calculated far-field pattern corresponding to the scar eigenmod
Fig. 6~b!.
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be clearly observed, that is, the laser action of the microc
ity laser diode. Figure 4 is the spectrum of the output lig
from the laser diode of the unstable resonator shape.
sharp peaks clearly show the laser action.

The red curve of Fig. 5 is the calculated far-field patte
corresponding to the scar wave function in Fig. 2~a!, while
the blue curve is the result obtained from the actual exp
ment. One can see the nice correspondence between
structures. Consequently, we conculde that we observed
laser action on the scar mode of Fig. 2. The wave funct
localizes on a few UPO’s inside the resonant cavity as sho
in Fig. 2. However, the beams are so diffusive that th
interfere with one another and the periodic orbit structu
disappear in the far-field pattern of the closed unstable re
nator.

Next, let us move to the closed concentric resonators
which cavity length and width are 600mm and 60mm, re-
spectively, while the radius of curvature of the circular e
mirror is 300mm. The conventional concentric resonato
have been considered in the research field of the laser r
nators as a precisely neutral case of stability because
ray-dynamical periodic orbits bouncing only circular mirro
are neither stable nor unstable@19#. However, the closed con
centric resonators we discuss here have the mirrors on
side walls, which do not affect the neutral periodic orbits
all, but produce infinite UPO’s by multiple scattering, a
ensure full chaoticity of the ray dynamics, as exactly prov
by Bunimovich@20#.

The quasieigenstates of the Helmholtz equation fo
closed concentric resonator are obtained numerically by
extended Fox-Li mode calculation method explained abo
and shown in Fig. 6. The least loss mode 0 correspond
the neutral periodic orbit. Accordingly, mode 0 is not a sc
wave function, but mode 1 that has larger loss than mode
a scar wave function localizing on the ‘‘diamond’’ shap
cs

.-J

-
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UPO. Unfortunately, one cannot expect that mode 1 wo
lase because mode 0 overcomes mode 1 due to the s
loss. Indeed, we observed laser action on mode 0 by
far-field pattern, which has one strong peak correspondin
mode 0.

We changed the region of current injection from t
whole cavity into the diamond region corresponding to mo
1 by forming the diamond-shapep electrode. Then we ob
served the laser action on mode 1 that has two peaks in
far-field pattern, nicely corresponding to the calculated o
as shown in Fig. 7~a!. The spacings of the beams correspon
ing to diamond-shape UPO’s are so wide that the beams
not intefere with one another even far outside the resona
and so the periodic orbit structures are observed as the st
peaks of the far-field pattern.

When we vary the width of the closed concentric reso
tor from 60mm to 80 and 100mm with the same length o
the resonator and radius of curvatures of the curved end
rors, the positions of two peaks of the far-field patte
change as shown in Figs. 7~b! and 7~c! because the shape o
diamond-shape UPO’s also vary. The peak positions of
far-field patterns of the closed concentric resonator, of wh
widths are 60, 80, and 100mm, respectively, calculated b
applying the Snell’s law to the diamond-shape UPO’s
619.2°, 625.9°, and632.9°. One can see that the pea
calculated by the Snell’s law excellently correspond to
peaks of the observed far-field patterns as shown in Fig.

In summary, we numerically obtained the scar eige
modes of the closed unstable and concentric resonators.
far-field patterns corresponding to the scar eigenmodes w
observed in the experiments of the semiconductor micro
ers. The laser action on the scar modes were controlled
the shape of the electrode for the current injection.

The work at ATR was supported in part by the Teleco
munications Advancement Organization of Japan.
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