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Universality and double critical end points

J. A. Plascak? and D. P. Landau
ICenter for Simulational Physics, The University of Georgia, Athens, Georgia 30602
’Departamento de Bica, UFMG-ICEX, Caixa Postal 702 30123-970, Belo Horizonte, MG, Brazil
(Received 23 May 2002; published 24 January 2003

A double critical end point in the two-dimensional spin-3/2 Blume-Capel model is studied via extensive
Monte Carlo simulations. The resultant scaling character of the probability distribution of the mixing scaling
operators allows us to locate the double critical end point precisely and also to convincingly show that it indeed
belongs to the same universality class as the critical points.
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Multicritical phenomena have been the subject of intensderromagnetic model and layered metamagnets, and also the
study for more than half a century, both experimentally andnaster equation formalism for thie=2 layered metamagnet
theoretically. One of the first multicritical points investigated [15], predict only the existence of a TCP. On the other hand,
is the tricritical point(TCP), which can be roughly viewed as different behavior between two and three dimensions has
a point separating a first-order transition line from a secondbeen observed in the antiferromagnet spin-1 Blume-Capel
order transition lingor, by analogy to the critical point, the (BC) model. The MC simulations provided clear evidence
end of a line of three-phase coexistence, at which the threfor the decomposition of the TCP into a CEP and a DCE in
coexisting phases simultaneously become critiGaicritical ~ d=3[16] while in d=2, only a fully stable TCP is observed
points occur in a variety of systeni$], e.g., *He-*He mix-  [17]. Apparently, fluctuations inl=2 are strong enough to
tures, metamagnets, multicomponent fluid mixtures, etc. Tridestroy the splitting of the TCP in all of the the above mod-
critical phenomena are well understood with the tricriticalels and ind=3, where fluctuations are smaller, only the
exponents differing from the critical ones, and being equal tantiferromagnetic BC spin-1 modgl8] exhibits the DCE. In
the classical exponents for dimensiais 3. In some cases, addition, questions regarding its universality class are still
however, instead of a TCP, one finds a critical end pointunanswered8,13,14,19.

(CEP when a line of second-order phase transitions termi- In this paper, we address the question of the universality
nates at a first-order phase boundary delimiting a new norat a double critical end point: we consider a generalization of
critical phase. The CEP are common in a variety of physicathe Blume-Capel model to spin 3/2 and provide the simula-
systems, notably superfluids, binary fluid mixtures, binarytion evidence for its universal critical behavior. The Hamil-
alloys, some ferromagnets and ferroelectrics, etc. Recentlypnian is given 20] by

an extensive Monte Carl@MIC) simulation[2] provided the

first evidence of singular behavior on the first-order transi-

tion line close to CEP in a classical binary fluigl4]. N N

A more unusual end point, the double critical end point H=—JZ SiSj+AE 32—H2 S, (1)
(DCE) [5], occurs where two critical lines end simulta- ) =1 =1
neously at a first-order phase boundémyo distinct critical
systems coexist; the nanfcritical end pointis sometimes ) , . ) )
encountered in the literatureAlthough, not so ubiquitous as WhereJ is the exchange interactiod is the crystal field
the CEP, double critical end points have been experimentall@iSOtropy,H is a uniform external fieldS == 1/2,-3/2,
observed in liquid-liquid-vapor equilibrium in binary and @ndN s the total number of spins. The phase diagtaased
quasibinary systenf$], and there is also some indication of O" that for the spin-1 modeis schematically depicted in
a DCE in the metamagnet FeBf7]. From the theoretical F!9- 1. In theH=0 plane, there is af surface where two
point of view, systems such as the next-nearest-neighbcﬁ‘rdered phases yv|th opposite magnetizations coexist. At h|gh
Ising antiferromagnetic model, the layered metamagnet anfmperatures, this surface is separated from the paramagnetic
the random-field Ising model have been considered as strorff1as€ by a critical lina.. At low T, S contains two distinct
candidates to present a DCE since, at least according #&9ions:Ss being the locus of; ferromagnetic phasgsill
mean-field approximation@1FA), they exhibit a splitting of ~ SPins aligned in the-3/2 component coexist with the corre-
the TCP into a CEP and a DQB-10. It has been recently Sponding spin reversed phase rdJ andT=0) ands,
confirmed, however, that such splitting is an artifact of thethe locus of a generally differerit; ferromagnetic phases
MFA and, in fact, does not occur in any of the above models{for A>dJ andT=0, the phase with all spins aligned in the
(i) Monte Carlo renormalization group on the three-+1/2 component coexists with the spin reversed phase
dimensional @=3) random-field Ising model shows that the FromA=dJ, one has a line of quadruple pointswhere the
phase transition at weak random field belongs to the samabove four ordered phases coexist, and which terminates at
universality class as the zero-temperature trans[tidiy (i)  the double critical end poirtat this point two critical phases
theoretical approaches, based on MC simulations, indthe coexist:F3=F; andF;=F;). By switching on an exter-
=2 [12] andd=3 [13,14] next-nearest-neighbor Ising anti- nal uniform fieldH, one produces two symmetric wings of
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T linear combinations of the nearest-neighbor energy density
the quadrupole], and magnetizatiom as
(u—rq) (q—su)
l-rs’ l1-rs’ M=m, &)

1 18, 1
U= 2SS, a=g 2 S, m=g XS, @
(ij) i=1

=1

According to finite-size scaling23] and renormalization

group procedureq24], the joint probability distribution

pL(&E,D, M) near criticality should obey the following scal-
ing ansatz for sufficiently large system sides

PL(ED,M)=ALALA T,
XP(AL 8EA5SD,A 3 SM,Aet,Apg,A \h),
(5

A(g: angfyf, AfD:aDLdin, AM:aMLdin,
FIG. 1. Schematic phase diagram of the model described by Eq. " " " d
(1) in the Hamiltonian parameter space. Theline starts atT ~ Where AeAg=ApAp=A\A =L and 5E=E—(&)c,
=0, H=0, A=dJ and ends at the DCE. For details, see the text. D=D—(D)c, 5M=_M—<M>c, and? stands for aver-
ages taken at criticality ang, for the eigenvalues. For ap-
first-order surface®™, which go to infinity at low tempera- Propriate choices of the nonuniversal factars, ap, and
tures. These wings are limited by" critical lines, respec- a,,, the functionp is expected to be universg5]. Pre-
tively, ending at the DCE. cisely at criticality, one has
One of the most powerful approaches to the study of mag-
netic systems by MC simulations is the use of the order p (&,D,M)=A;ALALP* (Af 8, A7, 8D,ASM),
parameter distribution function. In addition, MC simulations (6)
also provide readily accessible fluctuation spectra of other
observables, needed when nonsymmetric phase diagrams gjfiere p* (x,y,z) is the p function in Eq.(5) for r=g=h
present in field-temperature space, as in this case. It is then

thwhile to defi ient ob bl " 0 0" It follows thatp* (x,y,z) constitutes a hallmark of a
worthwhile to detine convenient observaples as well as (ﬁniversality class. This distribution will be exploited here.

ext_end_ th_e concepts of _s_qale invariance "?md L_miversality t?’hrough extensive Monte Carlo simulations along the first-
their distribution probabilities. Due to the invariance of the order line ford=2, we will be able not only to determine the

lqonfltgurattlhonal lttekr]uazgyDlgger spin reversgl., tg]equa;druplef universal behavior of the DCE but also to find its precise
ine, together wi e , are immersed in Bisurface of | . 0 i ihe phase diagram.

:.:'g'.dl' M plctu_ret L pl?tlrr:ethgert])l fes‘?tmb:es dthe In the course of the simulations to determine theuad-
lquid-vapor coexisience curve, wi uble criticaiend rupole line, we studied squatex L lattices with fully peri-
point at A4, Ty4). This plane has already been explored with dic boundary conditions for system sizes of lengts18
different techniques; but controversy about the very nature oi 64 atH=0. Following equilibration, runs comprising up

this point(if it is critical or tetracritica) precluded studies of t0 6x 10° MCS (Monte Carlo steps per sjtevere performed

B e noe, 1 50 O wsing metopls secuentl e spinfip updtes. Hiso-
knownmixing scaling fieldg22]: this multicritical point is in gram reweighting[26] and finite-size scaling techniques

fact controlled by three relevant scaling fieldsa h com-  Ver® used to precisely locate the first-order transition line by
prising linear ycombinations of t%e tﬁ?eé single- measuring the minima of the fourth-order cumulants of the

_— energy and order parameter, and also the maxima of the spe-
thermodynamic fieldd, A, H as cific heat, the linear magnetic susceptibility and quadrupole
susceptibility. This approach has proved to be quite efficient
and provides good results in studying strong first-order tran-
sitions. Figure 2 depicts the phase diagram close to the DCE

g=A—Ay+r(T=Ty), h=H(H4=0), (20 including the second-ordex boundary. It turns out, how-
ever, that not all points along the line actually identify the
wheres andr control the degree of field mixing in th®  coexistence curve itself, but a continuation of it persists in
surface(the special spin reversal symmetry implies H). finite-size systemgjust a rough estimate of the terminus of
As a result, the conjugate scaling operatéf®, M are also the weak first-order line is achieved in this casEo over-

T=T_Td+S(A_Ad),
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FIG. 2. Portion of thes surface phase diagram of Fig. 1 close to
the DCE(in the reduced variables/J andkgT/J). Diamonds rep- - - .
resent the second-order phase transition line. Circles give the of L according to the parameters given in the text. Also shown for

comparison is the corresponding distribution for the two-

first-ordersr transition line(the dashed line is a guide to the eyes . X v o

The finite-size extension is given by the dotted line. The filled circled'mens'onaI Ismg_model fot_—_32. All distributions are scaled to

indicates the position of the DCE. Errors do not exceed the Symboltllnlt norm and variance. Statistical errors do not exceed the symbol
si

sizes. Z€S.

FIG. 3. Scaling operator distributiop* (D) for several values

come this difficulty in determining the precise location of the temperaturé=kgT/J, the crystal field ratic>=A/J, and the

DCE from the previous measurements, {bie distribution ~ field mixing parametes. Thus, by tuningt, § ands, again

was invoked. with the aid of the histogram reweighting technique, we ana-
Having obtained the location of the first-order transitionlyzed the shape of the distributiqsf (D) and searched for a

line, we made longer runs with 210" MCS for lattices  symmetric behavior in thg variable. This provides an addi-

L=<32 and 3.6 10" MCS for L=48,64. During the simula- tional criterion for determining coexisting phases and pro-

tions, the joint probability distributiom (u,q,m) was col-  duces results in close agreement with the procedure de-

lected in the form of a histogram. This distribution is relatedscribed above. Moreover, the great advantage now is that the

to that of the scaling operators given in E§) through B’E(D) obtained can be mapped to a previously computed
distribution presumed to be a member of the same universal-

p.(u,q,m)= 1=rs p.(E,D,M). (7) ity class. Figure 3 presents the distributiBij(D), together
with the one obtained for the spin-1/2 Ising model at its exact

Formal integration op, (£,D, M) over one or more vari-
ables provides lower-dimensional distributions, e.g., integrat-
ing over & and M yields p_(D). This is the desired distri-
bution sinceD is the conjugate scaling operator of the
corresponding scaling field. Choosing the non-universal
scale factom, in Egs.(3)—(7) so that, for each system size, 0.595 |
the one-dimensional distribution probability, (D) as a |
function of the variabley=a,LY?(D—(D).) has unit vari-
ance, we are left with only three parameters: the reducec

0.596 T T

TABLE |. Parameters for thE*(D) distribution. 0.594 J
L t o S
12 0.5965(2) 1.9862Q@1) -0.17(1)
16 0.5950(2) 1.986301) -0.18(1) 0.593 . )
24 0.5941(2) 1.986461) —-0.21(1) 0 0.0001 . 0.0002 0.0003
32 0.5939(2) 1.986482) -0.21(1)
48 0.593805) 1.9865@2) —0.21(2) FIG. 4. Reduced temperaturef Table | plotted as a function of
64 0.5937%5) 1.986522) -0.21(3) LT with #=2 andv=1 (the exact values for thé=2 Ising

universality clasp
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critical temperature. The values for the parameters are given Questions regarding possible nonanalyticities in the phase
in Table I. The s parameter reaches the valug= boundary plangS) close to the DCE can now be easily un-
—0.21(3), and theparameter = —10.0(4) is obtained from derstood. In fact,_the phase boundary For=0 _in Fig. 1 is

the measured gradient of the phase boundary at the DCE gpmpletely analytic. The absence of singularities, even close
Fig. 2. This large value of reflects the fact that the first- to the terminus of the first-order line, is due to the fact that
order transition line in the phase diagram is almost verticaPoth critical linesh ™ andX ™ not only are in the same uni-
(note that the scale fak/J is extremely fine in Fig. 2 The versality class but are symmetric too. This indeed corrobo-
dependence of the double critical end point temperaturie on rates the prediction suggested by previous scaling arguments

is shown in Fig. 4. It has the expected behavigL) E’l?] Whteretzhtherﬁ is abcan%ellatian of the Trc])nanalytic_ coEtri-ld
—t(e0) + CL~#+ D" [25], wherey=1 and#=2 for d=2 [27], utions to the phase boundary. However, the scenario shou

. . : e quite different in a less symmetric context. Even in this
the' latter being the correction to scaling exponent. The peggase, from our simulations, we argue that the DCE univer-
estimate for the location of the double critical end point is:

. sality class will still be the same as that of the usual critical
td:0:59.374(7) and§d=1.98.6.4'(5), From the scaling of poin)t/, despite the appearance of some singularities in the
thg distribution fo_r different finite sizels as wel! as f(om thg phase boundary region close to it.
quite good mapping to the corresponding Ising distribution,
one can clearly see that they do indeed belong to the same Fruitiful discussions with Shan-Ho Tsai, K. Binder, and
universality class. The same should hold for the3 model ~ W. Figueiredo are kindly acknowledged. This research was
with the universality class being that of the three-supported in part by CNPq and FAPEMIBrazilian Agen-

dimensional Ising model. cies and by NSF Grant No. DMR-0094422.
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