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Why biomolecules prefer only a few crystal structures
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We have shown that, in determining the biomolecule-crystal symmetry, the occupation of low-site-symmetry
Wyckoff positions is crucial, which contrasts with the overwhelming majority of nonmolecular, inorganic
crystals where atoms mainly reside in high-symmetry Wyckoff positions. We consider the general relation
between the symmetry of an isolated molecule and the possible symmetries of biomolecular crystals it can
generate. We reveal that the improper symmetry operatiomersion and mirror symmetrigare prohibited in
the chirally pure biomolecular crystals. Next, we show that the 184) (symmetry of large biological mol-
ecules substantially decreases the space in a crystal where the molecules can reside. The space “forbidden” for
molecule centers is found to be in tRevicinity of the higher-symmetry Wyckoff positions on symmetry lines,
whereR is the molecule characteristic size. The remaining free space and hence the probability for the structure
to exist are shown to be drastically increased when replacing any rotation axis by a screw one. Based on the
proposed model, we have explained the peculiar distribution of biomolecular crystals over the space groups,
which can be obtained from biomolecule-crystal databases.
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[. INTRODUCTION to 8. The alternative databaf2| gives similar ratios for the
crystals in questioffor details, see Table | belgwThe same

There is a continuously growing interest in the study oftendency is evident foP2 andP2; groups,P3, P3;, and
structure and symmetry of biological objects. Progress irP3, groups, etc.
biotechnology enabled the growth of rather perfect crystals The fact that crystals prefer structures belonging to only a
made of biological macromoleculégproteins, nucleic acids, few space groups was discussed many years[4bdHow-
complexes, viruses, ejcand the compilation of large data- ever, to explain this trend, no model has been proposed there,
banks on the structure of thousands of biomolecular crystalsipart from some general speculations about close-packed
such as the biological macromolecule crystallization dataconfigurations only. This was not surprising since the crys-
base(BMCD) [1] and the protein data ba¢@DB) [2]. These tals compiled together in Ref4] were dissimilar, i.e., inor-
data offer a vast field for a comprehensive theoretical analyganic and organic ones, including molecular crystals made of
sis. molecules having various point symmetries.

One can reveal several important features of biomolecular In Sec. Il, we investigate general relations between the
crystals which are connected with the symmetry of biomol-symmetries of an isolated molecule and its crystalline forms.
ecules themselves. First, the overwhelming majority of bio-Then, based on these group-theory considerations and taking
molecular crystals contains neither an inversion center nointo account the packing restrictions as well, we introduce a
mirror symmetry. To the best of our knowledge, there is onlymodel for biomolecule-crystal formatiofsec. Ill). In Sec.
one example of synthetically prepared protein which hadV, we discuss a comparison of our theoretical predictions
been crystallized in a centrosymmetric fof8. with the experimental results.

Second, the crystal distribution over the remaining space
groups has another intriguing peculiarity: the biomolecules
tend to crystallize mostly in space groups with screw axes.
Moreover, the number of observed structures generally in-
creases with the number of screw axes in the grdugl.
Indeed, according to Refl], among orthorhombic crystals A. Notations
with a simple lattice, there are four crystals belonging to the
P222 space groufithree rotation axes, no screw gxid8
with the P222; group (two rotation axes, one screw axis
150 with P2,2,2 group(one rotation axis, two screw axes
and 801 with theP2,2,2; group (no rotation axis, three
screw axep Thus, replacing each rotation axis by a screw 3
one increases the number of observed crystals by a factor 5 an=21 n;g, (2)

=

1. GENERAL RELATIONSHIPS BETWEEN THE
SYMMETRY GROUPS OF A MOLECULE AND OF THE
MOLECULAR CRYSTAL IT GENERATES

Let the space group of a crystal & consisting of the
elementg = (h|v,+a,), where the orthogonal operatidris
followed by the improper translation, and lattice transla-
tion a,.

*Permanent address: loffe Physico-Technical Institute, Politekh@; being primitive translation vectors. The vectas form

nicheskaya 26, 194021, St. Petersburg, Russia. the invariant subgrouf , of the space grou (T,<G).
"Permanent address: Institute of Fine Mechanics and Optics, Sd&he point groupG,, of the n., orthogonal operationk de-
blinskaya 14, 197101 St. Petersburg, Russia. scribes the symmetry of directions in the crystal and is called
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the crystalline classor point symmetry group of the crystal. binding between the molecules, the influence of the crystal-
The orthogonal operationi can be proper [rotations, line surrounding on the relative positions of the atoms in the
det()=1] or improperones[inversion, mirror plane, mirror molecule is very weak. Nevertheless, strictly speaking, the
rotation, det)=—1]. crystalline field reduces the symmetry of the molecule from
Thesite symmetry group gof the pointq in the space of g for the free molecule t&,q= G, for the molecule in
the crystal is formed by the, operationsga= G 1eaving e crystal. This reduction of symmetry of the molecule ap-

'(E,‘Vf?‘“a”t thet site of tﬂ? crystakljl qu,? [St]h The S'Ite groutp $ears, for example, in the splitting of the electron energy
q IS @ point group. The number ot 1ts orthogonal operalione, o5 1t one does not take into account the small modifica-

cannot be superior to that of the crystal cl@s. Therefore, tions of the molecular structure caused by the crystalline

GyCGq- (2)  neighborhood, one can attribute to the molecule in the crystal
the symmetnyG,,, of the free molecule.

The atoms of the molecule have a symmetry inferior or
equal to that of the molecule itseffree or in the crystalline
tq surrounding. By definition, the site symmetry group of an

(h; |vj +a,)Gq,  tg=ne/Ng. (3 atom in the molecule is a subgroup of the symmetry group of
- the molecule G,C G, for the free molecule 06 4C G,

An array of pointsq; ,= (h;|v;+a,)q is called acrystal- ~ for the molecule in the crystal The relation Ga= G
lographic orbit(or right system of pointg5]. It hast, points  (G,=G,,) is possible for the atom at the symmetry center
per primitive unit cell, the numbey=n/n, being themul-  of the molecule, or at the symmetry line fG&,,=C,,C,,
tiplicity of t_he Wycko_ff pc_)sition. The pointg; , of the orbit (G =c_.C,,), or at the symmetry plane foB,,=Cs
have the isomorphic site symmetry groumsj,n=(hj|vj (&,.4=CJ). In a molecule without symmetryQ o= G|

+a,) Gq(hj|v]-+an)*1. The orbit is characterized by any of " e
its pointsq taken within the primitive unit cell. In the fol- — C1), also the atoms have no symmetg=Ga= Cy).

lowing, international notatiof6] is used for point and space

Let us write the decomposition @ into cosets with re-
spect to its site subgrou@y,

G=

nj=1

groups. c.Th f chiral molecul
Crystallographic orbits are partitioned according to the - 1he case of chiral molecuies
so-calledWyckoff positionsAll the crystallographic orbits If the symmetry groups,,, of the molecule contains im-

with the same site symmetry group are related to the samgroper operations, it is called symmetric. Any orthogonal
Wyckoff position, the latter being unambiguously character-operationg (g € G, 0r g & G, leaves the symmetric mol-
ized by the groupg5, and denoted by small Roman letters. ecule invariable excefgif g« G, for its position in space.
Among the Wyckoff positions, there af6,6] (a) isolated The symmetric molecule coincides with its mirror-image
symmetry points;(b) the points along a rotation axi§s,  counterpart. If the symmetry grou of the molecule
=C,(n), C,, (nmor nmm, n# 1, one-parameter arrgy(c) consists of proper operations only, it is called chiral. The
the points on a symmetry pla&,=Cy(m), two-parameter improper operations transform a chiral molecule into its
array; and (d) the points of the general positiofG,  mirror-image counterpart. In particular, a molecule without

=C4(1), three-parameter array any symmetry, i.e., a molecule with the symmetry group
Gmo=C4, is chiral. Its mirror-image counterpart cannot be
B. Molecular and crystal symmetries superposed with the molecule itself.

In the molecular crystals, not atoms but molecules are 1he crystal classS, of ordern, can consist of proper
elementary building blocks, from which the crystal is con-OPerations only(of n, proper rotationsor of n./2 proper
structed. Let a molecule with the symmetry described by th@nd Ne/2 improper operations. If the crystal class contains
group G, occupy the Wyckoff positiom, i.e., let its center ~ PrOPer operations on!y, there could be th_e following Wyckoff
of gravity reside at this point with the site symmetry groupPOSItions: (i) the points on symmetry lines §;=C,, n
Gq. The symmetry operatiorgy, (gq< Go) have to be also =2,3,4,6); (u)_ symm_etry—lme_mterse(.:tlons, called isolated
the symmetry operations of the molecule which occupies th€Ymmetry point§Gq=D,, n=2,3,4,6;T,0). The Wyckoff

positionq in the crystal, i.e.gqe G, and then positions in these “proper” crystaléor, in other words, the
a crystallographic orbitscan be occupied by either symmetric
GyCGmol- (4)  or chiral molecules.

) . If there are improper operations in the crystal class, the
In the particular case whefGq=G., (symmorphic space \\yckoff positions(or the crystallographic orbitsan be oc-
group; the crystallographic orbit has only one representativgpied by symmetric molecules. As to chiral molecules in
in the primitive unit cel), this case, they can occupy only half of the points in the
GoCGro- (5) primitive unit c_eII of any.crystallog_raphic o_rbit, the other
half of them being occupied by their mirror-image counter-
WhenG,C G, (Gy# Gy, the groupsG,, andG,, are not  parts. The existence of a molecular crystal related to a crys-
necessarily connected by a group-subgroup relation. talline class with improper operations is forbidden for
In the molecular crystals, the binding between the atomghirally pure crystalgformed by identical molecules, with-
of the molecule being in general much stronger than theut mirror-image counterpaits
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ll. THE “FREE-SPACE” MODEL We therefore suggest that there is the free sp4gg in

the unit cell where the molecule centers are allowed to reside

by symmetry considerations and that a probability for a mol-
The large biomolecules are chiral, the overwhelming maecule to crystallize with a particular space-group symmetry is

jority of them having low symmetryG,,,=C.. Any point  somehow proportional to this free space.

within such a molecule ha8; symmetry too. In particular,

the constituting atoms can occupy only general positions, B. Packing requirements

i.e., Wyckoff positions withGq=Cy (G4CGma, S€€ Sec. The relative free-space volumé,ee/ V. depends on the
IIB). So, the higher-symmetry points and lines in a crystakatio between molecule and unit-cell volumes, i.e., on the
form a “forbidden space” for the biomolecules. Note that packing coefficient

this space is one-dimensional for the crystals in question
since all the symmetry points lie at symmetry lines. P=NmoVmot! Vel (6)
What is more, the finite size of biomolecules induces ad-
ditional restrictions. To avoid the molecule overlap with its where V. is the crystallographic unit-cell volum&/,, is
rotational image, the centers of molecules cannot be neareie molecule volume, anil,,, is the number of biomol-
than some distand® from the symmetry axes of the crystal, ecules per crystallographic unit cell. The smaller the packing
R being a characteristic size of the molecule. If, for simplic-coefficient is, the larger is the relative free-space volume.
ity, one implies that molecules have a globular shape with a Note that, for the body-centerét) and base-centerd®)
diameter D, then R=D/2 for the C, rotation axis, R lattices, the crystallographic unit-cell volumes and the num-
=D/V3 for the C; one, R=D/v2 for the C, one, andR bers of molecules per cell are two times larger than those for
=D for the C¢ axis. Thus, the higher the ordewf ann-fold  the related primitive(P) lattices. For the face-centere#)
rotational axis is, the larger is the forbidden space. This conlattices, the volumes and numbers are four times larger than
sideration could be generalized not only for ellipsoidal mol-for the P lattices. Correspondingly,
ecules but also for an arbitrary molecular shape. Note that for
a screw axis, the distanéedepends on the lattice parameter s
B along this screw axis, nameR= /(D?/4— B?/16) for the Nmor=K >, mitq,, (")
twofold (C,|0,0,1/2) screw axisR=(DZ%3—B%27) for =
the threefold €3]0,0,1/3) oneR= (D?/2—B?/32) for the ) ) ) o
fourfold (C4|0,0,1/4) screw axis, anB= \(D2— B%36) for v_vherek is the ratio betvv_een the crystallographic an_d primi-
the sixfold (C4/0,0,1/6) one. However, the forbidden spacelive cell volumes, that is, 1, 2, 2, or 4 for the primitive,
induced by a screw axis appears only at lattice parantter base—.center(.ad, body-centered, and face—centered Ia_tt.lces, re-
smaller than a critical value[e.g., B<2D for the SPectively,sis the number of occupied Wyckoff positions,
(C,|0,0,1/2) screw axis Moreover, screw axes often coin- M 1 the num_ber of occup|e_d crystallographic qrb|t§ for the
cide with rotational axes generating larger forbidden spacedVyckoff positiong;, andt, is the number of points in the
For the P4, space group taken as an example, thecrystallographic orbit related to theg Wyckoff position.

A. Symmetry requirements

(C4|0,0,1/4) screw axis coincides with@, rotational axis. In our case of biomolecules without symmetry, only the
So, the restrictions imposed by the screw axes are weakéowest-symmetry Wyckoff position is occupied, that &,
than those imposed by the rotational axes. =1n,=1. Then the position multiplicities arg=n. and

Summing up, the low symmetry of biomolecules limits the minimum possiblerg=1) numbers of biomolecules per
the space in a crystal unit cell in which the molecules carprimitive and crystallographic unit cells equal, and N,
reside. There is a forbidden space around any symmetry axis; k ng,, respectively.
the spacdree for molecule centers to reside being out of the  On the other hand, crystals in nature tend to form possibly
R-radius cylinders around the axes. This free space can bethe most compact structure, thus increasing the packing co-
discrete set of points or a continuufmne-, two-, or three- efficient. However, such a structure should be compatible
dimensional. Since the contributions of rotational axes to with the symmetry requirements. For low-symmetry mol-
the forbidden space are larger than those of screw axes, oeeules, the close packing is unattainable for some crystal
should focus attention on the number of rotational axesystems. For instance, the so-called closest-cubic packing,
(symmetry lineg per unit cell. p=m/3v2~0.741, is impossible for any group of the cubic

It is reasonable to assume that the existence of forbidde® class for any number of crystallographic orbits, possible
space hampers crystal formation. Thus, the largest probabifer the P2 group beginning with two orbits, and possible for
ity for molecules to crystallize is for space groups having nothe P1 group for any number of orbits.
symmetry restrictions, i.e., for structures wi@y Wyckoff Note that the relative free space versus packing coefficient
positions only. The addition of each symmetry line within theis a monotonically decreasing function for any space group.
unit cell decreases the free space and thus this probabilitfthe numerical calculationgsee below show that, for a
The existence of the line intersectioriBigher-symmetry given packing coefficient, among two crystal structures with
pointg increases comparatively the free-space volume due tdifferent space groups, the structure with the largettin-
the partial overlap of forbidden-space cylinders around theable packing coefficient usually ensures the largest free
lines. space for molecules.
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Let us summarize the main points of the free-spacecomparatively. Indeed, within the row of the orthorhombic
model. First, the existence of forbidden space around symerystals with a simple lattice, P2,2,2,-P2,2,2-
metry axes hinders the crystal formation. The smaller thep222,-P222, the addition of each successive rotation axis
number of symmetry lines per unit cell is, the less is thedecreases the number of observed crystals by a factor 5 to 8.
forbidden space, and thus the larger is the free space. Sec- Moreover, any increase in forbidden space is accompa-
ond, the crystal structure tends to be the most compact byfied by a decrease in the number of crystals. Proving this,
compatible with the symmetry requirements. As a result ofrgpje | shows a relationship between the numbers of high-
the two opposite tendencigsnlarging either the free space gymmetry lines/points that correlates with the forbidden
Viree OF the packing coefficienp~1Nyed), the crystal is gnace and the crystal-distribution statisti@&MCD-PDB-

formeq. The probability fqr molecules to form a crystal with averageyl over the space groups of 11 allowed crystal
a particular space group is assumed to be proportional to th asses

free space in the unit cell. It is worthwhile to recall that the higher the order of a
rotational axis is, the larger is the forbidden space. As a
IV. RESULTS AND DISCUSSION result, the most compact structures are formed for the least
symmetric classes onlftriclinic crystals without symmetry
. ) . . axes, and monoclinic and orthorhombic crystals with the
Nature is dominated by chemical isomers of one-yyofold axes, and the number of the trigonal, tetragonal,
handedness rather than the others. For examplgeyagonal, and cubic crystalwith the threefold, fourfold,
L-aminoacids predominate over D-aminoacids in most I'V'ngand sixfold axesdrastically decreases.
organisms(Note, some of the L-compounds are not |evoro- One can see that an increase in forbidden space is regu-

tatory bL.'t dextrorotatory.The chirality is .intrinsic not only larly (without any exceptionfollowed by a decrease in the
for all biopolymers(proteins, nucleic acids, carbohydrates,number of crystals within any crystal class. This regular

lipids, etc), but also for some simpler compounds in living L2 I
cells. Except for glycine, which is symmetric, the Canonictrend proves the model qualitatively. The quantitative analy-

imino/aminoacids are chiral. Thus nearly all molecules ar{',S IS lcun’:berso_me elven W|Lhout re;ptect tOI all lfeaturesdof
synthesized by living organisms. iomolecules (irregular  shape, intermolecular an

The above group-theory analysisee Sec. Il € forbids biomolecule-water interactions in a crystal, gtédowever,
the existence of a chirally pure biomolecular crygfatmed to illustrate the possibility of a still approximate, averaged

by identical molecules, without mirror-image counterparts d_es:c:rlpnon, V\;er?lve_ an Iexample of such a qluar;]tltatlve anl_aly-
related to a crystalline class with improper operatiinger- S!S for one of the simplest systems, namely the monoclinic

sion, mirror plane, mirror rotationSuch molecules can gen- ©ON€: where there are three space gra@psP2,, andC2. A

erate chirally pure crystals with only 66 of the 230 SpaceIess detailed analysis is carried out for the other crystal

groups consisting of the proper operations only. Thes&!aSSes.
groups, which are presented in Table I, are related to the 11
crystal classes: C1(1), C5(2), D,(222), C5(3), D3(32),

A. Molecule chirality and possible crystal structures

1. Monoclinic crystals

C4(4), D4(422), Cg(6), Dg(622), T(23), and O(432), In the space groupP2, there are four symmetry lines
where the numbers in parentheses refer to international nd0.y,0), (0y,3), (3,y,0), and(3,y,3) and two molecules per unit
tations. cell[5,6]. As noted above, the molecule centers cannot lie in

The above statement is fully confirmed by the analysis othe forbidden space limited by-diameter cylinders around
the space groups of thousands of observed biomoleculdhe symmetry lines. Therefore, to calculate the free volume,
crystals[1,2] provided that the biological macromolecules one should subtract the forbidden volume from the unit-cell
have lowC,; symmetry. The synthetically prepared protein volume and take into account possible overlaps of cylinders

crystal with space grouﬁ’T (centrosymmetric forin[3] is arqund symmetry lines. Far from the overlap region, for the
not an exception since half of the Wyckoff positions are oc-Unit cell with the A,B,C lattice constants and the angk
cupied by levorotatory molecules and the other half by theii?€WeenA andC translation vectors, we obtaee=Vee
mirror-image dextrorotatory counterparts. —4Vey=ABCsing—4BaD4. Then the relative free vol-
ume isViee! Vo= 1— 7mD?/AC sin 8. When the packing co-
efficient p increases, the free space monotonously decreases
_ _ _ as 1—¢p?2. For D>min(A,C,\(A?>+C?+2ACcosp), the
According to our symmetry consideration, the largestcyjlinder overlap takes place. In order not to overload the
probability for molecules to crystallize exists in space groupsyaper, we give only the formula for an oversimplified case,
having no high-symmetry Wyckoff positions except 0f,  A=C and g==/2 (the monoclinic symmetry can be kept
e.g.,P1 of the triclinic systemP2, of the monoclinic one,  gsjnce the symmetry of the Bravais lattice of molecular crys-

andP2,2,2, of the orthorhombid, system. Indeed, these ta|s can be higher than required by the point symmetry
3 of the 66 possible groups provide nearly half of all biomo-

lecular crystaldsee Table)l

B. Distribution of biomolecule crystals over the space groups

The addition of each next symmetry line within the unit Viree! Vo= 1— (2D/A)2{ m/4— arcco$A/2D)
cell decreases the free space and thus this probability,
whereas the existence of the line intersections increases them +(AI2D)\[1—(A/2D)?]}. 8
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TABLE . Distribution of crystals made of biological macromolecules over the space groups according to the [B}&ia PDB[2]
databases. For each group, the minimum possible numbers of biomolecules per primitive and crystallographic mpidiedMN(,) and the
numbers of symmetry line®y, , and symmetry points\lp (at the line intersections, in parentheser crystallographic unit cell are given.

Crystal system

Number of crystal§ppm)

and Space Group
crystal class group No. Ner N N_ (—Np) BMCD PDB Average
Triclinic C, P1 1 1 1 0 32 199 115
Monoclinic C, P2 3 2 2 4(—0) 55 1 3
P2, 4 2 2 0 144 112 128
caa 5 2 4 4(-0) 75.5 74.5 75
OrthorhombicD, pP222 16 4 4 12-8) 1 0 1
P222, 17 4 4 8(—0) 5 0.5 3
P2,2,2 18 4 4 4(-0) 42 48 45
P2,2,2, 19 4 4 0 223 201 212
C222 20 4 8 8(—-0) 385 385 39
C222 21 4 8 16—8) 5 1 3
F222 22 4 16 24—-16) 1 1 1
1222 23 4 8 12-8) 17.5 17 17
12,2124 24 4 8 12(-0) 8 0.5 4
TetragonalC, P4 75 4 4 4(-0) 15 0.5 1
P4, 76 4 4 0 7 6 7
P4, 77 4 4 4(—-0) 1 0.5 1
P4, 78 4 4 0 6.5 5 6
14 79 4 8 4(-0) 4.5 3 4
144 80 4 8 4(—-0) 0.5 2 1
TetragonalD 4 P422 89 8 8 16—8) 15 0.5 1
P42,2 90 8 8 8(—4) 5 35 4
P4,22 91 8 8 12(-0) 10.5 15 6
P4,2,2 92 8 8 4(—0) 36.5 26 31
P4,22 93 8 8 16(—12) 1.5 0.5 1
P4,2,2 94 8 8 8(—4) 95 7 8
P45;22 95 8 8 12(-0) 8 2 5
P4,2,2 96 8 8 4(-0) 50 395 45
1422 97 8 16 20—-12) 55 6 6
14,22 98 8 16 20—8) 2 55 4
Trigonal C, R3 146 3 3 1(—-0) 10.5 11 11
(rhombohedral
Trigonal C4 P3 143 3 3 3(-0) 1 2 1
(hexagonal P3; 144 3 3 0 4 25 3
P3, 145 3 3 0 6 35 5
Trigonal D3 R32 155 6 6 7(—2) 11 11 11
(rhombohedral
Trigonal D4 P312 149 6 6 13-6) 0 0 0
(hexagonal P321 150 6 6 A-2) 5 6 5
P3,12 151 6 6 10—0) 4.5 0.5 3
P3,21 152 6 6 6(—0) 39 325 36
P3,12 153 6 6 10(—0) 4 1 3
P3,21 154 6 6 6(—0) 39.5 45.5 42
HexagonalCgq P6 168 6 6 6(—0) 25 55 4
P6, 169 6 6 0 115 9 10
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Crystal system

Number of crystal§ppm)

and Space Group
crystal class group No. Ner N N_ (—Np) BMCD PDB Average

P65 170 6 6 0 9.5 55 8
P6, 171 6 6 4(-0) 35 1 2
P6, 172 6 6 4(-0) 2 1.5 2
P64 173 6 6 3(—-0) 7 55 6

HexagonalDg P622 177 12 12 22-12 3 1 2
P6,22 178 12 12 16-0) 19.5 16 18
P6522 179 12 12 16-0) 18 8 13
P6,22 180 12 12 20-12) 8 2.5 5
P6,22 181 12 12 20—-12) 8 2.5 5
P6522 182 12 12 19-8) 8.5 4.5 7

CubicT P23 195 12 12 16-8) 1 0 0
F23 196 12 48 40-16) 0.5 0 0
123 197 12 24 19-8) 4.5 3 4
P2,3 198 12 12 4-0) 6.5 6.5 6
12,3 199 12 24 19-0) 3 4 3

CubicO P432 207 24 24 28—-8) 0 0 0
P4,32 208 24 24 31-29 1 0.5 1
F432 209 24 96 82—40) 2 1.5 2
F4,32 210 24 96 104—-48) 1 0.5 1
1432 211 24 48 43—-28) 2 2 2
P4,32 212 24 24 20-8) 1 0.5 1
P4,32 213 24 24 2q-8) 2 0.5 1
14,32 214 24 48 49-40) 1 1 1

@As for some other groups, here equivalent notations are includagd; B2, B112,C121,C2,, C121,112,1,1121,12, andl 2, .

One can see that analytical calculations are too compli- In the P2, space group, the rotation axis is substituted by
cated. The results of numerical calculations by the Montea screw one. As a result, the symmetry of Wyckoff positions
Carlo method are given in Fig. 1 both for the oversimplifiedalong the lines is reduced to general ones. The symmetry
case(bold lineg and for different crystal-lattice parameters. lines disappear. WheB=2D, there is no forbidden space,

In the latter case, the results are averaged over a set of thke free-space volume coinciding with the unit-cell volume.
A,B,Clattice parameters with their ratios varying from 1/3 to For smallerB, forbidden space appears too, related to the
3/1, which is broader than the real biomolecule-crystalscrew axis[also a cylinder around each axis, but with the

lattice-parameter distribution. It can be seen that the differdiameterd=\/(D?—B?%4)]. The relative free volume drops
ence between the two cases is not significant.

100

3.0

g 25 / —r2,7c2
_.80F S20) |/
® e g \4’
g 601 B
® Packing coefficient (%)
a
2 40}
o a=b=c azb=zc
— P2
* 20t e
—u:
0 . S
0 20 40 60
Packing coefficient (%)

abruptly from the maximal value 100%, as shown in Fig. 1.
Nevertheless, the free space for this group remains incompa-
rably larger than that for thB2 space group, as one can see
from the inset in the figure, where free-space ratios are pre-
sented.

In the space grou2, the symmetry lines in the base-
centered crystallographic unit cell coincide with those in the
primitive P2 unit cell (equivalent to the crystallographic one
for the primitive lattices However, there are four molecules
per crystallographic unit cell instead of two molecules for
P2, and the unit-cell volum¥ . is two times larger for the
same packing coefficient. As a result, this group stands in

FIG. 1. The dependences of relative free-space volume on thB€tweenP2 andP2;. According to the numerical calcula-
packing coefficienp for three groups of monoclinic crystals. Thick tions(see Fig. ], the relative free-space volumWgee/V ey is
lines are calculated within an oversimplified model, thin lines1.5 to 2 times less here than that for tR@; group, being
within a more realistic onésee text Inset shows the corresponding much larger than for th&2 group.
ratios of these free-space volumes averaged for the same packing Comparing our model results with the available experi-

coefficient.

mental data, we see a good agreement: the averagyed
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both databases, see Tabjeatio of numbers of crystals for crystals almost the same. Furthermore, in going f©a22;
the P2, andC2 groups is about 1.7, the number of reportedto 12,2,2,, the unit-cell volume is not changed, whereas the
crystals with theP2 group being much smaller than with the number of axes is increased from 8 to (fthout intersec-
other two groups. tions in all cases As a result, the number of crystals also
decreases.
In the tetragonaD, class, the minimum number of sym-
One can make detailed calculations for any crystal sysmetry lines(four) appears forP4;2,2 and P4,2,2 space
tem. In the above model, the probability for molecules togroups(with a slight difference between thenwhich corre-
form a crystal with a particular space group is assumed to beponds to the maximum free, space. Not surprisingly, two-
proportional to the relative free spabgee/Vee in the unit  thirds of the tetragondD, crystals are from these groups. On
cell assuring the largest packing coefficient compatible wittthe contrary, theP422 and P4,22 groups(16 symmetry
the symmetry restrictions. Since the forbidden space is crdines) are practically not present. One can also compare the
ated by symmetry lines, even the number of symmetry line®, tetragonal body-centered group$422 and 14,22),
provides information on the free space. where the decrease in the number of line intersections results
This is clearly seen from the above comparison of thein a decrease in free space and is accompanied by a decrease
numerical and qualitative results for group®, P2,, and in the number of crystals. A quite similar but less clear pic-
C2. So, in predicting the biomolecule-crystal distribution ture can be seen for space groups of the other tetragonal
over space groups, it is reasonable for the sake of simplicitglass, C,. For example, the case @, tetragonal body-
to restrict ourselves to a comparison of the numbers of symeentered groupsfour nonintersecting lines per crystallo-
metry lines (taking into account their intersections, which graphic unit cell in bothi4 andl4;) can be made transparent
increased/;q0) , thus implying the comparison of the relative with direct numerical calculations only. Note, however, that

2. Other crystal classes

free-space volumes. two-thirds of theC, crystals are fronP4; and P4, space
The case of the orthorhomb@, class is exemplary. In groups, as can be expected.
the symmorphic orthorhombic space groBg22, there are Within the trigonal system, a few subsystems and sub-

12 symmetry linegfour lines along each directioxn y, and  classes can be found. For example, within the trigghek-
7) and eight symmetry points lying at the intersections ofagona) 321 subclass, equal maxima of distribution numbers
these lines. For the nonsymmorphR222, group, all the are obviously expectetand occuy for P3;21 andP3,21
symmetry points and symmetry lines along the screw axigroups, where six high-symmetry lines are present. The two
direction disappear, the number of symmetry lines reduces tgroups comprise more than half of all trigonal crystals.
eight, and there is no line intersection. As a result, the free For the hexagondDg class, our model predicts the largest
space for a molecule increases. For B2,2,2 group, the (and nearly equaldistribution numbers for thé6,22 and
number of symmetry lines reduces to four and the free spacB6522 space group&l6 high-symmetry lings smaller(and
increases even more, reaching the maximum for the grouplso nearly equalnumbers for thd®6,22 andP6,422 groups
P2,2,2, containing only general Wyckoff positions with the (20 lines, and the minimum number of crystals with the
C, symmetry. And this is immediately reflected in the num-P622 group(22 high-symmetry lings everything being ob-
ber of observed crystals. Indeed, for the orthorhombic crysserved in reality. Indeed, two-thirds of the crystals are from
tals with a simple lattice, replacing each rotation axis by athe two former space groups, whereas the latter provide less
screw one increases the number of observed crystals by otlean a quarter. A very similar picture takes place for the
order of magnitude. hexagonalCg class, namely equal maxima &6, and P65
For the base-centered orthorhombic lattices, the replacéno high-symmetry positions in the crystalparity, and
ment of rotation axis irC222 with a screw one in th€222; minima for P6,, P6,, andP6, but statistical error makes it
group reduces twice the number of symmetry liglesm 16  not as clear as in the previous case.
to 8), thus increasing the free volume. However, line inter- Even for the most symmetric cubic system, where the
sections disappear, thus partly compensating for the effecstatistical material is insufficient, the largest number of crys-
Nevertheless, the ratio of distribution numbers is about 10tals(about 100 in the PDBbelongs to thé®2,3 space group
For both groups with the orthorhombic body-centered lat-with the minimum number of high-symmetry lines per unit
tices, 1222 andl2,2,2,, there are 12 symmetry lines per cell, which also supports our model.
crystallographic unit cell. Nevertheless, in the22 group
they intersect, which increases the free volume, whereas in
the12,2,2, group the symmetry lines do not intersect and
the free volume is less. Correspondingly, the number of crys- As the biomolecular-crystal databases increase, it will be-
tals is also smalletabout four timeg come possible to test the presented “free-space” model ana
To compare the orthorhombic subclasses with the primidyzing the distribution over the space groups for the various
tive (P) and centeredC andl) lattices, one should take into crystals based on the same biomolecule. This will allow us to
account that the centering of the unit cell increases bgth ~ reveal fine details of biomolecule crystallization.
andV . For example, in going fror®2,2,2 to C222;, the Indeed, the low symmetry of the biomolecules dictates
number of rotational axes and, consequently, the forbidderthat the atoms have no symmetry in any biomolecular crystal
space volume double. However, the unit-cell volume alsdut C,. Incidentally, this means that any atom does not
doubles, keeping the relative free space and the number ehange its position symmetry during any crystal-phase tran-

C. Perspectives for future studies
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TABLE II. Distribution of crystals made of biological macromolecules over the crystal systems according
to the BMCD databasfl].

Number of

crystals Triclinic  Monoclinic  Orthorhombic  Tetragonal Trigonal Hexagonal Cubic
All (hundreds 1 8 12 5.5 4.5 3.5 1
Lysozyme 1 6 15 13 10 4

sition, and there is no jump of the atom enelgphesive, we refer to the combined BMCD-PDB statistics, all averaged
potential, etg, the changes of the structutittice param- over the data on many crystals.
eters, anglesbeing continuous as well. Since an energy

profit for a phase transition is not large, any protein could V. CONCLUSION
form any lattice under certain conditiofisiolecular density ) ) )
in the solution or number of surrounding,& molecules, We have carried out a detailed group-theory analysis of

acidity, or pH, etd. What is more, the probability for a cer- the interrelation between the symmetry of an isolated mac-
tain protein to have a certain latti¢epace groupshould be ~romolecule and the possible symmetries of the crystals it can
the same as for any other proteif there are no shape pe- 9enerate. We link rigorously the absence of symmetry in bio-
culiarities. That is to say, the averaged distribution statisticsmolecules with the chirality of the biomolecular crystals.
for all proteins and that for a certain protein should be the e have found some restrictions for the molecule dispo-
same. sition in the crystal structure, and suggest a model taking into
There are already moderate statistics of distributions ofccount both these restrictions and trends of the biomolecule
the various crystals made of the identical biomoleculesPacking. According to our model, the largest probability for
Among thousands, the lysozyme protein is one of the mos@olecules to crystallize exists in space groups having no
studied, 49 lysozyme crystals being presented in the BMCDNgh-symmetry Wyckoff positions. _
[1], belonging to 16 space groufsee Table Il. One can see W|th|n this “free—spacc_—:-” r_nod_el, we performe(_:i an analysis
the pronounced similarity of distribution over crystal systemsof biomolecule crystal distribution for the possible 66 space
for this protein and the others in total. Of course, it is diffi- 9FOUPS with proper symmetry operations only. The predic-
cult to expect an accurate coincidence. First, obtaining th#0ns of our model are confirmed by the protein database
higher-symmetry phases is more advanced for many furthettatistics. So, without resorting to thermodynamics, in a
studies, e.g., structural ones. Second, if the shape of a bidfamework of a symmetry approach, we have managed to
molecule is very special, statistics could be different as ilde;crlbe important peculiarities of the biomolecule crystalli-
takes place for the hemoglobin crystals. Unfortunately, beZation.
cause of small statistics, an analogous search cannot be done
for distributions over the space groups for crystals made of
other biomolecules. However, the BMC] and PDB[2]
databases, which collect slightly different subsets of the pro- We thank Dr. M. Ries for very fruitful discussions and
tein crystals, show nevertheless that the percentage statistiasknowledge the support of Mairie de Paris and Ministere de
are very similar. That is why, to prove ofree-spacenodel, la Recherche.
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