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Resilience to damage of graphs with degree correlations
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The existence or nonexistence of a percolation threshold on power law correlated graphs is a fundamental
question for which a general criterion is lacking. In this work we investigate the problems of site and bond
percolation on graphs with degree correlations and their connection with spreading phenomena. We obtain
some general expressions that allow the computation of the transition thresholds or their bounds. Using these
results we study the effects of assortative and disassortative correlations on the resilience to damage of
networks.
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The graphs representing many real networks are cha
terized by power law degree distributions@1#. The origin of
these power laws can be traced back to the growing natur
real networks and to some effective preferential attachm
mechanism. This later mechanism implies that when n
vertices are added to the graph they are more likely linke
existing vertices with large degrees@1,2#. Recently, there has
been a great interest in the study of processes running on
of these graphs due to their social, technological, and sc
tific relevance. Percolation processes@3,4#, spreading phe-
nomena@5–7#, the Ising model@8#, and searching technique
@9# are some examples for which analytical solutions ha
been found in random graphs with the only constraint giv
by the degree distribution. One of the fundamental result
that the threshold characterizing the percolation transition
an epidemic outbreak, depends on the ratio^d2&/^d& of the
first two moments of the degree distribution@3–5,8#. Hence,
if ^d2& diverges when increasing the graph size, there is
transition in the thermodynamic limit.

The topology of real networks is also characterized
degree correlations@10,11# and, therefore, the extension o
previous results for uncorrelated graphs is of utmost imp
tance. Moreover, it has been shown that growing netw
models with @12# and without @13# preferential attachmen
lead to nontrivial degree correlations. The study of mod
on graphs with degree correlations is quite recent@11,14–
16#. Some expressions for the size of the giant compon
and related quantities have been obtained in Ref.@11#,
whereas an equation for the epidemic threshold has b
provided in Ref. @14#. General statistical mechanics a
proaches for models on correlated graphs has also been
veloped in Refs.@15,16#. However, in contrast to the case
uncorrelated graphs, a general criterion for the existenc
nonexistence of a transition threshold has not been prop
yet. A first step in this direction has been taken in Ref.@17#
for a disease spreading model.

In this paper, we study the resilience to damage~vertex or
edge removal! of random graphs with arbitrary degree dist
butions and correlations by addressing the problem of di
~site or bond! percolation on these graphs. We report a g
eral equation for the threshold and bound it. Besides,
analyze the effect of correlations considering some exam
of uncorrelated, assortative, and disassortative correl
1063-651X/2003/67~1!/015101~4!/$20.00 67 0151
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graphs or their mixture. We conclude that assortative co
lations can make graphs quite robust, even with a finite^d2&.
On the contrary, disassortative correlations can make gra
fragile, even with a divergent̂d2&.

Let us start by considering the set of undirected gra
with N vertices and arbitrary degree distributionpd . Follow-
ing one end of a randomly chosen edge, we will find a ver
of degreed with probability qd5dpd /^d&. We further as-
sume correlations between adjacent vertices. The conditi
probability p(d8ud) that a vertex of degreed8 is reached
following any edge coming from a vertex of degreed explic-
itly depends on bothd andd8. Consistency with the degre
distribution requires(d8p(d8ud)51. Besides, the joint prob
ability p(d8ud)qd that the two vertices at either end of
randomly chosen edge have degreesd andd8 must be sym-
metric. For uncorrelated networksp(d8ud)5qd8 that is inde-
pendent ofd.

The problem of percolation on graphs with degree cor
lations has been recently studied@11# using the generating
function formalism. Alternatively, one can use a more ge
eral statistical mechanics approach@16#. In this case the size
of the giant component, the fraction of nodes in the larg
cluster, is given by

S512(
d

pd~ud!d, ~1!

ud5(
d8

p~d8ud!~ud8!
d821, ~2!

whereud is the average probability that an edge connected
a vertex of degreed leads to another vertex that does n
belong to the giant component@11#.

Let us generalize this result to the site percolation pr
lem. In this case a fractionf of the nodes is removed from th
graph and the new giant component is computed. Since
node removal is independent of the node degree tha
equivalent to replace the original degree distribution and c
relations by:~i! the probability that a node selected at ra
dom has degreed and it has not been removed, and~ii ! the
©2003 The American Physical Society01-1
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probability that if we select a node at random and follow o
of its edges we end in a node with degreed8 that has not
been removed, i.e.,

pd→~12 f !pd , p~d8ud!→~12 f !p~d8ud!. ~3!

Substituting Eqs.~3! in Eqs.~1! and ~2! we get

S512 f 2~12 f !(
d

pd~ud!d, ~4!

ud5 f 1~12 f !(
d8

p~d8ud!~ud8!
d821, ~5!

where the term2 f ~f! in Eq. ~4! @Eq. ~5!# gives the probabil-
ity of hitting a removed node. One solution to these eq
tions isud51 yieldingS50. This solution is valid wheneve
the equation for theud is stable under successive approxim
tions. That is, if we start withud(n)512rd(n) and compute
the successive approximationrd(n11) then we should ob-
tain thatrd(n)→0 in the limit t→`. For rd(n)!1 the last
equation is approximated by the linear map

rd~n11!5(
d8

Ldd8rd8~n!, ~6!

with

Ldd85~12 f !Cdd8 , Cdd85~d821!p~d8ud!. ~7!

The stability of the solutionud51 is then related to the
largest eigenvalue ofLdd8 . If it is smaller~larger! than 1 the
solution is stable~unstable!. Since Ldd8 is linear in f the
stability condition can be written as

f . f c , ~12 f c!Lmax51, ~8!

whereLmax is the largest eigenvalue ofCdd8 provided that
Lmax.1. If Lmax,1 the graph does not have a giant co
ponent even forf 50. Moreover, sinceCdd8 is a positive
matrix then Lmax has the lower and upper bound
mind(d8Cdd8 and maxd(d8Cdd8 , yielding

min
d

^d&nn~d!<11Lmax<max
d

^d&nn~d!, ~9!

where

^d&nn~d!5(
d8

p~d8ud!d8 ~10!

is the average degree among the neighbors of a node
degreed @10#. Equation~9! can be used to determine, bas
on a simple topological measure, whether or not a giv
graph is robust under vertex removal.

In the bond percolation problem, a fractionf of the edges
is removed from the graph and the new giant componen
computed. Since the edge removal is made at random, th
equivalent to keep the original degree distribution and
place the degree correlations by the probability that if
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select a node at random and follow one of its edges, give
has not been removed, we end in a node with degreed8, i.e.,

pd→pd , p~d8ud!→~12 f !p~d8ud!. ~11!

Substitution of Eq.~11! in Eqs.~1! and ~2! yields

S512(
d

pd~ud!d, ~12!

ud5 f 1~12 f !(
d8

p~d8ud!~ud8!
d821. ~13!

Note that the only difference between the site and bond p
colation problems@see Eqs.~4! and ~5!# is the equation for
the giant component while that forud is identical. Hence,
Eqs.~8! and~9! are also valid for the bond percolation pro
lem.

In what follows we consider some particular graphs
order to analyze the effects of correlations. Depending on
monotony of^d&nn(d) the degree correlations can be clas
fied in: uncorrelated if it is independent ofd, assortative or
positive if it increases with increasingd, and disassortative
or negative if it decreases with decreasingd. A similar defi-
nition has been introduced in Ref.@11# using a correlation
coefficient.

For random graphs with no constraint other than the o
imposed by the degree distribution we havep(d8,d)5qd8 .
In this case, the lower and upper bounds in Eq.~9! are equal
giving for the largest eigenvalue

Lmax
unco5

^d2&

^d&
22. ~14!

Alternatively, one can computeL directly from the eigen-
value problem ofCdd8 . Then from Eq.~8! we obtain 12 f c
51/(^d2&/^d&22) @4#. Hence, if the second moment^d2&
diverges the threshold equals 1, i.e., the network is rob
under random vertex or edge removal. Furthermore, cons
the case in which the degree correlations can be decomp
into two components

p~d8ud!5aqd81~12a!dp~d8ud! ~15!

with 0,a,1 anddp(d8ud).0 for all (d,d8). Varying the
parametera, one interpolates between the uncorrelat
graphs (a51) and a graph with arbitrary degree correlatio
given by dp(d8ud). In this case from Eq.~9! we obtain
Lmax>aLmax

unco and, therefore, if the network is robust for th
uncorrelated case it will also be robust for anya.0. This
immediately implies that any graph with a divergent seco
moment and a finite amount of random mixing of edges d
not have a percolation threshold.

Assortative correlations allow us to show that the div
gence of the second moment is not a necessary condition
the absence of the threshold. Let us consider a network w
degree correlations

p~d8ud!5addd81~12a!dp~d8ud!, ~16!
1-2



p

o

-
r-

th

o
f

wi

s
ion
rs

ono-

ei-

ent

ns
er-

ve.

t
ars
e
t is
le

t the

ith

s of

ola-

and
tion
tion
e
the
the
em

for
ns,

to
ce
.
ons

s

p
ue

nc

RAPID COMMUNICATIONS

RESILIENCE TO DAMAGE OF GRAPHS WITH DEGREE . . . PHYSICAL REVIEW E 67, 015101~R! ~2003!
with 0,a,1 anddp(d8ud).0 for all (d,d8). a51 corre-
sponds to a fully assortative graph made up of subgra
with fixed degree. In this case,Cdd85d8ddd8 @see Eq.~7!# is
already diagonal. The largest eigenvalue isLmax5dmax,
where dmax is the largest degree. Ifdmax diverges forN
→` then f c51. For the more general case 0,a,1 we
compute the largest eigenvalue using perturbation the
@18# arounda51, obtaining

Lmax~a!5admax1~12a!Cdmaxdmax
. ~17!

This result is valid whenever (12a)Cdmaxdmax
!admax. In

generalCdmaxdmax
decreases with increasingdmax, resulting

Lmax~a!'admax, ~18!

for dmax@1/a. Hence, for anya.0 and any unbounded
degree distribution we havef c51, i.e., there is no percola
tion threshold. In Fig. 1 we show the validity of the pertu
bation theory for a particular perturbationdp(d8ud). Thus,
as in the fully assortative case, ifa.0 anddmax diverges
f c51. Therefore, we can conclude that the divergence of
second moment is not a necessary condition.

Let us now analyze if the divergence of the second m
ment is a sufficient condition forf c51, using an example o
a disassortative graph. Consider a vertex with degreed.1
and an edge incident to it. Then with probabilitygd a vertex
at the other end is chosen at random among all vertices
degreed8.1, otherwise it is connected to a vertex withd8
51 chosen at random, i.e.,

p~d8ud!5
~12gd8!d8pd8
(s~12gs!sps

Q~d821!dd,11~12gd!dd8,1

3Q~d21!1gd

gd8d8pd8
(sgssps

Q~d821!Q~d21!,

~19!

FIG. 1. Size of the giant component for a graph withpd

5cd23.5 (2<d<dmax, dmax5100) and degree correlation
p(d8ud)5addd81(12a)qd8 with a, as computed from Eq.~4!.
The dashed line marks the percolation threshold obtained using
turbation theory@Eq. ~18!#. The inset shows the largest eigenval
relative to dmax as a function ofa. The points were computed
numerically and the line is the perturbation theory depende
Lmax/dmax5a.
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where Q(x) is the unitary step function@Q(x)50 for x
<0 andQ(x)51 for x.0]. Moreover, the fraction of node
with degree 1 is obtained self-consistently from the condit
p15(d.1(12gd)dpd . The average degree of the neighbo
of a node withd.1 is given by

^d&nn511gdS (d8.1gd8d82pd8
(sgssps

21D , ~20!

and, therefore, these graphs are disassortative for any m
tonic decreasing functiongd . To analyze the percolation
properties of this graph we computed exactly the largest
genvalue ofCdd85(d821)p(d8ud), resulting

Lmax5
(dgd

2~d21!dpd

(sgssps
. ~21!

Hence, the conditions for the existence of a giant compon
(Lmax.1) or resilience to damage (Lmax5`) are modu-
lated by gd and, therefore, the disassortative correlatio
given by gd have a great impact on the percolation prop
ties. For instance, let us considergd5d2a and a power law
degree distributionpd5cd2g with g,3 (^d2&5`). From
Eq. ~20! it follows that ^d&nn21;d2a, so that when in-
creasinga the graph gets more and more disassortati
Moreover,Lmax diverges fora,ac5(32g)/2 and it is fi-
nite otherwise. Thus, for small values ofa the graph is ro-
bust but fora.ac it becomes fragile. It is worth noting tha
the value ofa above which the giant component disappe
(Lmax,1) is larger thanac . Besides, for large degrees, th
degree distribution of the vertices in the giant componen
still a power law, but it decays slower than that of the who
graph. Thus, disassortative correlations compete agains
formation of the giant component and the divergence of^d2&
is not a sufficient condition to get a robust graph w
f c51.

The connection between percolation theory and model
epidemic spreading is well known@19#. The two general
classes of epidemiological models can be related to perc
tion problems, the susceptible-infected-removed~SIR! and
the susceptible-infected-susceptible~SIS! classes. The SIR
model assumes that individuals can exist in three classes
that once they get infected they cannot catch the infec
again. This model can be mapped into a bond percola
problem takingf as the probability that the disease will b
transmitted from one node to another and the size of
giant component as the size of the outbreak. Hence, all
conclusions drawn above for the bond percolation probl
can be translated to the language of epidemic spreading
the SIR model on top of the graphs with degree correlatio
extending in this way previous studies in Refs.@6,7# for un-
correlated graphs.

On the other hand, the SIS model allows individuals
move through the cycle of infection so that the prevalen
~number of infected individuals! attains a stationary value
The SIS model on top of the graphs with degree correlati
has been recently analyzed in Refs.@14,17#. They obtained
the epidemic threshold~the value ofl above which the so-
lution with zero prevalence is unstable! l51/Lmax8 , where
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Lmax8 is the largest eigenvalue of the matrixCdd8
8

5dp(d8ud). This approach is quite similar to that present
here for site percolation with the remark thatCdd8

8 is differ-
ent @see Eq.~7!#. In fact, if yd is an eigenvector ofCdd8

8

5dp(d8ud) corresponding to the eigenvalueL8 thenyd /d is
an eigenvector ofCdd8

9 5d8p(d8ud) corresponding to the
same eigenvalue. This last matrix is that of Eq.~7!, but re-
placingd8 by d821. However, this subtle difference make
the SIS and dilute percolation different. We have compu
the largest eigenvalue ofCdd8

9 for the disassortative grap
considered above@Eq. ~19!#. Taking the limit ^d2&@1 one
gets

Lmax8 '
(d~12gd!d2pd

(s~12gs!sps
, ~22!

wheregd is again a decreasing function ofd. In this case,
independent of the form ofgd , the divergence of the secon
moment of the degree distribution implies the divergence
Lmax8 . Moreover, the same conclusion is obtained ifgd is an
increasing function ofd. The conditions for the existence o
a finite prevalence in the SIS model have been recently
dressed in Ref.@17#, where the divergence of the secon
moment has been shown to be a sufficient condition for
ts

in,

e

ev

s.

s
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absence of the phase transition in the SIS model. Never
less, we have shown that this conclusion does not hold
dilute percolation. This essential difference is rooted in
existence of an additional dimension in the SIS model, giv
by the time evolution of the density of infected sites.

In summary, we have studied the percolation problem
top of the random networks with arbitrary degree distributi
and correlations, making its generalization to site and bo
percolations. The connection with the spreading phenom
was also analyzed. We provide some general expression
obtain or bound the transition threshold. Using these res
we have shown that the existence of a finite amount of r
dom mixing of the connections between vertices is suffici
to make the graph robust under vertex or edge removal
vided ^d2&→`. Assortative correlations makes the situati
even better; they can lead to a graph robust to random d
age even with a finite second moment of the degree distr
tion. On the contrary, disassortative correlations comp
again the formation of the giant component and can mak
graph fragile even with a divergent second moment.
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