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Why biomolecules prefer only a few crystal structures

Yu. E. Kitaev,* A. G. Panfilov,* V. P. Smirnov,† and P. Tronc
Laboratoire d’Optique Physique, Ecole Superieure de Physique et Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, Fran

~Received 26 July 2002; published 22 January 2003!

We have shown that, in determining the biomolecule-crystal symmetry, the occupation of low-site-symmetry
Wyckoff positions is crucial, which contrasts with the overwhelming majority of nonmolecular, inorganic
crystals where atoms mainly reside in high-symmetry Wyckoff positions. We consider the general relation
between the symmetry of an isolated molecule and the possible symmetries of biomolecular crystals it can
generate. We reveal that the improper symmetry operations~inversion and mirror symmetries! are prohibited in
the chirally pure biomolecular crystals. Next, we show that the low (C1) symmetry of large biological mol-
ecules substantially decreases the space in a crystal where the molecules can reside. The space ‘‘forbidden’’ for
molecule centers is found to be in theR vicinity of the higher-symmetry Wyckoff positions on symmetry lines,
whereR is the molecule characteristic size. The remaining free space and hence the probability for the structure
to exist are shown to be drastically increased when replacing any rotation axis by a screw one. Based on the
proposed model, we have explained the peculiar distribution of biomolecular crystals over the space groups,
which can be obtained from biomolecule-crystal databases.

DOI: 10.1103/PhysRevE.67.011907 PACS number~s!: 87.15.Nn, 61.50.Ah, 87.10.1e, 81.10.Aj
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I. INTRODUCTION

There is a continuously growing interest in the study
structure and symmetry of biological objects. Progress
biotechnology enabled the growth of rather perfect crys
made of biological macromolecules~proteins, nucleic acids
complexes, viruses, etc.! and the compilation of large data
banks on the structure of thousands of biomolecular crys
such as the biological macromolecule crystallization da
base~BMCD! @1# and the protein data base~PDB! @2#. These
data offer a vast field for a comprehensive theoretical an
sis.

One can reveal several important features of biomolec
crystals which are connected with the symmetry of biom
ecules themselves. First, the overwhelming majority of b
molecular crystals contains neither an inversion center
mirror symmetry. To the best of our knowledge, there is o
one example of synthetically prepared protein which h
been crystallized in a centrosymmetric form@3#.

Second, the crystal distribution over the remaining sp
groups has another intriguing peculiarity: the biomolecu
tend to crystallize mostly in space groups with screw ax
Moreover, the number of observed structures generally
creases with the number of screw axes in the group@1,2#.
Indeed, according to Ref.@1#, among orthorhombic crystal
with a simple lattice, there are four crystals belonging to
P222 space group~three rotation axes, no screw axis!, 18
with the P2221 group ~two rotation axes, one screw axis!,
150 with P21212 group~one rotation axis, two screw axes!,
and 801 with theP212121 group ~no rotation axis, three
screw axes!. Thus, replacing each rotation axis by a scr
one increases the number of observed crystals by a fac
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to 8. The alternative database@2# gives similar ratios for the
crystals in question~for details, see Table I below!. The same
tendency is evident forP2 andP21 groups,P3, P31 , and
P32 groups, etc.

The fact that crystals prefer structures belonging to onl
few space groups was discussed many years ago@4#. How-
ever, to explain this trend, no model has been proposed th
apart from some general speculations about close-pac
configurations only. This was not surprising since the cr
tals compiled together in Ref.@4# were dissimilar, i.e., inor-
ganic and organic ones, including molecular crystals mad
molecules having various point symmetries.

In Sec. II, we investigate general relations between
symmetries of an isolated molecule and its crystalline form
Then, based on these group-theory considerations and ta
into account the packing restrictions as well, we introduc
model for biomolecule-crystal formation~Sec. III!. In Sec.
IV, we discuss a comparison of our theoretical predictio
with the experimental results.

II. GENERAL RELATIONSHIPS BETWEEN THE
SYMMETRY GROUPS OF A MOLECULE AND OF THE

MOLECULAR CRYSTAL IT GENERATES

A. Notations

Let the space group of a crystal beG consisting of the
elementsg5(huvh1an), where the orthogonal operationh is
followed by the improper translationvh and lattice transla-
tion an .

an5(
i 51

3

niai , ~1!

ai being primitive translation vectors. The vectorsan form
the invariant subgroupTa of the space groupG (Ta,G).
The point groupGcr of the ncr orthogonal operationsh de-
scribes the symmetry of directions in the crystal and is ca

-

a-
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the crystalline classor point symmetry group of the crysta
The orthogonal operationsh can be proper @rotations,
det(h)51] or improperones@inversion, mirror plane, mirror
rotation, det(h)521].

Thesite symmetry group Gq of the pointq in the space of
the crystal is formed by thenq operationsgqPG leaving
invariant the siteq of the crystal (Gq,G) @5#. The site group
Gq is a point group. The number of its orthogonal operatio
cannot be superior to that of the crystal classGcr . Therefore,

Gq#Gcr . ~2!

Let us write the decomposition ofG into cosets with re-
spect to its site subgroupGq ,

G5 (
n, j 51

tq

~hj uvj1an!Gq , tq5ncr /nq. ~3!

An array of pointsqj ,n5(hj uvj1an)q is called acrystal-
lographic orbit~or right system of points! @5#. It hastq points
per primitive unit cell, the numbertq5ncr /nq being themul-
tiplicity of the Wyckoff position. The pointsqj ,n of the orbit
have the isomorphic site symmetry groupsGj ,n5(hj uvj
1an) Gq(hj uvj1an)

21. The orbit is characterized by any o
its pointsq taken within the primitive unit cell. In the fol-
lowing, international notation@6# is used for point and spac
groups.

Crystallographic orbits are partitioned according to t
so-calledWyckoff positions. All the crystallographic orbits
with the same site symmetry group are related to the s
Wyckoff position, the latter being unambiguously charact
ized by the groupGq and denoted by small Roman letter
Among the Wyckoff positions, there are@5,6# ~a! isolated
symmetry points;~b! the points along a rotation axis$Gq
5Cn(n), Cnv ~nm or nmm!, nÞ1, one-parameter array%; ~c!
the points on a symmetry plane$Gq5Cs(m), two-parameter
array%; and ~d! the points of the general position$Gq
5C1(1), three-parameter array%.

B. Molecular and crystal symmetries

In the molecular crystals, not atoms but molecules
elementary building blocks, from which the crystal is co
structed. Let a molecule with the symmetry described by
groupGmol occupy the Wyckoff positionq, i.e., let its center
of gravity reside at this point with the site symmetry gro
Gq . The symmetry operationsgq (gqPGq) have to be also
the symmetry operations of the molecule which occupies
positionq in the crystal, i.e.,gqPGmol , and then

Gq#Gmol . ~4!

In the particular case whenGq5Gcr ~symmorphic space
group; the crystallographic orbit has only one representa
in the primitive unit cell!,

Gcr#Gmol . ~5!

WhenGq,Gcr (GqÞGcr), the groupsGcr andGmol are not
necessarily connected by a group-subgroup relation.

In the molecular crystals, the binding between the ato
of the molecule being in general much stronger than
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binding between the molecules, the influence of the crys
line surrounding on the relative positions of the atoms in
molecule is very weak. Nevertheless, strictly speaking,
crystalline field reduces the symmetry of the molecule fro

Gmol for the free molecule toG̃mol5Gq for the molecule in
the crystal. This reduction of symmetry of the molecule a
pears, for example, in the splitting of the electron ene
levels. If one does not take into account the small modifi
tions of the molecular structure caused by the crystall
neighborhood, one can attribute to the molecule in the cry
the symmetryGmol of the free molecule.

The atoms of the molecule have a symmetry inferior
equal to that of the molecule itself~free or in the crystalline
surrounding!. By definition, the site symmetry group of a
atom in the molecule is a subgroup of the symmetry group
the molecule (Gat#Gmol for the free molecule orG̃at#G̃mol
for the molecule in the crystal!. The relation Gat5Gmol

(G̃at5G̃mol) is possible for the atom at the symmetry cen
of the molecule, or at the symmetry line forGmol5Cr ,Cnv

(G̃mol5Cn ,Cnv), or at the symmetry plane forGmol5Cs

(G̃mol5Cs). In a molecule without symmetry (Gmol5G̃mol

5C1), also the atoms have no symmetry (Gat5G̃at5C1).

C. The case of chiral molecules

If the symmetry groupGmol of the molecule contains im
proper operations, it is called symmetric. Any orthogon
operationg (gPGmol or g¹Gmol) leaves the symmetric mol
ecule invariable except~if g¹Gmol) for its position in space.
The symmetric molecule coincides with its mirror-imag
counterpart. If the symmetry groupGmol of the molecule
consists of proper operations only, it is called chiral. T
improper operations transform a chiral molecule into
mirror-image counterpart. In particular, a molecule witho
any symmetry, i.e., a molecule with the symmetry gro
Gmol5C1 , is chiral. Its mirror-image counterpart cannot b
superposed with the molecule itself.

The crystal classGcr of order ncr can consist of proper
operations only~of ncr proper rotations! or of ncr/2 proper
and ncr/2 improper operations. If the crystal class conta
proper operations only, there could be the following Wyck
positions: ~i! the points on symmetry lines ((Gq5Cn , n
52,3,4,6); ~ii ! symmetry-line intersections, called isolate
symmetry points$Gq5Dn , n52,3,4,6; T,O!. The Wyckoff
positions in these ‘‘proper’’ crystals~or, in other words, the
crystallographic orbits! can be occupied by either symmetr
or chiral molecules.

If there are improper operations in the crystal class,
Wyckoff positions~or the crystallographic orbits! can be oc-
cupied by symmetric molecules. As to chiral molecules
this case, they can occupy only half of the points in t
primitive unit cell of any crystallographic orbit, the othe
half of them being occupied by their mirror-image counte
parts. The existence of a molecular crystal related to a c
talline class with improper operations is forbidden f
chirally pure crystals~formed by identical molecules, with
out mirror-image counterparts!.
7-2
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III. THE ‘‘FREE-SPACE’’ MODEL

A. Symmetry requirements

The large biomolecules are chiral, the overwhelming m
jority of them having low symmetry,Gmol5C1 . Any point
within such a molecule hasC1 symmetry too. In particular
the constituting atoms can occupy only general positio

i.e., Wyckoff positions withGq5C1 (G̃at#G̃mol , see Sec.
II B !. So, the higher-symmetry points and lines in a crys
form a ‘‘forbidden space’’ for the biomolecules. Note th
this space is one-dimensional for the crystals in ques
since all the symmetry points lie at symmetry lines.

What is more, the finite size of biomolecules induces
ditional restrictions. To avoid the molecule overlap with
rotational image, the centers of molecules cannot be ne
than some distanceR from the symmetry axes of the crysta
R being a characteristic size of the molecule. If, for simpl
ity, one implies that molecules have a globular shape wit
diameter D, then R5D/2 for the C2 rotation axis, R
5D/) for the C3 one, R5D/& for the C4 one, andR
5D for theC6 axis. Thus, the higher the ordern of ann-fold
rotational axis is, the larger is the forbidden space. This c
sideration could be generalized not only for ellipsoidal m
ecules but also for an arbitrary molecular shape. Note tha
a screw axis, the distanceR depends on the lattice paramet
B along this screw axis, namelyR5A(D2/42B2/16) for the
twofold (C2u0,0,1/2) screw axis,R5A(D2/32B2/27) for
the threefold (C3u0,0,1/3) one,R5A(D2/22B2/32) for the
fourfold (C4u0,0,1/4) screw axis, andR5A(D22B2/36) for
the sixfold (C6u0,0,1/6) one. However, the forbidden spa
induced by a screw axis appears only at lattice parametB
smaller than a critical value@e.g., B,2D for the
(C2u0,0,1/2) screw axis#. Moreover, screw axes often coin
cide with rotational axes generating larger forbidden spa
For the P42 space group taken as an example,
(C4u0,0,1/4) screw axis coincides with aC2 rotational axis.
So, the restrictions imposed by the screw axes are we
than those imposed by the rotational axes.

Summing up, the low symmetry of biomolecules limi
the space in a crystal unit cell in which the molecules c
reside. There is a forbidden space around any symmetry
the spacefree for molecule centers to reside being out of t
R-radius cylinders around the axes. This free space can
discrete set of points or a continuum~one-, two-, or three-
dimensional!. Since the contributions of rotational axes
the forbidden space are larger than those of screw axes
should focus attention on the number of rotational a
~symmetry lines! per unit cell.

It is reasonable to assume that the existence of forbid
space hampers crystal formation. Thus, the largest prob
ity for molecules to crystallize is for space groups having
symmetry restrictions, i.e., for structures withC1 Wyckoff
positions only. The addition of each symmetry line within t
unit cell decreases the free space and thus this probab
The existence of the line intersections~higher-symmetry
points! increases comparatively the free-space volume du
the partial overlap of forbidden-space cylinders around
lines.
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We therefore suggest that there is the free spaceVfree in
the unit cell where the molecule centers are allowed to res
by symmetry considerations and that a probability for a m
ecule to crystallize with a particular space-group symmetr
somehow proportional to this free space.

B. Packing requirements

The relative free-space volumeVfree/Vcell depends on the
ratio between molecule and unit-cell volumes, i.e., on
packing coefficient

p5NmolVmol /Vcell , ~6!

whereVcell is the crystallographic unit-cell volume,Vmol is
the molecule volume, andNmol is the number of biomol-
ecules per crystallographic unit cell. The smaller the pack
coefficient is, the larger is the relative free-space volume

Note that, for the body-centered~I! and base-centered~C!
lattices, the crystallographic unit-cell volumes and the nu
bers of molecules per cell are two times larger than those
the related primitive~P! lattices. For the face-centered~F!
lattices, the volumes and numbers are four times larger t
for the P lattices. Correspondingly,

Nmol5k(
j 51

s

mj tqj
, ~7!

wherek is the ratio between the crystallographic and prim
tive cell volumes, that is, 1, 2, 2, or 4 for the primitive
base-centered, body-centered, and face-centered lattice
spectively,s is the number of occupied Wyckoff positions
mj is the number of occupied crystallographic orbits for t
Wyckoff positionqj , and tqj

is the number of points in the

crystallographic orbit related to theqj Wyckoff position.
In our case of biomolecules without symmetry, only t

lowest-symmetry Wyckoff position is occupied, that is,s
51,nq51. Then the position multiplicities aretq5ncr and
the minimum possible (m51) numbers of biomolecules pe
primitive and crystallographic unit cells equalncr and Ncr
5k ncr , respectively.

On the other hand, crystals in nature tend to form poss
the most compact structure, thus increasing the packing
efficient. However, such a structure should be compat
with the symmetry requirements. For low-symmetry mo
ecules, the close packing is unattainable for some cry
systems. For instance, the so-called closest-cubic pack
p5p/3&'0.741, is impossible for any group of the cub
O class for any number of crystallographic orbits, possi
for the P2 group beginning with two orbits, and possible f
the P1 group for any number of orbits.

Note that the relative free space versus packing coeffic
is a monotonically decreasing function for any space gro
The numerical calculations~see below! show that, for a
given packing coefficient, among two crystal structures w
different space groups, the structure with the largestattain-
able packing coefficient usually ensures the largest f
space for molecules.
7-3
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Let us summarize the main points of the free-spa
model. First, the existence of forbidden space around s
metry axes hinders the crystal formation. The smaller
number of symmetry lines per unit cell is, the less is t
forbidden space, and thus the larger is the free space.
ond, the crystal structure tends to be the most compact
compatible with the symmetry requirements. As a result
the two opposite tendencies~enlarging either the free spac
Vfree or the packing coefficientp;1/Vfree), the crystal is
formed. The probability for molecules to form a crystal wi
a particular space group is assumed to be proportional to
free space in the unit cell.

IV. RESULTS AND DISCUSSION

A. Molecule chirality and possible crystal structures

Nature is dominated by chemical isomers of on
handedness rather than the others. For exam
L-aminoacids predominate over D-aminoacids in most liv
organisms.~Note, some of the L-compounds are not levor
tatory but dextrorotatory.! The chirality is intrinsic not only
for all biopolymers~proteins, nucleic acids, carbohydrate
lipids, etc.!, but also for some simpler compounds in livin
cells. Except for glycine, which is symmetric, the canon
imino/aminoacids are chiral. Thus nearly all molecules
synthesized by living organisms.

The above group-theory analysis~see Sec. II C! forbids
the existence of a chirally pure biomolecular crystal~formed
by identical molecules, without mirror-image counterpar!
related to a crystalline class with improper operations~inver-
sion, mirror plane, mirror rotation!. Such molecules can gen
erate chirally pure crystals with only 66 of the 230 spa
groups consisting of the proper operations only. Th
groups, which are presented in Table I, are related to the
crystal classes: C1(1), C2(2), D2(222), C3(3), D3(32),
C4(4), D4(422), C6(6), D6(622), T(23), and O(432),
where the numbers in parentheses refer to international
tations.

The above statement is fully confirmed by the analysis
the space groups of thousands of observed biomolec
crystals @1,2# provided that the biological macromolecule
have lowC1 symmetry. The synthetically prepared prote
crystal with space groupP1̄ ~centrosymmetric form! @3# is
not an exception since half of the Wyckoff positions are o
cupied by levorotatory molecules and the other half by th
mirror-image dextrorotatory counterparts.

B. Distribution of biomolecule crystals over the space groups

According to our symmetry consideration, the large
probability for molecules to crystallize exists in space grou
having no high-symmetry Wyckoff positions except forC1 ,
e.g.,P1 of the triclinic system,P21 of the monoclinic one,
and P212121 of the orthorhombicD2 system. Indeed, thes
3 of the 66 possible groups provide nearly half of all biom
lecular crystals~see Table I!.

The addition of each next symmetry line within the un
cell decreases the free space and thus this probab
whereas the existence of the line intersections increases
01190
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comparatively. Indeed, within the row of the orthorhomb
crystals with a simple lattice, P212121-P21212-
P2221-P222, the addition of each successive rotation a
decreases the number of observed crystals by a factor 5

Moreover, any increase in forbidden space is accom
nied by a decrease in the number of crystals. Proving t
Table I shows a relationship between the numbers of hi
symmetry lines/points that correlates with the forbidd
space and the crystal-distribution statistics~BMCD-PDB-
averaged! over the space groups of 11 allowed crys
classes.

It is worthwhile to recall that the higher the order of
rotational axis is, the larger is the forbidden space. As
result, the most compact structures are formed for the le
symmetric classes only~triclinic crystals without symmetry
axes, and monoclinic and orthorhombic crystals with t
twofold axes!, and the number of the trigonal, tetragona
hexagonal, and cubic crystals~with the threefold, fourfold,
and sixfold axes! drastically decreases.

One can see that an increase in forbidden space is r
larly ~without any exception! followed by a decrease in th
number of crystals within any crystal class. This regu
trend proves the model qualitatively. The quantitative ana
sis is cumbersome even without respect to all features
biomolecules ~irregular shape, intermolecular an
biomolecule-water interactions in a crystal, etc.!. However,
to illustrate the possibility of a still approximate, averag
description, we give an example of such a quantitative an
sis for one of the simplest systems, namely the monocl
one, where there are three space groupsP2, P21 , andC2. A
less detailed analysis is carried out for the other crys
classes.

1. Monoclinic crystals

In the space groupP2, there are four symmetry line
~0,y,0!, ~0,y,1

2!, ~1
2,y,0!, and~1

2,y,1
2! and two molecules per uni

cell @5,6#. As noted above, the molecule centers cannot lie
the forbidden space limited byD-diameter cylinders around
the symmetry lines. Therefore, to calculate the free volum
one should subtract the forbidden volume from the unit-c
volume and take into account possible overlaps of cylind
around symmetry lines. Far from the overlap region, for
unit cell with the A,B,C lattice constants and the angleb
betweenA and C translation vectors, we obtainVfree5Vcell
24Vcyl5ABCsinb24BpD2/4. Then the relative free vol-
ume isVfree/Vcell512pD2/AC sinb. When the packing co-
efficient p increases, the free space monotonously decre
as 12jp2/3. For D.min(A,C,A(A21C262AC cosb), the
cylinder overlap takes place. In order not to overload
paper, we give only the formula for an oversimplified ca
A5C and b5p/2 ~the monoclinic symmetry can be kep
since the symmetry of the Bravais lattice of molecular cr
tals can be higher than required by the point symmetry!,

Vfree/Vcell512~2D/A!2$p/42arccos~A/2D !

1~A/2D !A@12~A/2D !2#%. ~8!
7-4
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TABLE I. Distribution of crystals made of biological macromolecules over the space groups according to the BMCD@1# and PDB@2#
databases. For each group, the minimum possible numbers of biomolecules per primitive and crystallographic unit cell (ncr andNcr) and the
numbers of symmetry lines,NL , and symmetry points,NP ~at the line intersections, in parentheses!, per crystallographic unit cell are given

Crystal system
and

crystal class
Space
group

Group
No. ncr Ncr NL (2NP)

Number of crystals~ppm!

BMCD PDB Average

Triclinic C1 P1 1 1 1 0 32 199 115

Monoclinic C2 P2 3 2 2 4~20! 5.5 1 3
P21 4 2 2 0 144 112 128
C2a 5 2 4 4 ~20! 75.5 74.5 75

OrthorhombicD2 P222 16 4 4 12~28! 1 0 1
P2221 17 4 4 8~20! 5 0.5 3
P21212 18 4 4 4~20! 42 48 45
P212121 19 4 4 0 223 201 212
C2221 20 4 8 8~20! 38.5 38.5 39
C222 21 4 8 16~28! 5 1 3
F222 22 4 16 24~216! 1 1 1
I222 23 4 8 12~28! 17.5 17 17
I212121 24 4 8 12~20! 8 0.5 4

TetragonalC4 P4 75 4 4 4~20! 1.5 0.5 1
P41 76 4 4 0 7 6 7
P42 77 4 4 4~20! 1 0.5 1
P43 78 4 4 0 6.5 5 6
I4 79 4 8 4~20! 4.5 3 4
I41 80 4 8 4~20! 0.5 2 1

TetragonalD4 P422 89 8 8 16~28! 1.5 0.5 1
P4212 90 8 8 8~24! 5 3.5 4
P4122 91 8 8 12~20! 10.5 1.5 6
P41212 92 8 8 4~20! 36.5 26 31
P4222 93 8 8 16~212! 1.5 0.5 1
P42212 94 8 8 8~24! 9.5 7 8
P4322 95 8 8 12~20! 8 2 5
P43212 96 8 8 4~20! 50 39.5 45
I422 97 8 16 20~212! 5.5 6 6
I4122 98 8 16 20~28! 2 5.5 4

Trigonal C3

~rhombohedral!
R3 146 3 3 1~20! 10.5 11 11

Trigonal C3 P3 143 3 3 3~20! 1 2 1
~hexagonal! P31 144 3 3 0 4 2.5 3

P32 145 3 3 0 6 3.5 5

Trigonal D3

~rhombohedral!
R32 155 6 6 7~22! 11 11 11

Trigonal D3 P312 149 6 6 13~26! 0 0 0
~hexagonal! P321 150 6 6 9~22! 5 6 5

P3112 151 6 6 10~20! 4.5 0.5 3
P3121 152 6 6 6~20! 39 32.5 36
P3212 153 6 6 10~20! 4 1 3
P3221 154 6 6 6~20! 39.5 45.5 42

HexagonalC6 P6 168 6 6 6~20! 2.5 5.5 4
P61 169 6 6 0 11.5 9 10
011907-5
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TABLE I. ~Continued.!

Crystal system
and

crystal class
Space
group

Group
No. ncr Ncr NL (2NP)

Number of crystals~ppm!

BMCD PDB Average

P65 170 6 6 0 9.5 5.5 8
P62 171 6 6 4~20! 3.5 1 2
P64 172 6 6 4~20! 2 1.5 2
P63 173 6 6 3~20! 7 5.5 6

HexagonalD6 P622 177 12 12 22~212! 3 1 2
P6122 178 12 12 16~20! 19.5 16 18
P6522 179 12 12 16~20! 18 8 13
P6222 180 12 12 20~212! 8 2.5 5
P6422 181 12 12 20~212! 8 2.5 5
P6322 182 12 12 19~28! 8.5 4.5 7

Cubic T P23 195 12 12 16~28! 1 0 0
F23 196 12 48 40~216! 0.5 0 0
I23 197 12 24 19~28! 4.5 3 4
P213 198 12 12 4~20! 6.5 6.5 6
I213 199 12 24 19~20! 3 4 3

Cubic O P432 207 24 24 28~28! 0 0 0
P4232 208 24 24 31~228! 1 0.5 1
F432 209 24 96 82~240! 2 1.5 2
F4132 210 24 96 104~248! 1 0.5 1
I432 211 24 48 43~228! 2 2 2
P4332 212 24 24 20~28! 1 0.5 1
P4132 213 24 24 20~28! 2 0.5 1
I4132 214 24 48 49~240! 1 1 1

aAs for some other groups, here equivalent notations are included:A2, B2, B112,C121,C21 , C1211, I1211, I121, I2, andI21 .
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One can see that analytical calculations are too com
cated. The results of numerical calculations by the Mo
Carlo method are given in Fig. 1 both for the oversimplifi
case~bold lines! and for different crystal-lattice parameter
In the latter case, the results are averaged over a set o
A,B,Clattice parameters with their ratios varying from 1/3
3/1, which is broader than the real biomolecule-crys
lattice-parameter distribution. It can be seen that the dif
ence between the two cases is not significant.

FIG. 1. The dependences of relative free-space volume on
packing coefficientp for three groups of monoclinic crystals. Thic
lines are calculated within an oversimplified model, thin lin
within a more realistic one~see text!. Inset shows the correspondin
ratios of these free-space volumes averaged for the same pa
coefficient.
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In the P21 space group, the rotation axis is substituted
a screw one. As a result, the symmetry of Wyckoff positio
along the lines is reduced to general ones. The symm
lines disappear. WhenB>2D, there is no forbidden space
the free-space volume coinciding with the unit-cell volum
For smallerB, forbidden space appears too, related to
screw axis@also a cylinder around each axis, but with th
diameterd5A(D22B2/4)]. The relative free volume drop
abruptly from the maximal value 100%, as shown in Fig.
Nevertheless, the free space for this group remains incom
rably larger than that for theP2 space group, as one can s
from the inset in the figure, where free-space ratios are p
sented.

In the space groupC2, the symmetry lines in the base
centered crystallographic unit cell coincide with those in t
primitive P2 unit cell ~equivalent to the crystallographic on
for the primitive lattices!. However, there are four molecule
per crystallographic unit cell instead of two molecules f
P2, and the unit-cell volumeVcell is two times larger for the
same packing coefficient. As a result, this group stands
betweenP2 andP21 . According to the numerical calcula
tions~see Fig. 1!, the relative free-space volumeVfree/Vcell is
1.5 to 2 times less here than that for theP21 group, being
much larger than for theP2 group.

Comparing our model results with the available expe
mental data, we see a good agreement: the averaged~over

he

ing
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both databases, see Table I! ratio of numbers of crystals fo
the P21 andC2 groups is about 1.7, the number of report
crystals with theP2 group being much smaller than with th
other two groups.

2. Other crystal classes

One can make detailed calculations for any crystal s
tem. In the above model, the probability for molecules
form a crystal with a particular space group is assumed to
proportional to the relative free spaceVfree/Vcell in the unit
cell assuring the largest packing coefficient compatible w
the symmetry restrictions. Since the forbidden space is
ated by symmetry lines, even the number of symmetry li
provides information on the free space.

This is clearly seen from the above comparison of
numerical and qualitative results for groupsP2, P21 , and
C2. So, in predicting the biomolecule-crystal distributio
over space groups, it is reasonable for the sake of simpli
to restrict ourselves to a comparison of the numbers of s
metry lines ~taking into account their intersections, whic
increasesVfree), thus implying the comparison of the relativ
free-space volumes.

The case of the orthorhombicD2 class is exemplary. In
the symmorphic orthorhombic space groupP222, there are
12 symmetry lines~four lines along each directionx, y, and
z! and eight symmetry points lying at the intersections
these lines. For the nonsymmorphicP2221 group, all the
symmetry points and symmetry lines along the screw a
direction disappear, the number of symmetry lines reduce
eight, and there is no line intersection. As a result, the f
space for a molecule increases. For theP21212 group, the
number of symmetry lines reduces to four and the free sp
increases even more, reaching the maximum for the gr
P212121 containing only general Wyckoff positions with th
C1 symmetry. And this is immediately reflected in the num
ber of observed crystals. Indeed, for the orthorhombic cr
tals with a simple lattice, replacing each rotation axis by
screw one increases the number of observed crystals by
order of magnitude.

For the base-centered orthorhombic lattices, the repla
ment of rotation axis inC222 with a screw one in theC2221
group reduces twice the number of symmetry lines~from 16
to 8!, thus increasing the free volume. However, line int
sections disappear, thus partly compensating for the ef
Nevertheless, the ratio of distribution numbers is about
For both groups with the orthorhombic body-centered
tices, I222 andI212121 , there are 12 symmetry lines pe
crystallographic unit cell. Nevertheless, in theI222 group
they intersect, which increases the free volume, wherea
the I212121 group the symmetry lines do not intersect a
the free volume is less. Correspondingly, the number of c
tals is also smaller~about four times!.

To compare the orthorhombic subclasses with the pri
tive ~P! and centered~C and I! lattices, one should take int
account that the centering of the unit cell increases bothVfree
andVcell . For example, in going fromP21212 to C2221 , the
number of rotational axes and, consequently, the forbidd
space volume double. However, the unit-cell volume a
doubles, keeping the relative free space and the numbe
01190
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crystals almost the same. Furthermore, in going fromC2221
to I212121 , the unit-cell volume is not changed, whereas t
number of axes is increased from 8 to 12~without intersec-
tions in all cases!. As a result, the number of crystals als
decreases.

In the tetragonalD4 class, the minimum number of sym
metry lines ~four! appears forP43212 and P41212 space
groups~with a slight difference between them!, which corre-
sponds to the maximum freeC1 space. Not surprisingly, two
thirds of the tetragonalD4 crystals are from these groups. O
the contrary, theP422 and P4222 groups~16 symmetry
lines! are practically not present. One can also compare
D4 tetragonal body-centered groups (I422 and I4122),
where the decrease in the number of line intersections res
in a decrease in free space and is accompanied by a dec
in the number of crystals. A quite similar but less clear p
ture can be seen for space groups of the other tetrag
class, C4 . For example, the case ofC4 tetragonal body-
centered groups~four nonintersecting lines per crystallo
graphic unit cell in bothI4 andI41) can be made transparen
with direct numerical calculations only. Note, however, th
two-thirds of theC4 crystals are fromP43 and P41 space
groups, as can be expected.

Within the trigonal system, a few subsystems and s
classes can be found. For example, within the trigonal~hex-
agonal! 321 subclass, equal maxima of distribution numb
are obviously expected~and occur! for P3121 andP3221
groups, where six high-symmetry lines are present. The
groups comprise more than half of all trigonal crystals.

For the hexagonalD6 class, our model predicts the large
~and nearly equal! distribution numbers for theP6122 and
P6522 space groups~16 high-symmetry lines!, smaller~and
also nearly equal! numbers for theP6222 andP6422 groups
~20 lines!, and the minimum number of crystals with th
P622 group~22 high-symmetry lines!, everything being ob-
served in reality. Indeed, two-thirds of the crystals are fro
the two former space groups, whereas the latter provide
than a quarter. A very similar picture takes place for t
hexagonalC6 class, namely equal maxima forP61 andP65
~no high-symmetry positions in the crystal!, parity, and
minima for P62 , P64 , andP6, but statistical error makes i
not as clear as in the previous case.

Even for the most symmetric cubic system, where
statistical material is insufficient, the largest number of cr
tals~about 100 in the PDB! belongs to theP213 space group
with the minimum number of high-symmetry lines per un
cell, which also supports our model.

C. Perspectives for future studies

As the biomolecular-crystal databases increase, it will
come possible to test the presented ‘‘free-space’’ model a
lyzing the distribution over the space groups for the vario
crystals based on the same biomolecule. This will allow us
reveal fine details of biomolecule crystallization.

Indeed, the low symmetry of the biomolecules dicta
that the atoms have no symmetry in any biomolecular cry
but C1 . Incidentally, this means that any atom does n
change its position symmetry during any crystal-phase tr
7-7
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TABLE II. Distribution of crystals made of biological macromolecules over the crystal systems acco
to the BMCD database@1#.

Number of
crystals Triclinic Monoclinic Orthorhombic Tetragonal Trigonal Hexagonal Cub

All ~hundreds! 1 8 12 5.5 4.5 3.5 1
Lysozyme 1 6 15 13 10 4
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sition, and there is no jump of the atom energy~cohesive,
potential, etc.!, the changes of the structure~lattice param-
eters, angles! being continuous as well. Since an ener
profit for a phase transition is not large, any protein co
form any lattice under certain conditions~molecular density
in the solution or number of surrounding H2O molecules,
acidity, or pH, etc.!. What is more, the probability for a cer
tain protein to have a certain lattice~space group! should be
the same as for any other protein~if there are no shape pe
culiarities!. That is to say, the averaged distribution statist
for all proteins and that for a certain protein should be
same.

There are already moderate statistics of distributions
the various crystals made of the identical biomolecul
Among thousands, the lysozyme protein is one of the m
studied, 49 lysozyme crystals being presented in the BM
@1#, belonging to 16 space groups~see Table II!. One can see
the pronounced similarity of distribution over crystal syste
for this protein and the others in total. Of course, it is dif
cult to expect an accurate coincidence. First, obtaining
higher-symmetry phases is more advanced for many fur
studies, e.g., structural ones. Second, if the shape of a
molecule is very special, statistics could be different as
takes place for the hemoglobin crystals. Unfortunately,
cause of small statistics, an analogous search cannot be
for distributions over the space groups for crystals made
other biomolecules. However, the BMCD@1# and PDB@2#
databases, which collect slightly different subsets of the p
tein crystals, show nevertheless that the percentage stat
are very similar. That is why, to prove ourfree-spacemodel,
ta

t,
ds

io
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we refer to the combined BMCD-PDB statistics, all averag
over the data on many crystals.

V. CONCLUSION

We have carried out a detailed group-theory analysis
the interrelation between the symmetry of an isolated m
romolecule and the possible symmetries of the crystals it
generate. We link rigorously the absence of symmetry in b
molecules with the chirality of the biomolecular crystals.

We have found some restrictions for the molecule dis
sition in the crystal structure, and suggest a model taking
account both these restrictions and trends of the biomole
packing. According to our model, the largest probability f
molecules to crystallize exists in space groups having
high-symmetry Wyckoff positions.

Within this ‘‘free-space’’ model, we performed an analys
of biomolecule crystal distribution for the possible 66 spa
groups with proper symmetry operations only. The pred
tions of our model are confirmed by the protein datab
statistics. So, without resorting to thermodynamics, in
framework of a symmetry approach, we have managed
describe important peculiarities of the biomolecule crysta
zation.
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