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Two-dimensional condensed phases from particles with tunable interactions
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We present a conceptually simple experimental model for condensed phases, consisting of an ensemble of
identical magnetic dipoles on a vibrating bed. The model combines tunable and accurately known pair poten-
tials, equilibration times of seconds, and lattice structure and dynamics visible to the naked eye. Fundamental
ensemble properties—specifically phonon propagation, edge relaxation, and binary condensation—are directly
observed and quantitatively linked to the underlying pair potential.
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In ordinary solids, the connection between atomic interform magnetic fieldB, directed normal to the plang8].
actions and bulk material properties is obscured because ifspheres separated by a center-to-center distamepel via
teratomic potentials generally cannot be deriaddnitio, or  the dipole—dipole interaction,
measured in isolation, or varied externally. Several types of
condensed matter analogs—ensembles of particles with soft K 4
and tunable interactions—have been used to bridge this gap. w(r)= _3( K= _BgRe)_ (1)
Macroscopic models have employed capillary forces be- Mo
tween bubble$l], magnetic forces between permanent mag-
nets floated at liquid surfac¢8—7], and electrostatic forces pere B, is, strictly speaking, théocal field at each dipole
between charged spherg9] to form two-dimensional or- 44 js slightly smaller than the external field due to the op-
dered phases. At the mesoscopic scale, colloidal crystalsysing dipole fields of neighboring spheres; this field correc-
[10,11] have been prepared from charge-stabilifed,13,  {jon can be made self-consistently and is around 10% for
polymer-stabilized14], and paramagnetid5-18 particles.  ynjcal lattices. For experimental convenience, the external
Interaction tuning has been accomplished by variable extefie|q was a sinusoidal ac field generated by connecting the
nal fields [6,18, which have served as d&eciprocal  (jis to line voltage(120 V, 60 H2 through a variac. Equa-
pseudotemperature in phase transition stufli€s17. tion (1) holds also for ac fields, provided(r) is the inter-

Despite these successes, the quantitative link between pajgtion averaged over one cycle aBg the root-mean-square
potentials and material properties remains largely incomyg|ye of the field. The additional moment due to Faradaic
plete, for several reasons. Charge-stabilized colloids angq,ction is~105 times the directly induced moment and
macrospheres have exhibited unexpected long-range attragén, therefore, be neglected.
tions [9,19,24, and the actual pair potential for these sys-  The sample plate could be horizontally vibrated using an
tems is now a matter of some uncertaiftt,21,23. Most 5oy mmetrically loaded, variable-speed dc (&iy. 1) whose
condensed matter models employ liquid media, which ar@,aion rate controlled the vibration amplitudg]. This
associated with slow transport, long equilibration tif@ays  geryed as a crude but independently variable temperature that
to weeks fc_>r colloidal crystajs anc_i Iat'glce dynamics domi- 414 be tuned to quickly anneal an ensemble to equilibrium,
nated by viscous drag and ion diffusig®3—23. Although o "5t higher amplitude, to melt the equilibrium structure.

qualitative observations of edge relaxati)6,17 and bi-  ajhough vibration annealing was usually unnecessary for
nary condensatiofv,26] have been reported, these structures

have not been quantitatively linked to the underlying inter-
actions. Extensive interaction-property relationships have T
been found only for hard-sphere systeffig], which lack a
continuously tunable interaction. .
We present a tunable, macroscopic, and solvent-free Fickd =
model system for condensed phases and report results fc C° \_[::
phonon propagation, edge relaxation, and binary condense
tion that correlate well with simple theoretical calculations.
The apparatugFig. 1) consists of a large numbg(1-3)
x 10%] of identical chrome steel spheres of radRscon-
fined to a finite planar area and subjected to a spatially uni-

Granite Slab
*Present address: Department of Civil & Environmental Engi-
neering, Princeton University, Princeton, NJ 08544. FIG. 1. (Left) Schematic of experimental apparatRight)
TCorresponding author. Self-organization of a random ensemble of sphéi®s in the pres-
Email address: smanne@physics.arizona.edu ence of a magnetic fieltbottom).
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FIG. 2. Propagation speed of longitudinal phonons through the FIG'_3' (Colon) Edgg relaxation of the dip_ole I_attice around non-
dipole lattice @=1.66 mm) as a function of the local fieldor- magnetic holes, ranging from large plastic discs to small brass

rected for the opposing fields of the dipole latjic@he video spheres(top inset$. The “solvation number’N is plotted vs the

frames(inse) show a sample longitudinal wavarrows that trav- _ratio d/a_" yvhered is the diamete_r of the solvaFion _shébottom
els 5.6 mm in 67 m$30. insed. Similar values ofN are obtained for both high fielgquares

and low field (diamonds, the latter corresponding to the melting

the formation of pure lattices, it often proved useful for the ransition.

condensation of binary phases, which exhibit higher kinetic . ) )
barriers. fairly consistent with the theoretical value of 7.9 m/Ts. The
The pair potentia[Eq. (1)], repulsive at all separations, difference is attributed to small f_rlctlonal forces. _
caused initially random ensembles of spheres to expand rap- Knowledge of the pair potential also enables the predic-
idly outward to fill the bounding areéFig. 1). For fields tion of lattice relaxatlo_n at a boundfary edge. In real solids,
large enough to overcome the small frictional forces betweef1® bulk exerts a net inward attraction on the surface layer,
the spheres and the flat plate, the dipoles ordered into a p§2Using & compression of surface bonds and leading to a
riodic lattice. In accordance with the inverse-cube interactiorigher atomic density at the surface. The dipole lattice shows
[29], observed dipole lattices were always triangular, inde2 Similar higher density of magnetic spheres near a nonmag-
pendent of the field strength and the shape of the pIatht'C boundary. While _th_|s effect is rea_d_lly obs_erved at the
boundary. Whileall boundaries gave rise to triangular lat- OUter plate boundary, it is bgtt?r quar;tmed_at inner bound-
tices, hexagonal boundaries proved most useful for promo@/€s created by nonmagnetic “holes,” ranging in size from
ing the rapid coalescence of single-domain, defect-free Iafi2rge plastic discs to small brass spheiféig. 3, top insets
tices. A simple analytical expression for the edge relaxation is
Once a lattice was established, lightly tapping the Supfound by cqnsidering a b_ulk lattice half plane of_Iattice con-
porting table produced longitudinal phonons whose propagas_tanta termmgted by a Slngle edge Iayer of lattice constant
tion could be directly visualizetsee Fig. 2 inset and supple- & @nd equating the chemical potentigig i and ieqge-
mentary video sequend80]). The “sound speed” could be Because the edge re!axatlon |s.|nd.epend_en_t of temperature
controlied by the applied fiel, through its effect on the (S€€ below; the entropic contribution is negligible, apg .
pair potential, Eq(1). For a square lattic&onsidering only 1S the I\/!adelun_g sum of |n\_/erse—cube interactions over a two-
nearest-neighbor interactionsthe sound speedsguae  CiMeNsional triangular lattice,
=ak/M, whereM is the mass and is the stiffness of an
atom in its equilibrium position with a single neighbor. For e i
the triangular lattice of rolling spheres, this is modified to Pound@) = idtice 13
v=ay :]3k/M*, where they3 factor comes from the lattice
symmetry andM*=7M/5 is the effective mass due to roll- Here C~10.95 is the Madelung constant for a triangular
ing motion. The stiffness can be directly calculated from thelattice, calculated numerically. Similarly, for a dipole in a

known pair potentialEq. (1)], with the resultk=12K/a>  singleisolated lineof dipoles with lattice constara’,
= (487 o) B2R%/a® [31]. Therefore, the sound speed for a

K

given dipole lattice should vary linearly with the applied * 2 K
field: fine(d) =KX, ———==C'—, @
n=1 (na’) a
6
D=\ /@Bo- (2)  WhereC’~2.40 is Madelung constant for an isolated line. In
woM* a3 the hypothetical case of a simple bulk terminatiome., a

semi-infinite lattice of lattice constaiat), the chemical po-
Measured values of vs B, (Fig. 2 confirm the expected tential of a particle at the edge would bguy,(a)
linear trend, and the measured slope of #6046 m/Ts is  + 3u,he(a). However, because the edge spacing'is
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(7), considering the simplifying assumptions of an infinite
linear edge and relaxation limited to a single layer. The first
assumption in particular is justified only whelg-a, so it is
surprising that the linearity approximately holds even for
smaller holes such as the brass spheres.

The high-density “adsorption” of dipoles onto small
holes(e.g., Fig. 3 suggests an analogy to solvation shells of
a continuous phasg@lipoles around discrete solutéholes,
with N serving as the solvation number. As the solute con-
centration is increased, the attractive hole-dipole interaction
should favor binary condensation of holes and dipoles in a
mixed phase. Real-world analogues include hydrated crystals
from solutions and stoichiometric alloys from miscible
melts. Although binary phases have been reported for both
charge-stabilized and paramagnetic colloid mixtuted 26,
there exists no quantitative prediction of these structures
based on pair potentials. Our experiments with mixed en-
sembles showed that the solvation shell of the dissolved
phase served as a simple predictor for the structure and sto-
ichiometry of the condensed binary phase.

A typical experiment is initially prepared with the brass

FIG. 4. (Colop Binary condensation from a mixture of dipoles spheres artificially segregated from the steel sphifes
(steel spherdsand holes (brass sphergsfavoring N=4 (a  4(insed]. The size of the brass spheres and the density of the
=1.66 mm andd=2.25 mm). The ensemble is initially prepared steel spheres are chosen for a spedifia ratio, which in
with the brass spheres close packed at the cefitesed Under  turn selects for a specific solvation number via Fig. 3. For the
moderate vibratiorfinsufficient to melt the lattice the dipoles sol-  conditions of Fig. 4, the optimum solvation numiéeE4.
vate the holes and eventually establish a dynamic equilibrium bewyith the vibration off, the dipole lattice and the close-packed
tween “dissolved” holes and a four-coordinated binary condensatéples remain phase segregated indefinitely. Under low vibra-
[301. (The black circles in the figures are calibration marks and canjgn (below the melting transition of the dipole latticehe
be ignored. dipoles begin to infiltrate and solvate the nonmagnetic clus-

ter. Some holes dissolve and escape, while others rearrange
, into a new condensate to accommodate the dipoles, eventu-
~ Mine(8) T pine(a’) ally (in ~100 s) resulting in an ordered binary lattice coex-
isting with a gas phase of solvated hol€gy. 4]. The size of
the condensate decreases with increasing vibration ampli-

1 1
Medge™ [Eﬂbulk(a) + E:uline(a)

Z(C_C’)gJFC’;' S tude, until at high vibration only a gas phase of solvated
holes remains.
Equatingiedge to uuik [Ed. (3)] finally gives I_3inary con(_jensates such as Fi_g. 4 displ_ay several inter-
esting properties. The phase coexistence with solvated holes
2C’ shows that condensation comes froohesiveattractive in-
a'= Y a~0.71a. (6)  teractions between solvated holes, in contrast with the repul-

sive interactions of the pure dipole lattice. The solvation
umber (four) of the gas phase matches the coordination
Lllmber(four) of the solid phase, leading to the final ordered
structure of interpenetrating square lattices of dipoles and
holes. This coordination number in turn fixes the stoichiom-
try of the binary phase H,, whereD is the dipole and
the hole. The free surfaces of the binary lattice show
greater mobility than the bulk binary phase, in analogy with
premelting of free surfaces observed in real solids. Finally,
binary lattices often nucleate at and grow inward from a
N=md/a’'~4.42d/a). 7 boundary wall, again in analogy with heterogeneous nucle-
ation at solid surfaces. Many of these features are visible in
The measurements dfvs d/a (Fig. 3) show a clear linearity the video sequence available as supplementary mata€hl
over a wide range ofl and a. Observed values oN are Changing the initially chosen value of'a selects for a
independent of the external field, even down to valueBpf different solvation number and therefore a different coordi-
small enough to melt the lattice, therefore justifying the as-ation and stoichiometry of the binary condensate. Increas-
sumed temperature independence. The measured dimensidng the solvation number to six, for example, can be accom-
less slope of 4.0.2 is in reasonable agreement with Eq. plished either by reducing [Fig. 5a)] or by increasingd

The assumption of a single relaxed edge layer, thereford!
predicts a 29% decrease in the edge spacing, independent
the applied field.

This prediction is tested by counting the numbérof
dipoles that spontaneously surround nonmagnetic holes
varying size placed in lattices of varyiray Letting d be the
diameter of the solvation shell around a h@fég. 3, bottom
inseh and using Eq(6) gives,
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FIG. 5. (Color) Binary condensates under conditions that faver @\ In (a), the ensemble was prepared witks .38 mm and d
=2.25 mm, whereas ifh), the choices were=a1.66 mm and & 3.17 mm. In both cases, dipoles are six-coordinated to holes, resulting in
a triangular lattice of holes interlaced by a honeycomb lattice of dip@lée latter is not readily visible ifb), where the steel spheres are
mostly hidden by the much larger brass sphgr8slid grains of the binary phase coexist with free solvated holes, and stable voids are
visible. (The black arcs are calibration marks and can be ignpred.

[Fig. 5(b)]. In both cases, the binary condensate shows holelaxation calculations and measurements. This quantitative
six-coordinated to dipoles, resulting in a triangular lattice oflink between solvation and coordination numbers suggests a
holes interlaced by a honeycomb lattice of dipoles. The resimple way to predict binary colloidal structures and to select

sulting stoichiometry is noMd,H,. Square lattices are never for specific binary architectures in photonic band-gap mate-

observed for systems whose optimum solvation number igjg|s.

six, just as hexagonal lattices are never observed for systems

whose optimum solvation number is four.
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