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Resilience to damage of graphs with degree correlations
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The existence or nonexistence of a percolation threshold on power law correlated graphs is a fundamental
question for which a general criterion is lacking. In this work we investigate the problems of site and bond
percolation on graphs with degree correlations and their connection with spreading phenomena. We obtain
some general expressions that allow the computation of the transition thresholds or their bounds. Using these
results we study the effects of assortative and disassortative correlations on the resilience to damage of
networks.
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The graphs representing many real networks are charagraphs or their mixture. We conclude that assortative corre-
terized by power law degree distributiofts]. The origin of  lations can make graphs quite robust, even with a fifdfe.
these power laws can be traced back to the growing nature é¥n the contrary, disassortative correlations can make graphs
real networks and to some effective preferential attachmerfragile, even with a diverger{td?).
mechanism. This later mechanism implies that when new Let us start by considering the set of undirected graphs
vertices are added to the graph they are more likely linked tavith N vertices and arbitrary degree distributipg. Follow-
existing vertices with large degregk 2]. Recently, there has ing one end of a randomly chosen edge, we will find a vertex
been a great interest in the study of processes running on té degreed with probability gq=dpy/(d). We further as-
of these graphs due to their social, technological, and sciersume correlations between adjacent vertices. The conditional
tific relevance. Percolation proces§@s4], spreading phe- probability p(d’|d) that a vertex of degred’ is reached
nomend5—-7], the Ising mode[8], and searching techniques following any edge coming from a vertex of degrkexplic-

[9] are some examples for which analytical solutions havetly depends on botld andd’. Consistency with the degree
been found in random graphs with the only constraint giverdistribution require€ 4 p(d’|d)=1. Besides, the joint prob-
by the degree distribution. One of the fundamental results igbility p(d’|d)qq that the two vertices at either end of a
that the threshold characterizing the percolation transition orandomly chosen edge have degrdeendd’ must be sym-

an epidemic outbreak, depends on the rétd)/(d) of the  metric. For uncorrelated networkgd’|d) = qq: that is inde-
first two moments of the degree distributit®+-5,§. Hence, pendent ofd.

if (d?) diverges when increasing the graph size, there is no The problem of percolation on graphs with degree corre-
transition in the thermodynamic limit. lations has been recently studigtll] using the generating

The topology of real networks is also characterized byfunction formalism. Alternatively, one can use a more gen-
degree correlationgl0,11] and, therefore, the extension of eral statistical mechanics approddi®]. In this case the size
previous results for uncorrelated graphs is of utmost imporof the giant component, the fraction of nodes in the largest
tance. Moreover, it has been shown that growing networlcluster, is given by
models with[12] and without[13] preferential attachment
lead to nontrivial degree correlations. The study of models
on graphs with degree correlations is quite reddrt 14— 521_2 Pa(Ug)®, (1)

16]. Some expressions for the size of the giant component d

and related quantities have been obtained in R#i],

whereas an equation for the epidemic threshold has been

provided in Ref.[14]. General statistical mechanics ap- . , d'—1

proaches for models on correlated graphs has also been de- ud_% p(d’|d)(uq") ' 2
veloped in Refs[15,16. However, in contrast to the case of

uncorrelated graphs, a general criterion for the existence or

nonexistence of a transition threshold has not been proposethereuy is the average probability that an edge connected to
yet. A first step in this direction has been taken in R&f]  a vertex of degreel leads to another vertex that does not
for a disease spreading model. belong to the giant componefitl].

In this paper, we study the resilience to daméagstex or Let us generalize this result to the site percolation prob-
edge removalof random graphs with arbitrary degree distri- lem. In this case a fractioihof the nodes is removed from the
butions and correlations by addressing the problem of dilutgraph and the new giant component is computed. Since the
(site or bondl percolation on these graphs. We report a gennode removal is independent of the node degree that is
eral equation for the threshold and bound it. Besides, wequivalent to replace the original degree distribution and cor-
analyze the effect of correlations considering some example®lations by:(i) the probability that a node selected at ran-
of uncorrelated, assortative, and disassortative correlatedom has degred and it has not been removed, aid the
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probability that if we select a node at random and follow oneselect a node at random and follow one of its edges, given it
of its edges we end in a node with degrdethat has not has not been removed, we end in a node with dedfeée.,

been removed, i.e.,
Pa—Pq, P(d’[d)—(1—f)p(d’'[d). (11

pg—(1=H)pg, p(d’|d)—(1-F)p(d'[d). (3 o , |
Substitution of Eq(11) in Egs.(1) and(2) yields
Substituting Eqs(3) in Egs.(1) and(2) we get

—1—f—(1— d S=1—; Pa(ug)?, (12)
S=1-f-(1 f)% Pa(Uqg)®, (4)

=f+(1—f d’[d)(ug)d L. 13
ug=f+(1=)2 p(d’|d)(ug)® ™, (5) Ham i @ Pl ue) 19
d/

Note that the only difference between the site and bond per-
where the term-f (f) in Eq. (4) [Eq. (5)] gives the probabil-  colation problemgsee Egs(4) and (5)] is the equation for
ity of hitting a removed node. One solution to these equathe giant component while that far, is identical. Hence,
tions isug=1 yieldingS=0. This solution is valid whenever Egs.(8) and(9) are also valid for the bond percolation prob-
the equation for they is stable under successive approxima-jem.
tions. That is, if we start withiy(n) =1— p4(n) and compute In what follows we consider some particular graphs in
the successive approximatigy(n+1) then we should ob- order to analyze the effects of correlations. Depending on the
tain thatpy(n)—0 in the limitt—o. Forpy(n)<1 the last monotony of(d),,(d) the degree correlations can be classi-
equation is approximated by the linear map fied in: uncorrelated if it is independent df assortative or
positive if it increases with increasing) and disassortative
_ or negative if it decreases with decreasthgA similar defi-
pa(n+1) % Laarpar (), © nition has been introduced in Rdfl1] using a correlation
coefficient.
with For random graphs with no constraint other than the one
imposed by the degree distribution we hgu@’,d)=qy .
Lagr=(1=1)Caqr, Cqar=(d"=1)p(d’|d). @) In this case, the lower and upper bounds in &y.are equal

. . . iving for the largest eigenvalue
The stability of the solutioruy=1 is then related to the gving g 'genvald

largest eigenvalue df 44 . If it is smaller(largep than 1 the (d?)
solution is stable(unstablg. Since Ly is linear in f the A”m”a°X°:T>—2. (14
stability condition can be written as (
ff (1= f)A a1 ®) Alternatively, one can computd directly from the eigen-
c» C max ’

value problem ofC,4 . Then from Eq.(8) we obtain 1-f,

where A ., is the largest eigenvalue @,q provided that = 1/((d®)/(d)—2) [4]. Hence, if the second mome(d?)

Amac>1. If Apay<1 the graph does not have a giant com-diverges the threshold equals 1, i.e., the network is robust
ponent even forf=0. Moreover, sinceCyq is a positive uUnder random vertex or edge removal. Furthermore, consider

matrix then A,., has the lower and upper bounds the case in which the degree correlations can be decomposed
Ming= g Cqqr and may= 4 Cqqr , Yielding Into two components

Min(d)n(d) <1+ A pa<maxd)n(d), (9) p(d’[d)=aqq +(1-a)op(d’[d) (15)
d d

with 0<a<1 andép(d’|d)>0 for all (d,d’). Varying the
where parametera, one interpolates between the uncorrelated
graphs @¢=1) and a graph with arbitrary degree correlations
_ , , given by dp(d’|d). In this case from Eq(9) we obtain
<d>““(d)_§ p(d’|d)d (10 Ama= aA ol and, therefore, if the network is robust for the
uncorrelated case it will also be robust for any-0. This
is the average degree among the neighbors of a node wilmmediately implies that any graph with a divergent second
degreed [10]. Equation(9) can be used to determine, basedmoment and a finite amount of random mixing of edges does
on a simple topological measure, whether or not a givemot have a percolation threshold.
graph is robust under vertex removal. Assortative correlations allow us to show that the diver-
In the bond percolation problem, a fractibof the edges gence of the second moment is not a necessary condition for
is removed from the graph and the new giant component ishe absence of the threshold. Let us consider a network with
computed. Since the edge removal is made at random, this gegree correlations
equivalent to keep the original degree distribution and re-
place the degree correlations by the probability that if we p(d’'|d)=adyq +(1—a)dp(d’|d), (16
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10— where ®(x) is the unitary step functiof® (x)=0 for x
R § =<0 and®(x)=1 for x>0]. Moreover, the fraction of nodes
10 . ! with degree 1 is obtained self-consistently from the condition
\ : p1=24-1(1—gg)dpg. The average degree of the neighbors
1t 1 | \ | of a node withd>1 is given by
(=) ] Vi
= o \ !
= ' el i 2g>19ad"*pyr
Z 10" {508 o 'lg (Dan=1+0d —5 g <o 1] (20)
J / I . s9sSPs
10 L a5 ] [ and, therefore, these graphs are disassortative for any mono-
. o tonic decreasing functiom,. To analyze the percolation
™ 02 04 T properties of this graph we computed e?<actly the largest ei-
f genvalue ofCyqy =(d’ —1)p(d’|d), resulting
FIG. 1. Size of the giant component for a graph with Edgg(d—l)dpd
=cd 3% (2<d=dpax, dmax=100) and degree correlations Amax= T S.asno. (21)
p(d’|d)=adyq +(1—a)qy with «, as computed from Eq4). s9sSPs

The dashed line marks the percolation threshold obtained using Pel1ence. the conditions for the existence of a giant component
turbation theon Eq. (18)]. The inset shows the largest eigenvalue (A >'1) or resilience to damageA(,,,==) are modu
max ax— -

relative 10 dpa, as a function ofa. The points were computed lated by g4 and, therefore, the disassortative correlations
numerically and the line is the perturbation theory dependency . d ’ L .
A lde = given by gy have a great impact on the percolation proper-
meTmax ties. For instance, let us considgy=d ™ and a power law
with 0<a<1 andsp(d’|d)>0 for all (d,d’). =1 corre-  degree distributiorpy=cd~” with y<3 ((d?)=). From
sponds to a fully assortative graph made up of subgraphgd. (20) it follows that (d),,—1~d™“, so that when in-
with fixed degree. In this cas€yq =d’ 544 [S€€ Eq(7)]is  creasinga the graph gets more and more disassortative.
already diagonal. The largest eigenvalue Ais, = dmax Moreover, A a5 diverges fora<a.=(3—v)/2 and it is fi-
where d,,.4 iS the largest degree. ., diverges forN  nite otherwise. Thus, for small values afthe graph is ro-
—o then f,=1. For the more general case<@<1 we  bust but fora> a. it becomes fragile. It is worth noting that
compute the largest eigenvalue using perturbation theorthe value ofa above which the giant component disappears
[18] arounda=1, obtaining (Amax<1) is larger tham.. Besides, for large degrees, the
degree distribution of the vertices in the giant component is
madmax 17 still a power law, but it decays slower than that of the whole
) . ) graph. Thus, disassortative correlations compete against the
This result is valid whenever (1)Cq g <admax- IN formation of the giant component and the divergencéodf
generalCdma)gmaX decreases with increasimty, ., resulting is not a sufficient condition to get a robust graph with
fo=1.

Apad @)=~ adpyay, (18 The connection between percolation theory and models of
epidemic spreading is well knowfil9]. The two general
classes of epidemiological models can be related to percola-
tion problems, the susceptible-infected-remov&iR) and
the susceptible-infected-susceptilielS) classes. The SIR

Amad @)= alpayt(1—a)Cy

for dpae1/e. Hence, for anya>0 and any unbounded
degree distribution we have,=1, i.e., there is no percola-
tion threshold. In Fig. 1 we show the validity of the pertur-

bation theory for a particular perturbatiaip(d’|d). Thus, el assumes that individuals can exist in three classes and
as in the fully assortative case, ¢>0 anddmax diverges yhat once they get infected they cannot catch the infection
f.=1. Therefore,_ we can conclude that th_e_ divergence of th%gain. This model can be mapped into a bond percolation
second moment is not a necessary condition. problem takingf as the probability that the disease will be
Let us now analyze if the divergence of the second MOy ansmitted from one node to another and the size of the
ment is a sufficient condition fdr.= 1, using an example of  giant component as the size of the outbreak. Hence, all the
a disassortative graph. Consider a vertex with degred.  conclusions drawn above for the bond percolation problem
and an edge incident to it. Then with probabilgy a vertex  ¢an pe translated to the language of epidemic spreading for
at the other end is chpse_n_at random among all vert|c_es Witthe SIR model on top of the graphs with degree correlations,
degreed’>1, otherW|se_|t is connected to a vertex wih extending in this way previous studies in Re#,7] for un-
=1 chosen at random, i.e., correlated graphs.
(1—gq)d’ Py On the other hand, the _SIS mpdel allows individuals to
0(d"=1)3¢1+(1-9gq) 0y 1 move through the cycle of infection so that the prevalence
2s(1—9gs)sps ’ ’ (number of infected individua)sattains a stationary value.
g9qd’ Py The SIS model on top of the graphs with degree correlations
0(d'-1)0(d-1), has been recently analyzed in Rdf$4,17. They obtained
the epidemic threshol@he value ofA above which the so-

(19 lution with zero prevalence is unstaple=1/A/,,,, Where

p(d'ld)=

X0(d-1)+ dm
sYs

015101-3



RAPID COMMUNICATIONS

ALEXEI VA ZQUEZ AND YAMIR MORENO PHYSICAL REVIEW E67, 015101R) (2003

Ay is the largest eigenvalue of the matric),, absence of the phase transition in the SIS model. Neverthe-
:dp(d’|d) This approach is quite similar to that presented'GSS, we have shown that this conclusion does not hold for

here for site percolation with the remark th@j,, is differ- dilute percolation. This essential difference is rooted in the
ent [see Eq.(7)]. In fact, if y4 is an eigenvector o€ existence of an additional dimension in the SIS model, given
A ' dd’

— dp(d’|d) corresponding to the eigenvalié theny,/d is by the time evolution of the dgnsﬂy of mfected sites.
. ,, L . In summary, we have studied the percolation problem on
an eigenvector ofC,, =d’p(d’[d) corresponding to the

. lue. This last matrix is that of but top of the random networks with arbitrary degree distribution
s?m_e eéqeg“’%}’_ei |_'|S as matr:!x IS btla g.ﬁm" u re;( and correlations, making its generalization to site and bond
placing yd - However, this subtie difference Mmakes o ., ations. The connection with the spreading phenomena
the SIS and dilute percolation different. We have compute

; Y ) ) as also analyzed. We provide some general expressions to
the largest eigenvalue dt;, for the disassortative graph optain or bound the transition threshold. Using these results

considered abovgEq. (19)]. Taking the limit(d®)>1 one e have shown that the existence of a finite amount of ran-
gets dom mixing of the connections between vertices is sufficient
s (1 42 to make the graph robust under vertex or edge removal pro-
A%aﬁml (22) vided (d?)—. Assortative correlations makes the situation
2s(1-0s)SPs even better; they can lead to a graph robust to random dam-
age even with a finite second moment of the degree distribu-
tion. On the contrary, disassortative correlations compete
gain the formation of the giant component and can make a
Sraph fragile even with a divergent second moment.

wheregq is again a decreasing function df In this case,
independent of the form afy, the divergence of the second
moment of the degree distribution implies the divergence o
AL ax- Moreover, the same conclusion is obtainedfis an
increasing function ofl. The conditions for the existence of  We thank A. Vespignani, R. Pastor-Satorras, and M. Weigt
a finite prevalence in the SIS model have been recently ader helpful comments. This work has been partially sup-
dressed in Ref[17], where the divergence of the second ported by the European commission FET Open Project No.
moment has been shown to be a sufficient condition for th&€OSIN IST-2001-33555.
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